Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Experimental Design
2.3. Ultrassound Evaluation
2.4. Weighting, Average Daily Gain, and Body Condition Score
2.5. Statistical Analysis
3. Results
3.1. Phenotypic Traits of Dams
3.2. Calves Performance
3.3. Ultrassound Carcass Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, D.J. The fetal and infant origins of adult disease. Br. Med. J. 1990, 301, 1111. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental Programming of Fetal Growth and Development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef]
- Meyer, K.; Zhang, L. Fetal Programming of Cardiac Function and Disease. Reprod. Sci. 2007, 14, 209–216. [Google Scholar] [CrossRef]
- Zhu, M.J.; Ford, S.P.; Means, W.J.; Hess, B.W.; Nathanielsz, P.W.; Du, M. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J. Physiol. 2006, 575, 241–250. [Google Scholar] [CrossRef]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [Green Version]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikovic, J.; Lamon, S. The effect of maternal metabolic status on offspring health: A role for skeletal muscle? J. Physiol. 2018, 596, 5079–5080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Ford, S.P.; Zhu, M.-J. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim. Front. 2017, 7, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Naslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Du, M.; Huang, Y.; Das, A.K.; Yang, Q.; Duarte, M.S.; Dodson, M.V.; Zhu, M.-J. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J. Anim. Sci. 2013, 91, 1419–1427. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Strefezzi, R.D.F.; Cracco, R.C.; Fernandes, A.C.; Zuca, C.B.; Castellar, H.H.; Baldin, G.C.; Santana, M.H.D.A. Effects of different maternal nutrition approaches on weight gain and on adipose and muscle tissue development of young bulls in the rearing phase. Trop. Anim. Health Prod. 2021, 53, 536. [Google Scholar] [CrossRef]
- Maresca, S.; Valiente, S.L.; Rodriguez, A.M.; Testa, L.M.; Long, N.M.; Quintans, G.I.; Pavan, E. The influence of protein restriction during mid- to late gestation on beef offspring growth, carcass characteristic and meat quality. Meat Sci. 2019, 153, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.C.; Du, M.; Nascimento, K.B.; Galvão, M.C.; Meneses, J.A.M.; Schultz, E.B.; Gionbelli, M.P.; Duarte, M.d.S. Skeletal Muscle Development in Postnatal Beef Cattle Resulting from Maternal Protein Restriction during Mid-Gestation. Animals 2021, 11, 860. [Google Scholar] [CrossRef]
- Zhang, Y.; Otomaru, K.; Oshima, K.; Goto, Y.; Oshima, I.; Muroya, S.; Sano, M.; Saneshima, R.; Nagao, Y.; Kinoshita, A.; et al. Effects of low and high levels of maternal nutrition consumed for the entirety of gestation on the development of muscle, adipose tissue, bone, and the organs of Wagyu cattle fetuses. Anim. Sci. J. 2021, 92, e13600. [Google Scholar] [CrossRef] [PubMed]
- Underwood, K.; Tong, J.; Price, P.; Roberts, A.; Grings, E.; Hess, B.; Means, W.; Du, M. Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. Meat Sci. 2010, 86, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Trubenbach, L.A.; Hobbs, K.C.; Poletti, A.E.; Steinhauser, C.B.; Pryor, J.H.; Long, C.R.; Wickersham, T.A.; Sawyer, J.E.; Miller, R.K.; et al. Maternal nutrient restriction in late pregnancy programs postnatal metabolism and pituitary development in beef heifers. PLoS ONE 2021, 16, e0249924. [Google Scholar] [CrossRef]
- Valiente, S.L.; Rodriguez, A.M.; Long, N.M.; Lacau-Mengido, I.M.; Maresca, S. The degree of maternal nutrient restriction during late gestation influences the growth and endocrine profiles of offspring from beef cows. Anim. Prod. Sci. 2021, 62, 163–172. [Google Scholar] [CrossRef]
- Cracco, R.C.; Bussiman, F.D.O.; Polizel, G.H.G.; Furlan, É.; Garcia, N.P.; Poit, D.A.S.; Pugliesi, G.; Santana, M.H.D.A. Effects of Maternal Nutrition on Female Offspring Weight Gain and Sexual Development. Front. Genet. 2021, 12, 2059. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Espigolan, R.; Fantinato-Neto, P.; de Francisco Strefezzi, R.; Rangel, R.B.; de Carli, C.; Fernandes, A.C.; Dias, E.F.F.; Cracco, R.C.; de Almeida Santana, M.H. Different prenatal supplementation strategies and its impacts on reproductive and nutrigenetics assessments of bulls in finishing phase. Vet. Res. Commun. 2022, 47, 457–471. [Google Scholar] [CrossRef]
- Toschi, P.; Capra, E.; Anzalone, D.; Lazzari, B.; Turri, F.; Pizzi, F.; Scapolo, P.; Stella, A.; Williams, J.L.; Marsan, P.A.; et al. Maternal peri-conceptional undernourishment perturbs offspring sperm methylome. Reproduction 2020, 159, 513–523. [Google Scholar] [CrossRef]
- Junior, F.J.S.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Fernandes, A.C.; Mortari, I.; Pires, P.R.L.; Fukumasu, H.; Santana, M.H.D.A.; Netto, A.S. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022, 12, 347. [Google Scholar] [CrossRef]
- Santana, M.; Ventura, R.; Utsunomiya, Y.; Neves, H.; Alexandre, P.; Junior, G.O.; Gomes, R.; Bonin, M.; Coutinho, L.; Garcia, J.; et al. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J. Anim. Breed. Genet. 2015, 132, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.W.; Spitzer, J.C.; Warner, M.B. Effect of Varying Levels of Postpartum Nutrition and Body Condition at Calving on Subsequent Reproductive Performance in Beef Cattle23. J. Anim. Sci. 1986, 62, 300–306. [Google Scholar] [CrossRef]
- Stalker, L.A.; Adams, D.C.; Klopfenstein, T.J.; Feuz, D.M.; Funston, R.N. Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 2006, 84, 2582–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, J.; Martin, J.; Hall, Z.; Kovarik, L.; Hanford, K.; Rasby, R. The effects of supplementing beef cows grazing cornstalk residue with a dried distillers grain based cube on cow and calf performance. Prof. Anim. Sci. 2011, 27, 540–546. [Google Scholar] [CrossRef]
- De Melo, L.P. Características Produtivas, Nutricionais e Metabólicas de Novilhas Nelore Submetidas a Diferentes Estratégias de Suplementação Durante a Gestação; Universidade Federal de Viçosa: Viçosa, Brazil, 2018. [Google Scholar]
- Spitzer, J.C.; Morrison, D.G.; Wettemann, R.P.; Faulkner, L.C. Reproductive responses and calf birth and weaning weights as affected by body condition at parturition and postpartum weight gain in primiparous beef cows. J. Anim. Sci. 1995, 73, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, G.; Fitzpatrick, L.A.; Mullins, T.J.; Cooper, N.J.; Reid, D.J.; Entwistle, K.W. Prepartum supplementation effects on growth and fertility in Bos indicus-cross cows. Aust. J. Exp. Agric. 1997, 37, 141–149. [Google Scholar] [CrossRef]
- Du, M.; Zhao, J.X.; Yan, X.; Huang, Y.; Nicodemus, L.V.; Yue, W.; McCormick, R.J.; Zhu, M.J. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J. Anim. Sci. 2011, 89, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.F.; Rennó, L.N.; Detmann, E.; Paulino, M.F.; De Campos Valadares Filho, S.; Moreira, S.S.; Martins, H.C.; De Oliveira, B.I.C.; Marquez, J.A.; De Paula Cidrine, I. Performance, metabolic and hormonal responses of grazing Nellore cows to an energy-protein supplementation during the pre-partum phase. BMC Vet. Res. 2020, 16, 108–113. [Google Scholar] [CrossRef]
- De Moura, F.H.; Costa, T.C.; Trece, A.S.; De Melo, L.P.; Manso, M.R.; Paulino, M.F.; Rennó, L.N.; Fonseca, M.A.; Detmann, E.; Gionbelli, M.P.; et al. Effects of energy-protein supplementation frequency on performance of primiparous grazing beef cows during pre and postpartum. Asian-Australas. J. Anim. Sci. 2020, 33, 1430–1443. [Google Scholar] [CrossRef]
- Brasil, I.d.G.; Naves, A.C.; Macedo, I.M.; Teixeira, R.C.; Viu, M.A.D.O.; Lopes, D.T.; Gambarini, M.L. Energy-protein supplementation before and after parturition of Nellore primiparous cows in the Brazilian tropical savannah. Res. Soc. Dev. 2021, 10, e14710313231. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Schoonmaker, J.P.; Resende, F.D.; Siqueira, G.R.; Rodrigues MacHado Neto, O.; Gionbelli, M.P.; Ramalho Santos Gionbelli, T.; Ladeira, M.M.H. Effects of protein supplementation on Nellore cows’ reproductive performance, growth, myogenesis, lipogenesis and intestine development of the progeny. Anim. Prod. Sci. 2021, 61, 371. [Google Scholar] [CrossRef]
- Reed, S.; Raja, J.S.; Hoffman, M.L.; Zinn, S.; Govoni, K. Poor maternal nutrition inhibits muscle development in ovine offspring. J. Anim. Sci. Biotechnol. 2014, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.B.; Costa, T.C.; Sanglard, L.P.; Nascimento, K.B.; Meneses, J.A.; Galvão, M.C.; Serão, N.V.; Duarte, M.S.; Gionbelli, M.P. Transcriptome profile in the skeletal muscle of cattle progeny as a function of maternal protein supplementation during mid-gestation. Livest. Sci. 2022, 263, 104995. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Crouse, M.S.; Cushman, R.A.; McLean, K.J.; Caton, J.S.; Dahlen, C.R.; Reynolds, L.P.; Ward, A.K. Cerebrum, liver, and muscle regulatory networks uncover maternal nutrition effects in developmental programming of beef cattle during early pregnancy. Sci. Rep. 2021, 11, 2771. [Google Scholar] [CrossRef]
- Maresca, S.; Valiente, S.; Rodriguez, A.; Pavan, E.; Quintans, G.; Long, N. Late-gestation protein restriction negatively impacts muscle growth and glucose regulation in steer progeny. Domest. Anim. Endocrinol. 2019, 69, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Quarnberg, S.M.; Legako, J.F.; Gardner, J.M.; Zobell, D.R.; Carpenter, C.E.; Rood, K.A.; Thornton, K.J. 0775 Effects of maternal dietary restriction during the second trimester on offspring growth and feedlot performance. J. Anim. Sci. 2016, 94, 372. [Google Scholar] [CrossRef] [Green Version]
- Piaggio, L.; Quintans, G.; Julián, R.S.; Ferreira, G.; Ithurralde, J.; Fierro, S.; Pereira, A.S.C.; Baldi, F.; Banchero, G.E. Growth, meat and feed efficiency traits of lambs born to ewes submitted to energy restriction during mid-gestation. Animal 2018, 12, 256–264. [Google Scholar] [CrossRef]
- Hales, C.N.; Barker, D.J.P. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef]
- Mohrhauser, D.A.; Taylor, A.R.; Underwood, K.R.; Pritchard, R.H.; Wertz-Lutz, A.E.; Blair, A.D. The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality1. J. Anim. Sci. 2015, 93, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M.; Testa, L.M.; Valiente, S.L.; Latorre, M.E.; Long, N.M.; Rodriguez, A.M.; Pavan, E.; Maresca, S. Maternal energy status during late gestation: Effects on growth performance, carcass characteristics and meat quality of steers progeny. Meat Sci. 2020, 164, 108095. [Google Scholar] [CrossRef] [PubMed]
- Block, J.J.; Blair, A.D.; Funston, R.N.; Webb, M.J.; Underwood, K.R.; Gonda, M.G.; Harty, A.A.; Salverson, R.R.; Olson, K.C. Influence of Maternal Protein Restriction in Primiparous Heifers during Mid- and/or Late Gestation on Progeny Feedlot Performance and Carcass Characteristics. In SDSU Beef Day 2020 Summary Publication; South Dakota State University: Brookings, SD, USA, 2020; pp. 106–114. [Google Scholar]
- Wilson, T.; Faulkner, D.; Shike, D. Influence of prepartum dietary energy on beef cow performance and calf growth and carcass characteristics. Livest. Sci. 2016, 184, 21–27. [Google Scholar] [CrossRef]
- Mulliniks, J.T.; Sawyer, J.E.; Harrelson, F.W.; Mathis, C.P.; Cox, S.H.; Löest, C.A.; Petersen, M.K. Effect of late gestation bodyweight change and condition score on progeny feedlot performance. Anim. Prod. Sci. 2015, 56, 1998. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.L.; Vonnahme, K.A.; Adams, D.C.; Lardy, G.P.; Funston, R.N. Effects of dam nutrition on growth and reproductive performance of heifer calves. J. Anim. Sci. 2007, 85, 841–847. [Google Scholar] [CrossRef] [Green Version]
- Larson, D.M.; Martin, J.L.; Adams, D.C.; Funston, R.N. Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny1. J. Anim. Sci. 2009, 87, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.; Cooke, R.; Rodrigues, M.; Moriel, P.; Bohnert, D. Impacts of cow body condition score during gestation on weaning performance of the offspring. Livest. Sci. 2016, 191, 174–178. [Google Scholar] [CrossRef] [Green Version]
Traits | NP | PP | FP | p-Value |
---|---|---|---|---|
Body weight (kg) | ||||
Initial | 461 ± 6.90 | 451 ± 9.38 | 454 ± 8.76 | 0.85 |
Middle third | 490 ± 4.86 a | 493 ± 5.65 a | 516 ± 6.45 b | <0.01 * |
Pre-delivery | 508 ± 7.23 a | 524 ± 9.07 a | 541 ± 10.1 b | <0.01 * |
Postpartum | 503 ± 3.97 | 502 ± 5.21 | 518 ± 5.48 | 0.13 |
Rump fat thickness (mm) | ||||
Initial | 4.28 ± 0.61 | 4.31 ± 0.61 | 4.33 ± 0.61 | 0.92 |
Middle third | 6.33 ± 0.40 a | 6.87 ± 0.38 a | 9.35 ± 0.50 b | <0.01 * |
Pre-delivery | 7.23 ± 0.66 a | 9.24 ± 0.67 a | 12.5 ± 0.98 b | <0.01 * |
Postpartum | 9.77 ± 0.47 a | 11.4 ± 0.48 ab | 12.6 ± 0.57 b | 0.04 * |
Body condition score | ||||
Initial | 4.5 ± 0.09 | 4.6 ± 0.12 | 4.5 ± 0.09 | 0.34 |
Pre-delivery | 5.4 ± 0.13 a | 5.6 ± 0.13 ab | 5.9 ± 0.13 b | 0.04 * |
Trait | Time | NP | PP | FP | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
Weight (Kg) | 30 days | 68.42 ± 2.71 | 68.81 ± 2.20 | 73.28 ± 2.89 | 0.35 | 0.30 |
6 months | 190.22 ± 4.92 | 199.09 ± 3.79 | 198.99 ± 5.08 | 0.27 | ||
Weaning | 216.61b ± 5.20 | 231.84 a ± 5.01 | 232.9 a ± 4.62 | 0.08 * | ||
12 months | 293.75 ± 5.03 | 296.88 ± 5.95 | 301.70 ± 5.54 | 0.46 | ||
15 months | 370.01 ± 5.43 | 370.78 ± 6.02 | 382.99 ± 5.48 | 0.12 | ||
18 months | 430.70 ± 4.79 | 429.78 ± 6.12 | 439.92 ± 4.34 | 0.13 | ||
Finishing_D0 | 452.07 ± 6.02 | 448.99 ± 7.17 | 464.01 ± 7.20 | 0.16 | ||
Finishing_D35 | 512.01 ± 6.73 | 518.97 ± 8.11 | 528.27 ± 8.04 | 0.21 | ||
Finishing_D57 | 556.52 ± 7.04 | 568.70 ± 9.29 | 568.94 ± 9.55 | 0.34 | ||
Finishing_D70 | 576.25 ± 8.11 | 590.92 ± 10.01 | 587.02 ± 10.19 | 0.39 | ||
ADG | Cow-calf | 0.85 ± 0.020 | 0.91 ± 0.017 | 0.92 ± 0.015 | 0.27 | 0.21 |
Rearing | 0.58 ± 0.011 | 0.56 ± 0.011 | 0.60 ± 0.013 | 0.34 | ||
Finishing | 1.70 b ± 0.034 | 1.87 a ± 0.048 | 1.71 b ± 0.042 | 0.09 * |
Trait | Time | NP | PP | FP | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
REA (cm2) | 30 days | 19.4 ± 0.9 | 19.85 ± 0.64 | 20.95 ± 1.01 | 0.78 | 0.62 |
6 months | 39.95 ± 1.32 | 43.41 ± 1.08 | 44.60 ± 1.16 | 0.35 | ||
Weaning | 45.22 ± 1.03 | 47.51 ± 1.11 | 47.21 ± 0.94 | 0.62 | ||
12 months | 58.78 ± 1.02 | 57.40 ± 1.05 | 59.32 ± 1.11 | 0.75 | ||
15 months | 68.1 ± 1.08 | 67.99 ± 0.95 | 68.05 ± 0.89 | 0.96 | ||
18 months | 77.18 ± 1.09 | 78.67 ± 1.01 | 78.60 ± 1.15 | 0.72 | ||
Finishing_D0 | 84.45 ± 1.22 | 86.90 ± 0.75 | 84.71 ± 1.06 | 0.35 | ||
Finishing _D35 | 92.75 ± 1.21 | 91.30 ± 1.16 | 94.89 ± 1.20 | 0.33 | ||
Finishing _D57 | 97.78 ± 1.22 | 102.33 ± 1.35 | 101.95 ± 1.24 | 0.31 | ||
Finishing _D70 | 97.50 ± 1.01 | 98.76 ± 1.22 | 98.26 ± 0.98 | 0.77 | ||
REAg | Cow-calf | 26.01 ± 1.41 | 27.20 ± 1.20 | 25.71 ± 1.17 | 0.88 | 0.81 |
Rearing | 18.21 ± 0.82 | 20.88 ± 1.39 | 19.94 ± 0.88 | 0.45 | ||
Finishing | 13.52 a ± 0.85 | 11.01 b ± 1.12 | 13.10 a ± 1.01 | 0.09 * |
Trait | Time | NP | PP | FP | p-Value 1 | p-Value 2 |
---|---|---|---|---|---|---|
RFT (mm) | 6 months | 2.23 ± 0.15 | 2.15 ± 0.18 | 2.50 ± 0.16 | 0.66 | 0.59 |
Weaning | 2.36 ± 0.17 | 2.84 ± 0.15 | 2.45 ± 0.20 | 0.39 | ||
12 months | 1.04 ± 0.14 | 0.82 ± 0.16 | 1.02 ± 0.13 | 0.44 | ||
15 months | 1.47 ± 0.16 | 1.56 ± 0.17 | 1.89 ± 0.13 | 0.46 | ||
18 months | 2.94 ± 0.17 | 3.18 ± 0.19 | 3.29 ± 0.19 | 0.56 | ||
Finishing_D0 | 3.41 ± 0.15 | 3.14 ± 0.23 | 3.6 ± 0.21 | 0.65 | ||
Finishing _D35 | 6.10 ± 0.19 | 6.35 ± 0.27 | 6.79 ± 0.22 | 0.43 | ||
Finishing _D57 | 7.41 ± 0.20 | 7.06 ± 0.31 | 7.65 ± 0.25 | 0.40 | ||
Finishing _D70 | 8.51 ± 0.27 | 9.19 ± 0.39 | 9.72 ± 0.23 | 0.49 | ||
RFTg | Cow-calf | 0.09 b ± 0.14 | 0.69 a ± 0.15 | 0.0 b ± 0.17 | 0.06 * | 0.09 * |
Rearing | 1.90 ± 0.19 | 2.35 ± 0.17 | 2.29 ± 0.20 | 0.27 | ||
Finishing | 5.20 ± 0.17 | 6.09 ± 0.32 | 6.10 ± 0.24 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cracco, R.C.; Ruy, I.M.; Polizel, G.H.G.; Fernandes, A.C.; Furlan, É.; Baldin, G.C.; Santos, G.E.C.; Santana, M.H.d.A. Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring. Vet. Sci. 2023, 10, 443. https://doi.org/10.3390/vetsci10070443
Cracco RC, Ruy IM, Polizel GHG, Fernandes AC, Furlan É, Baldin GC, Santos GEC, Santana MHdA. Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring. Veterinary Sciences. 2023; 10(7):443. https://doi.org/10.3390/vetsci10070443
Chicago/Turabian StyleCracco, Roberta Cavalcante, Isabela Modolo Ruy, Guilherme Henrique Gebim Polizel, Arícia Christofaro Fernandes, Édison Furlan, Geovana Camila Baldin, Gianluca Elmi Chagas Santos, and Miguel Henrique de Almeida Santana. 2023. "Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring" Veterinary Sciences 10, no. 7: 443. https://doi.org/10.3390/vetsci10070443
APA StyleCracco, R. C., Ruy, I. M., Polizel, G. H. G., Fernandes, A. C., Furlan, É., Baldin, G. C., Santos, G. E. C., & Santana, M. H. d. A. (2023). Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring. Veterinary Sciences, 10(7), 443. https://doi.org/10.3390/vetsci10070443