Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Bacterial Strains and Preparation of the Experimental Inoculum
2.3. Microbiological Analyses
2.4. Detection of Staphylococcal Enterotoxins
2.5. Statistical Analysis
3. Results
3.1. Staphylococcus aureus Growth
3.2. Total Mesophilic Viable Count Growth
3.3. Mesophilic Lactic acid Bacteria Growth
3.4. Effect of Fasting, Washing, and Cooking on Microbiological Counts
3.5. Enterotoxins Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for food: A water footprint perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Van Huis, A.; Rumpold, B.A.; van der Fels-Klerx, H.J.; Tomberlin, J.K. Advancing edible insects as food and feed in a circular economy. J. Insects Food Feed 2021, 7, 935–948. [Google Scholar] [CrossRef]
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals 2021, 11, 2568. [Google Scholar] [CrossRef]
- Fowles, T.M.; Nansen, C. Insect-based bioconversion: Value from food waste. In Food Waste Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar]
- Luciano, A.; Tretola, M.; Ottoboni, M.; Baldi, A.; Cattaneo, D.; Pinotti, L. Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals 2020, 10, 125. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, S.; Paci, G.; Fratini, F.; Dal Bosco, A.; Tuccinardi, T.; Mancini, S. Former foodstuff in mealworm farming: Effects on fatty acids profile, lipid metabolism and antioxidant molecules. LWT 2021, 147, 111644. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Provera, I.; Dovicchi, J.; Tuccinardi, T.; Minieri, S.; Papini, R.A.; Forzan, M.; Paci, G. Growth performances, chemical composition, and microbiological loads of mealworm reared with brewery spent grains and bread leftovers. Ital. J. Anim. Sci. 2022, 21, 1419–1429. [Google Scholar] [CrossRef]
- Fasel, N.J.; Mene-Saffrane, L.; Ruczynski, I.; Komar, E.; Christe, P. Diet induced modifications of fatty-acid composition in mealworm larvae (Tenebrio molitor). J. Food Res. 2017, 6, 22. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Off. J. Eur. Union 2017, 138, 92–116. [Google Scholar]
- European Commission. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals. Off. J. Eur. Union 2021, 295, 1–17. [Google Scholar]
- European Commission. Commission Regulation (EU) 2021/1925 of 5 November 2021 amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method. Off. J. Eur. Union 2021, 393, 4–8. [Google Scholar]
- Cesaro, C.; Mannozzi, C.; Lepre, A.; Ferrocino, I.; Belleggia, L.; Corsi, L.; Ruschioni, S.; Isidoro, N.; Riolo, P.; Petruzzelli, A.; et al. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Food Res. Int. 2022, 162, 112083. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Garofalo, C.; Clementi, F.; Pasquini, M.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Loreto, N.; et al. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int. J. Food Microbiol. 2018, 272, 49–60. [Google Scholar] [CrossRef]
- Kooh, P.; Jury, V.; Laurent, S.; Audiat-Perrin, F.; Sanaa, M.; Tesson, V.; Federighi, M.; Boué, G. Control of biological hazards in insect processing: Application of HACCP method for yellow mealworm (Tenebrio molitor) powders. Foods 2020, 9, 1528. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union 2001, 147, 1–40. [Google Scholar]
- Wynants, E.; Crauwels, S.; Lievens, B.; Luca, S.; Claes, J.; Borremans, A.; Bruyninckx, L.; Van Campenhout, L. Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2017, 42, 8–15. [Google Scholar] [CrossRef]
- Wynants, E.; Crauwels, S.; Verreth, C.; Gianotten, N.; Lievens, B.; Claes, J.; Van Campenhout, L. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 2018, 70, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Paci, G.; Ciardelli, V.; Turchi, B.; Pedonese, F.; Fratini, F. Listeria monocytogenes contamination of Tenebrio molitor larvae rearing substrate: Preliminary evaluations. Food Microbiol. 2019, 83, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Caparros Megido, R.; Poelaert, C.; Ernens, M.; Liotta, M.; Blecker, C.; Danthine, S.; Tyteca, E.; Haubruge, É.; Alabi, T.; Bindelle, J.; et al. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res. Int. 2018, 106, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Bencardino, D.; Amagliani, G.; Brandi, G. Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control 2021, 130, 108362. [Google Scholar] [CrossRef]
- McGonigle, J.E.; Purves, J.; Rolff, J. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor. Dev. Comp. Immunol. 2016, 59, 34–38. [Google Scholar] [CrossRef]
- Gorrens, E.; Van Looveren, N.; Van Moll, L.; Vandeweyer, D.; Lachi, D.; De Smet, J.; Van Campenhout, L. Staphylococcus aureus in substrates for black soldier fly larvae (Hermetia illucens) and Its dynamics during rearing. Microbiol. Spectr. 2021, 9, e0218321. [Google Scholar] [CrossRef]
- Morandi, S.; Brasca, M.; Lodi, R.; Cremonesi, P.; Castiglioni, B. Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products. Vet. Microbiol. 2007, 124, 66–72. [Google Scholar] [CrossRef]
- ISO 6888-1:1999/A2:2018; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Technique Using Baird-Parker Agar Medium—Amendment 2: Inclusion of an Alternative Confirmation Procedure (ISO 6888-1:1999/Amd 2:2018). International Organisation for Standardisation: Geneva, Switzerland, 2018.
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. International Organisation for Standardisation: Geneva, Switzerland, 2013.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony Count Technique at 30 °C. International Organisation for Standardisation: Geneva, Switzerland, 1998.
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Aleknavičius, D.; Lukša, J.; Strazdaitė-Žielienė, Ž.; Servienė, E. The bacterial microbiota of edible insects Acheta domesticus and Gryllus assimilis revealed by high content analysis. Foods 2022, 11, 1073. [Google Scholar] [CrossRef]
- Vandeweyer, D.; De Smet, J.; Van Looveren, N.; Van Campenhout, L. Biological contaminants in insects as food and feed. J. Insects Food Feed 2021, 7, 807–822. [Google Scholar] [CrossRef]
- International Platform of Insects for Food and Feed. Guide on Good Hygiene Practices for European Union (EU) Producers of Insects as Food and Feed; 2022; pp. 12–102. Available online: https://ipiff.org/good-hygiene-practices/ (accessed on 27 July 2023).
- Fakruddin, M.; Mannan, K.S.B.; Andrews, S. Viable but Nonculturable Bacteria: Food Safety and public health perspective. ISRN Microbiol. 2013, 2013, 703816. [Google Scholar] [CrossRef]
- Bennett, R.W. Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay–based methodology. J. Food Prot. 2005, 68, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Stoops, J.; Crauwels, S.; Waud, M.; Claes, J.; Lievens, B.; Van Campenhout, L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol. 2016, 53, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. Int. J. Food Microbiol. 2017, 242, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef]
- Lecocq, A.; Natsopoulou, M.E.; Berggreen, I.E.; Eilenberg, J.; Heckmann, L.-H.L.; Nielsen, H.V.; Stensvold, C.R.; Jensen, A.B. Probiotic properties of an indigenous Pediococcus pentosaceus strain on Tenebrio molitor larval growth and survival. J. Insects Food Feed 2021, 7, 975–986. [Google Scholar] [CrossRef]
- Pöllinger-Zierler, B.; Lienhard, A.; Mayer, C.; Berner, S.; Rehorska, R.; Schöpfer, A.; Grasser, M. Tenebrio molitor (Linnaeus, 1758): Microbiological screening of feed for a safe food choice. Foods 2023, 12, 2139. [Google Scholar] [CrossRef]
- Belleggia, L.; Milanović, V.; Cardinali, F.; Garofalo, C.; Pasquini, M.; Tavoletti, S.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F.; et al. Listeria dynamics in a laboratory-scale food chain of mealworm larvae (Tenebrio molitor) intended for human consumption. Food Control 2020, 114, 107246. [Google Scholar] [CrossRef]
- Fratini, F.; Ciurli, L.; Forzan, M.; Kaboudari, A.; Copelotti, E.; Paci, G.; Mancini, S. Contamination of Zophobas morio larvae rearing substrate with Listeria monocytogenes: A preliminary study. Animals 2023, 13, 1198. [Google Scholar] [CrossRef]
Effect of Time (Days) | T0 | T1 | T3 | T7 | RMSE | p-Value |
---|---|---|---|---|---|---|
SC | 1.00 | 1.00 | 1.00 | 1.00 | - | - |
SI | 6.92 a | 6.44 ab | 6.55 ab | 6.21 b | 0.221 | 0.026 |
SCL | 1.00 | 1.00 | 1.00 | 1.00 | - | - |
SIL | 6.92 | 6.28 | 6.42 | 6.09 | 0.319 | 0.064 |
LC | 1.00 | 1.00 | 1.00 | 1.00 | - | - |
LI | 1.00 b | 4.18 a | 4.54 a | 3.62 a | 0.495 | <0.001 |
Effect of larvae (p-value) | ||||||
SC vs. SCL | - | - | - | |||
SI vs. SIL | 0.346 | 0.641 | 0.033 | |||
Effect of inoculum (p-value) | ||||||
SC vs. SI | <0.001 | <0.001 | <0.001 | |||
SCL vs. SIL | <0.001 | <0.001 | <0.001 | |||
LC vs. LI | <0.001 | <0.001 | <0.001 |
Effect of Time (Days) | T0 | T1 | T3 | T7 | RMSE | p-Value |
---|---|---|---|---|---|---|
SC | 3.44 | 3.44 | 3.44 | 3.44 | - | - |
SI | 7.18 | 6.58 | 6.79 | 6.50 | 0.328 | 0.124 |
SCL | 3.44 b | 6.25 a | 6.60 a | 6.84 a | 0.480 | <0.001 |
SIL | 7.18 b | 6.58 b | 7.10 b | 8.13 a | 0.412 | <0.001 |
LC | 7.48 | 7.44 | 7.43 | 7.84 | 0.331 | 0.278 |
LI | 7.48 | 7.58 | 7.48 | 8.07 | 0.360 | 0.109 |
Effect of larvae (p-value) | ||||||
SC vs. SCL | 0.004 | 0.003 | 0.003 | |||
SI vs. SIL | 0.962 | 0.130 | 0.005 | |||
Effect of inoculum (p-value) | ||||||
SC vs. SI | 0.002 | 0.002 | 0.004 | |||
SCL vs. SIL | 0.133 | 0.014 | 0.011 | |||
LC vs. LI | 0.642 | 0.895 | 0.102 |
Effect of Time (Days) | T0 | T1 | T3 | T7 | RMSE | p-Value |
---|---|---|---|---|---|---|
SC | 0.83 | 0.83 | 0.83 | 0.83 | - | - |
SI | 0.50 b | 1.53 a | 1.49 a | 2.27 a | 0.321 | 0.001 |
SCL | 0.83 b | 4.68 a | 5.42 a | 5.23 a | 0.654 | <0.001 |
SIL | 0.83 b | 4.42 a | 4.74 a | 5.49 a | 0.545 | <0.001 |
LC | 6.80 a | 6.64 ab | 5.88 b | 6.80 a | 0.393 | 0.040 |
LI | 6.80 | 6.83 | 6.67 | 7.03 | 0.295 | 0.425 |
Effect of larvae (p-value) | ||||||
SC vs. SCL | <0.001 | 0.002 | 0.001 | |||
SI vs. SIL | 0.002 | 0.001 | 0.004 | |||
Effect of inoculum (p-value) | ||||||
SC vs. SI | 0.071 | 0.092 | 0.003 | |||
SCL vs. SIL | 0.438 | 0.337 | 0.710 | |||
LC vs. LI | 0.414 | 0.071 | 0.218 |
Unfasted | Fasted | RMSE | p-Value | ||
---|---|---|---|---|---|
LC | CoPS | 1.00 | 1.00 | - | - |
TVC | 7.84 | 7.72 | 0.168 | 0.352 | |
LAB | 6.80 | 6.11 | 0.233 | 0.006 | |
LI | CoPS | 3.59 | 3.20 | 0.522 | 0.349 |
TVC | 8.07 | 7.89 | 0.167 | 0.196 | |
LAB | 7.03 | 7.07 | 0.218 | 0.814 |
Fasting | Washing | Inoculum | Bacteria | Raw | Cooked | RMSE | p-Value |
---|---|---|---|---|---|---|---|
Unfasted | Unwashed | LC | CoPS | 1.00 | 1.00 | - | - |
TVC | 7.84 | 3.04 | 0.339 | <0.001 | |||
LAB | 6.80 | 1.48 | 0.356 | <0.001 | |||
Washed | CoPS | 1.00 | 1.00 | - | - | ||
TVC | 8.08 | 1.95 | 0.609 | <0.001 | |||
LAB | 7.11 | 0.93 | 0.367 | <0.001 | |||
Unwashed | LI | CoPS | 3.59 | 1.00 | 0.482 | <0.001 | |
TVC | 8.07 | 2.68 | 0.519 | <0.001 | |||
LAB | 7.03 | 1.67 | 0.430 | <0.001 | |||
Washed | CoPS | 3.15 | 1.00 | 0.439 | 0.004 | ||
TVC | 7.77 | 1.67 | 0.419 | <0.001 | |||
LAB | 6.96 | 0.99 | 0.354 | <0.001 | |||
Fasted | Unwashed | LC | CoPS | 1.00 | 1.00 | - | - |
TVC | 7.72 | 3.27 | 0.694 | 0.001 | |||
LAB | 6.11 | 1.56 | 0.389 | <0.001 | |||
Washed | CoPS | 1.00 | 1.00 | - | - | ||
TVC | 7.85 | 2.12 | 0.401 | <0.001 | |||
LAB | 7.11 | 0.50 | 0.333 | <0.001 | |||
Unwashed | LI | CoPS | 3.20 | 1.00 | 0.246 | <0.001 | |
TVC | 7.89 | 2.78 | 0.043 | <0.001 | |||
LAB | 7.07 | 1.03 | 0.398 | <0.001 | |||
Washed | CoPS | 1.62 | 1.00 | 0.753 | 0.374 | ||
TVC | 7.50 | 2.07 | 0.443 | <0.001 | |||
LAB | 6.55 | 0.67 | 0.282 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedonese, F.; Fratini, F.; Copelotti, E.; Marconi, F.; Carrese, R.; Mancini, S. Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae. Vet. Sci. 2023, 10, 549. https://doi.org/10.3390/vetsci10090549
Pedonese F, Fratini F, Copelotti E, Marconi F, Carrese R, Mancini S. Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae. Veterinary Sciences. 2023; 10(9):549. https://doi.org/10.3390/vetsci10090549
Chicago/Turabian StylePedonese, Francesca, Filippo Fratini, Emma Copelotti, Francesca Marconi, Roberto Carrese, and Simone Mancini. 2023. "Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae" Veterinary Sciences 10, no. 9: 549. https://doi.org/10.3390/vetsci10090549
APA StylePedonese, F., Fratini, F., Copelotti, E., Marconi, F., Carrese, R., & Mancini, S. (2023). Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae. Veterinary Sciences, 10(9), 549. https://doi.org/10.3390/vetsci10090549