Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021–2024
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Sample Collection and Test
2.2. PCR Amplification of Samples
2.2.1. Primer Design
2.2.2. Sequencing of Target Fragments
2.3. CCoV Prevalence
2.3.1. CCoV Time Distribution Analysis in China
2.3.2. Investigation of CCoV in Guangxi Province
2.4. Phylogenetic and Recombination Analyses
2.5. Estimation of the Evolutionary Rates
3. Results
3.1. Analysis of Temporal Distribution of CCoV in China
3.2. Test Results of Clinical Samples
3.3. Prevalence Analysis of CCoV in Guangxi Province
3.4. Sequence Similarity Analysis
3.5. Phylogenetic Trees Based on CCoV S, M, and N Genes
3.5.1. Phylogenetic Trees of S Gene Sequences
3.5.2. Phylogenetic Trees of M Gene Sequences
3.5.3. Phylogenetic Trees of N Gene Sequences
3.6. Bayesian Temporal Dynamics Analysis
3.7. Analysis of Amino Acid Variations in CCoV S Gene
3.8. Analysis of Recombination in S Gene
3.9. Evolutionary Rates Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woo, P.C.Y.; de Groot, R.J.; Haagmans, B.; Lau, S.K.P.; Neuman, B.W.; Perlman, S.; Sola, I.; van der Hoek, L.; Wong, A.C.P.; Yeh, S.H. ICTV virus taxonomy profile: Coronaviridae 2023. J. Gen. Virol. 2023, 104, 001843. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Deng, Y.; Niu, S.; Zhu, N.; Song, J.; Zhang, X.; Su, W.; Nie, W.; Lu, R.; Irwin, D.M.; et al. Discovery and identification of a novel canine coronavirus causing a diarrhea outbreak in Vulpes. Sci. Bull. 2023, 68, 2598–2606. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Bai, Y.; Liu, R.; Guo, Z.; Yan, X.; Xiang, K.; Liu, F.; Zhao, L.; Ge, J. Prevalence and genetic diversity of canine coronavirus in northeastern China during 2019–2021. Comp. Immunol. Microbiol. Infect. Dis. 2023, 94, 101956. [Google Scholar] [CrossRef] [PubMed]
- Licitra, B.N.; Duhamel, G.E.; Whittaker, G.R. Canine enteric coronaviruses: Emerging viral pathogens with distinct recombinant spike proteins. Viruses 2014, 6, 3363–3376. [Google Scholar] [CrossRef]
- Duijvestijn, M.; Mughini-Gras, L.; Schuurman, N.; Schijf, W.; Wagenaar, J.A.; Egberink, H. Enteropathogen infections in canine puppies: (Co-)occurrence, clinical relevance and risk factors. Vet. Microbiol. 2016, 195, 115–122. [Google Scholar] [CrossRef]
- Shi, Y.; Long, F.; Shi, K.; He, M.; Shi, Y.; Feng, S.; Yin, Y.; Wei, X.; Li, Z. A quadruplex reverse transcription quantitative polymerase chain reaction for detecting canine coronavirus, canine rotavirus, canine parvovirus, and canine distemper virus. Microbiol. Res. 2024, 15, 746–761. [Google Scholar] [CrossRef]
- Castro, T.X.; Cubel Garcia Rde, C.; Gonçalves, L.P.; Costa, E.M.; Marcello, G.C.; Labarthe, N.V.; Mendes-de-Almeida, F. Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis. Can. Vet. J. 2013, 54, 885–888. [Google Scholar]
- Alves, C.D.B.T.; Granados, O.F.O.; Budaszewski, R.D.F.; Streck, A.F.; Weber, M.N.; Cibulski, S.P.; Pinto, L.D.; Ikuta, N.; Canal, C.W. Identification of enteric viruses circulating in a dog population with low vaccine coverage. Braz. J. Microbiol. 2018, 49, 790–794. [Google Scholar] [CrossRef]
- Zobba, R.; Visco, S.; Sotgiu, F.; Pinna Parpaglia, M.L.; Pittau, M.; Alberti, A. Molecular survey of parvovirus, astrovirus, coronavirus, and calicivirus in symptomatic dogs. Vet. Res. Commun. 2021, 45, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Dema, A.; Tallapally, M.R.; Ganji, V.K.; Buddala, B.; Kodi, H.; Ramidi, A.; Yella, N.R.; Putty, K. A comprehensive molecular survey of viral pathogens associated with canine gastroenteritis. Arch. Virol. 2023, 168, 36. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Pham Thi, H.H. Genome-wide comparison of coronaviruses derived from veterinary animals: A canine and feline perspective. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101654. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Buonavoglia, C. An update on canine coronaviruses: Viral evolution and pathobiology. Vet. Microbiol. 2008, 132, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Mari, V.; Campolo, M.; Lorusso, A.; Camero, M.; Elia, G.; Martella, V.; Cordioli, P.; Enjuanes, L.; Buonavoglia, C. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs. J. Virol. 2009, 83, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Mari, V.; Elia, G.; Addie, D.D.; Camero, M.; Lucente, M.S.; Martella, V.; Buonavoglia, C. Recombinant canine coronaviruses in dogs, Europe. Emerg. Infect. Dis. 2010, 16, 41–47. [Google Scholar] [CrossRef]
- Buonavoglia, A.; Pellegrini, F.; Decaro, N.; Galgano, M.; Pratelli, A. A one health perspective on canine coronavirus: A wolf in sheep’s clothing? Microorganisms 2023, 11, 921. [Google Scholar] [CrossRef]
- Regan, A.D.; Millet, J.K.; Tse, L.P.; Chillag, Z.; Rinaldi, V.D.; Licitra, B.N.; Dubovi, E.J.; Town, C.D.; Whittaker, G.R. Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain. Virology 2012, 430, 90–99. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Diaz, A.; Damtie, D.; Xiu, L.; Toh, T.H.; Lee, J.S.; Saif, L.J.; Gray, G.C. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clin. Infect. Dis. 2022, 74, 446–454. [Google Scholar] [CrossRef]
- Lednicky, J.A.; Tagliamonte, M.S.; White, S.K.; Blohm, G.M.; Alam, M.M.; Iovine, N.M.; Salemi, M.; Mavian, C.; Morris, J.G. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: Further evidence of transmission of coronaviruses of zoonotic origin to humans. Clin. Infect. Dis. 2022, 75, E1184–E1187. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Toh, T.H.; Lee, J.S.; Poovorawan, Y.; Davis, P.; Azevedo, M.S.P.; Lednicky, J.A.; Saif, L.J.; Gray, G.C. Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries. Emerg. Microbes Infect. 2022, 11, 699–702. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Qiu, Y.; Pu, Y.; Huang, X.; Ge, X.Y. BioAider: An efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sust. Cities. Soc. 2020, 63, 102466. [Google Scholar] [CrossRef]
- He, H.J.; Zhang, W.; Liang, J.; Lu, M.; Wang, R.; Li, G.; He, J.W.; Chen, J.; Chen, J.; Xing, G.; et al. Etiology and genetic evolution of canine coronavirus circulating in five provinces of China, during 2018–2019. Microb. Pathog. 2020, 145, 104209. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Zhang, X.; Bai, J.; Zhang, G.; Li, C.; Lin, W. Epidemiological investigation of canine coronavirus infection in Chinese domestic dogs: A systematic review and data synthesis. Prev. Vet. Med. 2022, 209, 105792. [Google Scholar] [CrossRef] [PubMed]
- Soma, T.; Ohinata, T.; Ishii, H.; Takahashi, T.; Taharaguchi, S.; Hara, M. Detection and genotyping of canine coronavirus RNA in diarrheic dogs in Japan. Res. Vet. Sci. 2011, 90, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Guo, D.; Wang, X.; Wei, S.; Geng, Y.; Wang, E.; Wang, Z.; Zhao, X.; Su, M.; et al. Co-circulation of canine coronavirus I and IIa/b with high prevalence and genetic diversity in Heilongjiang province, Northeast China. PLoS ONE 2016, 11, e0146975. [Google Scholar] [CrossRef]
- Sha, X.; Li, Y.; Huang, J.; Zhou, Q.; Song, X.; Zhang, B. Detection and molecular characteristics of canine coronavirus in Chengdu city, Southwest China from 2020 to 2021. Microb. Pathog. 2022, 166, 105548. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, D.; Zhou, J.; Xia, Z.; Lin, D.; Lou, Y.; Tan, W.; Qin, K. Prevalence and phylogenetic characterization of canine coronavirus from diseased pet dogs in Beijing, China. Sci. China Life Sci. 2016, 59, 860–862. [Google Scholar] [CrossRef]
- Costa, E.M.; de Castro, T.X.; Bottino, F.d.O.; Garcia, R.d.C. Molecular characterization of canine coronavirus strains circulating in Brazil. Vet. Microbiol. 2014, 168, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; He, X.; Zhang, B.; An, L.; You, L.; Luo, S.; Yang, F.; Pei, X.; Chen, J. Molecular epidemiology and genetic diversity of canine coronavirus from domestic dogs in Chengdu, China from 2020 to 2021 using a multiplex RT-PCR. Infect. Genet. Evol. 2023, 112, 105463. [Google Scholar] [CrossRef]
- Day, M.J.; Carey, S.; Clercx, C.; Kohn, B.; MarsilIo, F.; Thiry, E.; Freyburger, L.; Schulz, B.; Walker, D.J. Aetiology of canine infectious respiratory disease complex and prevalence of its pathogens in Europe. J. Comp. Pathol. 2020, 176, 86–108. [Google Scholar] [CrossRef]
- Huff, H.V.; Singh, A. Asymptomatic transmission during the coronavirus disease 2019 pandemic and implications for public health strategies. Clin. Infect. Dis. 2020, 71, 2752–2756. [Google Scholar] [CrossRef]
- Yang, H.; Peng, Q.; Lang, Y.; Du, S.; Cao, S.; Wu, R.; Zhao, Q.; Huang, X.; Wen, Y.; Lin, J.; et al. Phylogeny, evolution, and transmission dynamics of canine and feline coronaviruses: A retro-prospective study. Front. Microbiol. 2022, 13, 850516. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, A.; Decaro, N.; Tinelli, A.; Martella, V.; Elia, G.; Tempesta, M.; Cirone, F.; Buonavoglia, C. Two genotypes of canine coronavirus simultaneously detected in the fecal samples of dogs with diarrhea. J. Clin. Microbiol. 2004, 42, 1797–1799. [Google Scholar] [CrossRef] [PubMed]
- Herrewegh, A.A.; Smeenk, I.; Horzinek, M.C.; Rottier, P.J.; de Groot, R.J. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 1998, 72, 4508–4514. [Google Scholar] [CrossRef] [PubMed]
- Terada, Y.; Matsui, N.; Noguchi, K.; Kuwata, R.; Shimoda, H.; Soma, T.; Mochizuki, M.; Maeda, K. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS ONE 2014, 9, e106534. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′→3′) | Tm (°C) | Product/bp |
---|---|---|---|---|
M | CCoV-M-F | CCTGATGAAGCACTCCTTGTT | 58.7 | 911 |
CCoV-M-R | GGCCACGAGAATTGGAAAGA | 54.5 | ||
N | CCoV-N-F | TCAACAGACGCAAGAACTGATA | 55.9 | 1225 |
CCoV-N-R | TCGTTTAGTTCGTCACCTCATC | 57.4 | ||
S | CCoV-S1-F | ATGGTCGTTGGATTACTAAG | 50.9 | 1180 |
CCoV-S1-R | GCACCCATGCCAGATTGTAC | 58.7 | ||
CCoV-S2-F | GTTAATTGYTTRTGGCCAGT | 54.5 | 1154 | |
CCoV-S2-R | CAGGAGTCTAAGTGTARCACTGAC | 57.2 | ||
CCoV-S3-F | TGGTGCCAACTGYAAGTTTGATG | 58.5 | 1190 | |
CCoV-S3-R | GTGCACCTAATGTTATACCACCTGC | 60.7 | ||
CCoV-S4-F | TACCTGGTGTGGCTAATGATGAC | 58.5 | 901 | |
CCoV-S4-R | GGTATAATACTAGGCAAGTCAATTAC | 54.5 | ||
CCoV-S5-F | GACTCCCAGAACTATGTATCAGCC | 59.9 | 638 | |
CCoV-S5-R | CCATACAAGACCTGTAATGACTC | 57.0 |
Variables | Number of Dogs (n = 1791) | CCoV-Positive Dogs (n = 151) | CCoV-Negative Dogs (n = 1640) | p Value | |
---|---|---|---|---|---|
Sex | Female | 1052 | 96 (9.13%) | 956 (90.87%) | >0.05 |
Male | 739 | 55 (7.44%) | 684 (92.56%) | ||
Age | <6 months | 776 | 107 (13.79%) | 674 (86.86%) | <0.05 |
6–24 months | 560 | 27 (4.82%) | 533 (95.18%) | ||
>2 years | 455 | 17 (3.74%) | 438 (92.26%) | ||
Clinical status | Asymptomatic | 831 | 20 (2.41%) | 811 (97.59%) | <0.05 |
Sick | 960 | 131 (13.65%) | 829 (86.35%) | ||
Season | Spring (Mar–May) | 431 | 59 (13.69%) | 372 (86.31%) | <0.05 |
Summer (Jun–Aug) | 515 | 26 (5.05%) | 489 (94.95%) | ||
Autumn (Sep–Nov) | 473 | 47 (9.94%) | 426 (90.06%) | ||
Winter (Dec–Feb) | 372 | 19 (5.11%) | 353 (94.89%) |
Gene | Evolutionary Rate (s/s/y) | 95% HPD (s/s/y) |
---|---|---|
S | 1.791 × 10−3 | 1.013 × 10−3–2.458 × 10−3 |
M | 6.529 × 10−4 | 4.817 × 10−4–8.2772 × 10−4 |
N | 4.775 × 10−4 | 3.607 × 10−4–5.8693 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, K.; Shi, Y.; Shi, Y.; Pan, Y.; Feng, S.; Feng, Z.; Yin, Y.; Tang, Y.; Li, Z.; Long, F. Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021–2024. Vet. Sci. 2024, 11, 456. https://doi.org/10.3390/vetsci11100456
Shi K, Shi Y, Shi Y, Pan Y, Feng S, Feng Z, Yin Y, Tang Y, Li Z, Long F. Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021–2024. Veterinary Sciences. 2024; 11(10):456. https://doi.org/10.3390/vetsci11100456
Chicago/Turabian StyleShi, Kaichuang, Yandi Shi, Yuwen Shi, Yi Pan, Shuping Feng, Zhuo Feng, Yanwen Yin, Yang Tang, Zongqiang Li, and Feng Long. 2024. "Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021–2024" Veterinary Sciences 11, no. 10: 456. https://doi.org/10.3390/vetsci11100456
APA StyleShi, K., Shi, Y., Shi, Y., Pan, Y., Feng, S., Feng, Z., Yin, Y., Tang, Y., Li, Z., & Long, F. (2024). Genetic and Evolutionary Analysis of Canine Coronavirus in Guangxi Province, China, for 2021–2024. Veterinary Sciences, 11(10), 456. https://doi.org/10.3390/vetsci11100456