Occurrence of Adenovirus in Fecal Samples of Wild Felids (Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fecal Sample Collection and Feline Identification
2.3. Suspension of Fecal Samples, DNA Extraction and Amplification
2.4. DNA Sequencing and Phylogenetic Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, P.C.; Bartlett, A.W.; Howard-Jones, A.; McMullan, B.; Khatami, A.; Britton, P.N.; Marais, B.J. Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases. J. Paediatr. Child Health 2021, 57, 1811–1818. [Google Scholar] [CrossRef]
- David, B. Biodiversity and emergence of viral pandemics. Phytochem. Lett. 2024, 63, 69–78. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 2000, 14, 722–728. [Google Scholar] [CrossRef]
- Young, H.S.; Dirzo, R.; Helgen, K.M.; McCauley, D.J.; Billeter, S.A.; Kosoy, M.Y.; Osikowicz, L.M.; Salkeld, D.J.; Young, T.P.; Dittmar, K. Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proc. Natl. Acad. Sci. USA 2014, 111, 7036–7041. [Google Scholar] [CrossRef]
- Lewinsohn, T.M.; Prado, P.I. How many species are there in Brazil? Conserv. Biol. 2005, 19, 619–624. [Google Scholar] [CrossRef]
- Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzger, J.P.; Strassburg, B.B.N.; Tabarelli, M.; Fonseca, G.A.; Mittermeier, R.A. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2018, 16, 2018–2214. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; Scaramuzza, C.A.M.; Scarano, F.R.; et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 2017, 1, 13–15. [Google Scholar] [CrossRef]
- Nelson, E.H.; Matthews, C.E.; Rosenheim, J.A. Predators reduce prey population growth by inducing changes in prey behavior. Ecology 2004, 85, 1853–1858. [Google Scholar] [CrossRef]
- Salo, P.; Banks, P.B.; Dickman, C.R.; Korpimäki, E. Predator manipulation experiments: Impacts on populations of terrestrial vertebrate prey. Ecol. Monogr. 2010, 80, 531–546. [Google Scholar] [CrossRef]
- Wild, M.A.; Hobbs, N.T.; Graham, M.S.; Miller, M.W. The role of predation in disease control: A comparison of selective and nonselective removal on prion disease dynamics in deer. J. Wildl. Dis. 2011, 47, 78–93. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kooi, B.W.; Biswas, B.; Chattopadhyay, J. Revealing the role of predator interference in a predator–prey system with disease in prey population. Ecol. Complex. 2015, 21, 100–111. [Google Scholar] [CrossRef]
- Moreno, R.S.; Kays, R.W.; Samudio, R. Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. J. Mammal. 2006, 87, 808–816. [Google Scholar] [CrossRef]
- Murray, D.L.; Kapke, C.A.; Evermann, J.F.; Fuller, T.K. Infectious disease and the conservation of free-ranging large carnivores. Anim. Conserv. 1999, 2, 241–254. [Google Scholar] [CrossRef]
- Reilly, J.R.; Hajek, A.E. Prey-processing by avian predators enhances virus transmission in the gypsy moth. Oikos 2012, 121, 1311–1316. [Google Scholar] [CrossRef]
- Roelke-Parker, M.E.; Munson, L.; Packer, C.; Kock, R.; Cleaveland, S.; Carpenter, M.; O’Brien, S.J.; Pospischil, A.; Hofmann-Lehmann, R.; Lutz, H.; et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 1996, 379, 441–445. [Google Scholar] [CrossRef]
- ICMBio. Instituto Chico Mendes de Conservação e Biodiversidade—ICMBio. Carnívoros Brasileiros; ICMBio: Brasília, Brazil, 2024. Available online: https://www.icmbio.gov.br/cenap/carnivoros-brasileiros.html (accessed on 10 September 2024).
- IUCN. 2024. The IUCN Red List of Threatened Species. Version 2024-1. Available online: https://www.iucnredlist.org (accessed on 10 September 2024).
- Lial, H.C.; Navas-Suárez, P.E.; Ewbank, A.C.; Novoselecki, H.E.; Ferreira-Machado, E.; Cirqueira, C.d.S.; Fernandes, N.C.C.d.A.; Esperón, F.; Catão-Dias, J.L.; Sacristán, C. Adenovirus surveillance in wild carnivores from Brazil. Infect. Genet. Evol. 2022, 99, 105246. [Google Scholar] [CrossRef]
- Gupta, P.P. Inclusion Body Hepatitis in a Black Panther (Panthera pardus pardus). Zoonoses Public Health 1978, 25, 858–860. [Google Scholar] [CrossRef]
- Davison, A.J.; Benkő, M.; Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 2003, 84, 2895–2908. [Google Scholar] [CrossRef]
- Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV virus taxonomy profile: Adenoviridae. J Gen. Virol 2022, 103, 001721. [Google Scholar] [CrossRef]
- Rizotto, L.S.; Bueno, L.M.; Corrêa, T.C.; Moraes, M.V.d.S.d.; Viana, A.d.O.; Silva, L.M.N.; Benassi, J.C.; Scagion, G.P.; Lopes, B.L.T.; de Assis, I.B.; et al. Genetic diversity of adenovirus in neotropical bats from Brazil. Braz. J. Microbiol. 2023, 54, 3221–3230. [Google Scholar] [CrossRef]
- Borkenhagen, L.K.; Fieldhouse, J.K.; Seto, D.; Gray, G.C. Are adenoviruses zoonotic? A systematic review of the evidence. Emerg. Microbes Infect. 2019, 8, 1679–1687. [Google Scholar] [CrossRef]
- Galetti, H.C.; Giacomini, R.S.; Bueno, C.S.S.; Bernardo, R.M.; Marques, R.S.; Bovendorp, C.E.; Steffler, P.; Rubim, S.K.; Gobbo, C.I.; Donatti, R.A.; et al. Priority areas for the conservation of Atlantic Forest large mammals. Biol. Conserv. 2009, 142, 1229–1241. [Google Scholar] [CrossRef]
- Peixoto, A.L.; Silva, I.M.; Pereira, O.J.; Simonelli, M.; De Jesus, R.M.; Rolim, S.G. Tabuleiro Forests North of the Rio Doce: Their representation in the Vale do Rio Doce Natural Reserve, Espírito Santo, Brazil. Mem. New York Bot. Gard. 2008, 100, 369–372. [Google Scholar]
- Kierulff, M.C.M.; Avelar, L.H.S.; Ferreira, M.E.S.; Povoa, K.F.; Bérnils, R.S. Reserva Natural Vale: História e aspectos físicos. Ciênc. Ambiente 2014, 49, 7–40. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Srbek-Araujo, A.C.; Amaro, S.C.; Entringer, H., Jr. Identification of mammals based on hair microstructure: Methodological adaptations and new morphological patterns. Braz. J. Mammal. 2024, 18, e922023123. [Google Scholar] [CrossRef]
- Entringer, H., Jr.; Del Duque Júnior, H.J.; Chiarello, A.G.; Srbek-Araujo, A.C. Temporal variation of the diet of a top terrestrial predator: The jaguar as a case study. Mammal. Res. 2022, 67, 417–431. [Google Scholar] [CrossRef]
- Wellehan, J.F.; Johnson, A.J.; Harrach, B.; Benko, M.; Pessier, A.P.; Jhonson, C.M.; Garner, M.M.; Childress, A.; Jacobson, E. Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses. J. Virol. 2004, 78, 13366–13369. [Google Scholar] [CrossRef]
- Pantó, L.; Podgorski, I.I.; Jánoska, M.; Márkó, O.; Harrach, B. Taxonomy proposal for Old World monkey adenoviruses: Characterisation of several non-human, non-ape primate adenovirus lineages. Arch. Virol. 2015, 160, 3165–3177. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Buck, C.B.; Welch, N.; Belford, A.K.; Varsani, A.; Pastrana, D.V.; Tisza, M.J.; Starrett, G.J. Widespread Horizontal Gene Transfer Among Animal Viruses; bioRxiv 2024. [CrossRef] [PubMed] [PubMed Central]
- Wray, A.K.; Olival, K.J.; Morán, D.; Lopez, M.R.; Alvarez, D.; Navarrete-Macias, I.; Liang, E.; Simmons, N.B.; Lipkin, W.I.; Daszak, P.; et al. Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala. Ecohealth 2016, 13, 761–774. [Google Scholar] [CrossRef]
- Lakatos, B.; Hornyák, Á.; Demeter, Z.; Forgách, P.; Kennedy, F.; Rusvai, M. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease. Acta Vet. Hung. 2017, 65, 574–584. [Google Scholar] [CrossRef]
- Bodewes, R.; Ruiz-Gonzalez, A.; Schapendonk, C.M.; Van, B.J.; Osterhaus, A.D.; Smits, S.L. Viral metagenomic analysis of feces of wild small carnivores. Virol. J. 2014, 11, 89. [Google Scholar] [CrossRef]
- Xie, X.T.; Kropinski, A.M.; Tapscott, B.; Weese, J.S.; Turner, P.V. Prevalence of fecal viruses and bacteriophage in Canadian farmed mink (Neovison vison). Microbiol. Open 2019, 8, e00622. [Google Scholar] [CrossRef]
- Pires, M.M.; Widmer, C.E.; Silva, C.; Setz, E.Z. Differential detectability of rodents and birds in scats of ocelots, Leopardus pardalis (Mammalia: Felidae). Zoologia 2011, 28, 280–283. [Google Scholar] [CrossRef]
- Froelich, K. Viral diseases of northern ungulates. Rangifer 1999, 20, 83–97. Available online: https://septentrio.uit.no/index.php/rangifer/article/download/1505/1412 (accessed on 10 September 2024). [CrossRef]
- Yokoi, K.; Okazaki, H.; Inahara, K.; Hatama, S. Prevalence of eight bovine viruses in sika deer (Cervus nippon yesoensis) in Japan. Vet. Rec. 2009, 165, 754–755. [Google Scholar] [CrossRef]
- Ridpath, J.F.; Neill, J.D.; Palmer, M.V.; Bauermann, F.V.; Falkenberg, S.M.; Wolff, P.L. Isolation and characterization of a novel cervid adenovirus from white-tailed deer (Odocoileus virginianus) fawns in a captive herd. Virus Res. 2017, 238, 198–203. [Google Scholar] [CrossRef]
- Abreu, K.; Moro, R.R.; Silva, J.P.; Miranda, J.; Jablonski, E.; Passos, F. Feeding habits of ocelot (Leopardus pardalis) in Southern Brazil. Mammal. Biol. 2008, 73, 407–411. [Google Scholar] [CrossRef]
- Bianchi, C.A.R.; Mendes, S.L.; Marco Júnior, P. Food habits of the ocelot, Leopardus pardalis, in two areas in southeast Brazil. Stud. Neotrop. Fauna Environ. 2010, 45, 111–119. [Google Scholar] [CrossRef]
- Santos, J.G.; Entringer Júnior, H.; Srbek-Araujo, A.C. Food habits of the ocelot (Leopardus pardalis) in a lowland Atlantic Forest of Southeastern Brazil. Mastozoología Neotrop. 2022, 29, e0681. [Google Scholar] [CrossRef]
- Hayward, M.W.; Kamler, J.F.; Montgomery, R.A.; Newlove, A.; Rostro-García, S.; Sales, L.P.; Van Valkenburgh, B. Prey preferences of the jaguar Panthera onca reflect the Post-Pleistocene demise of large prey. Front. Ecol. Evol. 2016, 3, 148. [Google Scholar] [CrossRef]
- Gnocchi, A.P.; Srbek-Araujo, A.C. Common vampire bat (Desmodus rotundus) feeding on lowland Tapir (Tapirus terrestris) in an Atlantic Forest remnant in southeastern Brazil. Biota Neotrop. 2017, 17, e20170326. [Google Scholar] [CrossRef]
- Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Webb, C.T. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. R. Soc. B Biol. Sci. 2013, 280, 20122753. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; Ren, X.; He, G.; Zhang, J.; Yang, J.; Jin, Q. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 2016, 10, 609–620. [Google Scholar] [CrossRef]
- Wang, L.F.; Anderson, D.E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 2019, 34, 79–89. [Google Scholar] [CrossRef]
- Field, H.E. Hendra virus ecology and transmission. Curr. Opin. Virol. 2016, 16, 120–125. [Google Scholar] [CrossRef]
- Islam, M.S.; Sazzad, H.M.; Satter, S.M.; Sultana, S.; Hossain, M.J.; Hasan, M.; Rahman, M.; Campbell, S.; Cannon, D.L.; Ströher, U.; et al. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011–2014. Emerg. Infect. Dis. 2016, 22, 664–670. [Google Scholar] [CrossRef]
- Condori, R.E.; Streicker, D.G.; Cabezas-Sanchez, C.; Velasco, V.A. Enzootic and epizootic rabies associated with vampire bats, Peru. Emerg. Infect. Dis. 2013, 19, 1463–1469. [Google Scholar] [CrossRef]
- Li, L.; Victoria, J.G.; Wang, C.; Jones, M.; Fellers, G.M.; Kunz, T.H.; Delwart, E. Bat Guano Virome: Predominance of Dietary Viruses from Insects and Plants plus Novel Mammalian Viruses. J. Virol. 2010, 84, 6955–6965. [Google Scholar] [CrossRef]
- Moreno, R.; Giacalone, J. Ecological data obtained from latrine use by ocelots (Leopardus pardalis) on Barro Colorado Island, Panama. Technoscience 2006, 8, 7–21. Available online: https://repository.si.edu/handle/10088/21581 (accessed on 10 September 2024).
- Rodgers, T.W.; Giacalone, J.; Heske, E.J.; Pawlikowski, N.C.; Schooley, R.L. Communal latrines act as potentially important communication centers in ocelots Leopardus pardalis. Mammal. Biol. 2015, 80, 380–384. [Google Scholar] [CrossRef]
- Magalhães, L.M. Uso de Latrinas por Jaguatirica (Leopardus pardalis) em um Remanescente de Mata Atlântica no Sudeste do Brasil. Dissertação de Mestrado, Universidade Vila Velha, Espírito Santo, Brasil. 2019. Disponível Em. Available online: https://repositorio.uvv.br/handle/123456789/722 (accessed on 10 September 2024).
- King, T.W.; Salom-Pérez, R.; Shipley, L.A.; Quigley, H.B.; Thornton, D.H. Ocelot latrines: Communication centers for Neotropical mammals. J. Mammal. 2017, 98, 106–113. [Google Scholar] [CrossRef]
- Wei, J.; Jin, Y.; Sims, T.; Kniel, K.E. Survival of Human Adenovirus 41 in Land-Applied Manure and Biosolids. Food Environ. Virol. 2009, 1, 148–154. [Google Scholar] [CrossRef]
- Martin, L.B.; Weil, Z.M.; Nelson, R.J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 321–339. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Tabor, G.M. Global factors driving emerging infectious diseases: Impact on wildlife populations. Ann. N. Y. Acad. Sci. 2008, 1149, 1–3. [Google Scholar] [CrossRef]
- Horefti, E. The Importance of the One Health Concept in Combating Zoonoses. Pathogens 2023, 12, 977. [Google Scholar] [CrossRef]
Identification | VS631 | Desmodus Mastadenovirus/PGT-0382 | Desmodus Mastadenovirus/PGT-03480 | VS649 | VS652 | VS655 | Mastadenovirus bosprimum | Caprelous mastadenovirus |
---|---|---|---|---|---|---|---|---|
VS631 | ||||||||
Desmodus rotundus mastadenovirus/PGT-0382 | 87 | |||||||
Desmodus rotundus mastadenovirus/PGT-0348 | 87 | 100 | ||||||
VS649 | 61.2 | 68.5 | 68.5 | |||||
VS652 | 57.4 | 63.1 | 63.1 | 94.7 | ||||
VS655 | 59.3 | 74.7 | 74.7 | 94.7 | 92.6 | |||
Mastadenovirus bosprimum | 59.3 | 76.8 | 77 | 94.7 | 92.6 | 100 | ||
Caprelous mastadenovirus | 59.3 | 77.8 | 78 | 77.2 | 77.9 | 88.2 | 85.3 |
Identification | VS631 IVa2 | Desmodus sp. Mastadenovirus | Nyctalus noctula Mastadenovirus/119/08 | Nyctalus noctula Mastadenovirus/150/08 | Myotis myotis Mastadenovirus | Pipistrellus sp. |
---|---|---|---|---|---|---|
VS631 IVa2 | ||||||
Desmodus sp. mastadenovirus | 68.57 | |||||
Nyctalus noctula mastadenovirus/119/08 | 51.43 | 73.81 | ||||
Nyctalus noctula mastadenovirus/150/08 | 51.43 | 73.81 | 97.62 | |||
Myotis myotis mastadenovirus | 51.43 | 76.19 | 83.33 | 84.52 | ||
Pipistrellus sp. | 51.43 | 74.64 | 82.14 | 83.33 | 82.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, Y.; Rizotto, L.S.; Entringer Jr., H.; Ferreira, H.L.; Rossi, G.A.M.; Srbek-Araujo, A.C. Occurrence of Adenovirus in Fecal Samples of Wild Felids (Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents? Vet. Sci. 2024, 11, 511. https://doi.org/10.3390/vetsci11100511
Machado Y, Rizotto LS, Entringer Jr. H, Ferreira HL, Rossi GAM, Srbek-Araujo AC. Occurrence of Adenovirus in Fecal Samples of Wild Felids (Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents? Veterinary Sciences. 2024; 11(10):511. https://doi.org/10.3390/vetsci11100511
Chicago/Turabian StyleMachado, Ygor, Laís Santos Rizotto, Hilton Entringer Jr., Helena Lage Ferreira, Gabriel Augusto Marques Rossi, and Ana Carolina Srbek-Araujo. 2024. "Occurrence of Adenovirus in Fecal Samples of Wild Felids (Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents?" Veterinary Sciences 11, no. 10: 511. https://doi.org/10.3390/vetsci11100511
APA StyleMachado, Y., Rizotto, L. S., Entringer Jr., H., Ferreira, H. L., Rossi, G. A. M., & Srbek-Araujo, A. C. (2024). Occurrence of Adenovirus in Fecal Samples of Wild Felids (Panthera onca and Leopardus pardalis) from Brazil: Predators as Dispersing Agents? Veterinary Sciences, 11(10), 511. https://doi.org/10.3390/vetsci11100511