Mapping Bovine Tuberculosis in Colombia, 2001–2019
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Data Source, GIS-Mapping, and Statistical Analyses
2.3. Population and Sample
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittal, M.; Chakravarti, S.; Sharma, V.; Sanjeeth, B.S.; Churamani, C.P.; Kanwar, N.S. Evidence of presence of Mycobacterium tuberculosis in bovine tissue samples by multiplex PCR: Possible relevance to reverse zoonosis. Transbound. Emerg. Dis. 2014, 61, 97–104. [Google Scholar] [CrossRef]
- Quadri, N.S.; Brihn, A.; Shah, J.A.; Kirsch, J.D. Bovine Tuberculosis: A Re-emerging Zoonotic Infection. J. Agromed. 2021, 26, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Castañeda-Hernández, D.M. Bacteria: Mycobacterium bovis. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Castañeda-Hernández, D.M. Bacteria: Mycobacterium bovis. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 468–475. [Google Scholar] [CrossRef]
- Ramanujam, H.; Palaniyandi, K. Bovine tuberculosis in India: The need for One Health approach and the way forward. One Health 2023, 16, 100495. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.F.; Ferguson, L.; Oliva, J.; Rubrum, A.; Eckard, L.; Zhang, X.; Woolums, A.R.; Lion, A.; Meyer, G.; Murakami, S.; et al. Limited Cross-Protection Provided by Prior Infection Contributes to High Prevalence of Influenza D Viruses in Cattle. J. Virol. 2020, 94, e00240-20. [Google Scholar] [CrossRef] [PubMed]
- Willgert, K.; da Silva, S.; Li, R.; Dandapat, P.; Veerasami, M.; Maity, H.; Papanna, M.; Srinivasan, S.; Wood, J.L.N.; Kapur, V.; et al. Is bovine density and ownership associated with human tuberculosis in India? PLoS ONE 2023, 18, e0283357. [Google Scholar] [CrossRef]
- Milián-Suazo, F.; González-Ruiz, S.; Contreras-Magallanes, Y.G.; Sosa-Gallegos, S.L.; Bárcenas-Reyes, I.; Cantó-Alarcón, G.J.; Rodríguez-Hernández, E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals 2022, 12, 3377. [Google Scholar] [CrossRef]
- Aguirre, C.; Acosta-España, J.D.; Patajalo-Villata, S.J.; Rodriguez-Morales, A.J. Necrotising pneumonia caused by Curvularia hawaiiensis (syn. Bipolaris hawaiiensis) and Mycobacterium tuberculosis coinfection in a patient with ascariasis: A case report and review. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 36. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Abbara, A.; Ntoumi, F.; Kapata, N.; Mwaba, P.; Yeboah-Manu, D.; Maeurer, M.; Dar, O.; Abubakar, I.; Zumla, A. World tuberculosis day 2023—Reflections on the spread of drug-resistant tuberculosis by travellers and reducing risk in forcibly displaced populations. Travel Med. Infect. Dis. 2023, 53, 102568. [Google Scholar] [CrossRef] [PubMed]
- Palanca, P.A.; Rodriguez-Morales, A.J.; Franco, O.H. The impact of the COVID-19 pandemic on tuberculosis services. Int. J. Mycobacteriology 2021, 10, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Franco-Paredes, C.; Marcos, L.A.; Henao-Martínez, A.F.; Rodríguez-Morales, A.J.; Villamil-Gómez, W.E.; Gotuzzo, E.; Bonifaz, A. Cutaneous Mycobacterial Infections. Clin. Microbiol. Rev. 2018, 32, e00069-18. [Google Scholar] [CrossRef]
- Giraldo-Montoya Á, M.; Rodríguez-Morales, A.J.; Hernández-Hurtado, J.D.; López-Salazar, Á.; Lagos-Grisales, G.J.; Ruiz-Granada, V.H. Rasmussen aneurysm: A rare but not gone complication of tuberculosis. Int. J. Infect. Dis. 2018, 69, 8–10. [Google Scholar] [CrossRef]
- Anand, P.; Akhter, Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int. J. Biol. Macromol. 2022, 212, 474–494. [Google Scholar] [CrossRef]
- Pérez-Lago, L.; Navarro, Y.; García-de-Viedma, D. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: A review. Res. Vet. Sci. 2014, 97, S94–S100. [Google Scholar] [CrossRef]
- Leal-Bohórquez, A.F.; Castro-Osorio, C.M.; Wintaco-Martínez, L.M.; Villalobos, R.; Puerto-Castro, G.M. Tuberculosis caused by Mycobacterium bovis in workers of bovine tuberculosis sanitation farms in Antioquia, Boyacá and Cundinamarca. Rev. De Salud Publica 2016, 18, 727–737. [Google Scholar] [CrossRef]
- Rossi, G.; Aubry, P.; Dubé, C.; Smith, R.L. The spread of bovine tuberculosis in Canadian shared pastures: Data, model, and simulations. Transbound. Emerg. Dis. 2019, 66, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Liebenberg, D.; Gordhan, B.G.; Kana, B.D. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front. Cell. Infect. Microbiol. 2022, 12, 943545. [Google Scholar] [CrossRef]
- Refaya, A.K.; Bhargavi, G.; Mathew, N.C.; Rajendran, A.; Krishnamoorthy, R.; Swaminathan, S.; Palaniyandi, K. A review on bovine tuberculosis in India. Tuberculosis 2020, 122, 101923. [Google Scholar] [CrossRef]
- Marianelli, C.; Verrubbi, V.; Pruiti Ciarello, F.; Ippolito, D.; Pacciarini, M.L.; Di Marco Lo Presti, V. Geo-epidemiology of animal tuberculosis and Mycobacterium bovis genotypes in livestock in a small, high-incidence area in Sicily, Italy. Front. Microbiol. 2023, 14, 1107396. [Google Scholar] [CrossRef] [PubMed]
- Dergal, N.B.; Ghermi, M.; Imre, K.; Morar, A.; Acaroz, U.; Arslan-Acaroz, D.; Herman, V.; Ayad, A. Estimated Prevalence of Tuberculosis in Ruminants from Slaughterhouses in Constantine Province (Northeastern Algeria): A 10-Year Retrospective Survey (2011–2020). Life 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Arnot, L.F.; Michel, A. Challenges for controlling bovine tuberculosis in South Africa. Onderstepoort J. Vet. Res. 2020, 87, e1–e8. [Google Scholar] [CrossRef]
- Boko, C.K.; Zoclanclounon, A.R.; Adoligbe, C.M.; Dedehouanou, H.; M’Po, M.; Mantip, S.; Farougou, S. Molecular diagnosis of bovine tuberculosis on postmortem carcasses during routine meat inspection in Benin: GeneXpert(®) testing to improve diagnostic scheme. Vet. World 2022, 15, 2506–2510. [Google Scholar] [CrossRef]
- Chandra, S.; Sil, A.; Datta, A.; Pal, S.; Das, N.K. A double-blind, randomized controlled trial to compare the effectiveness and safety of purified protein derivative of tuberculin antigen with Mycobacterium w vaccine in the treatment of multiple viral warts. Indian J. Dermatol. Venereol. Leprol. 2019, 85, 355–366. [Google Scholar] [CrossRef]
- Noronha, G.N.; Dos Santos, M.A.S.; Pereira, W.L.A.; Casseb, A.D.R.; Leite, R.C.; Bezerra, A.S.; Lourenço Júnior, J.B. Histopathological and molecular methods as complementary diagnostic in case of lymphadenopathies suggestive of bovine tuberculosis. Vet. Ital. 2023, 59, 99–104. [Google Scholar] [CrossRef]
- The Center for Food Security and Public Health (CFSPH); Institute for International Cooperation in Animal Biologics; Iowa State University; College of Veterinary Medicine. Zoonotic Tuberculosis in Mammals, including Bovine and Caprine Tuberculosis, 2003–2019. 2019. Available online: https://www.cfsph.iastate.edu/Factsheets/pdfs/bovine_tuberculosis.pdf (accessed on 1 March 2022).
- Mohamed, A. Bovine tuberculosis at the human-livestock-wildlife interface and its control through one health approach in the Ethiopian Somali Pastoralists: A review. One Health 2020, 9, 100113. [Google Scholar] [CrossRef] [PubMed]
- Boggiatto, P.M.; Kanipe, C.R.; Putz, E.J.; Olsen, S.C.; Palmer, M.V. Wildlife Immune Responses to Mycobacterium bovis and to Bacille of Calmette-Guerin. J. Immunol. 2023, 211, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Escárcega, D.A.V.; Razo, C.A.P.; Ruíz, S.G.; Gallegos, S.L.S.; Suazo, F.M.; Alarcón, G.J.C. Analysis of Bovine Tuberculosis Transmission in Jalisco, Mexico through Whole-genome Sequencing. J. Vet. Res. 2020, 64, 51–61. [Google Scholar] [CrossRef]
- Rodrigues, D.L.; Amorim, E.A.; Ferreira, F.; Amaku, M.; Baquero, O.S.; de Hildebrand, E.G.F.J.H.; Dias, R.A.; Heinemann, M.B.; Telles, E.O.; Gonçalves, V.S.P.; et al. Apparent prevalence and risk factors for bovine tuberculosis in the state of Paraná, Brazil: An assessment after 18 years since the beginning of the Brazilian program. Trop. Anim. Health Prod. 2022, 54, 360. [Google Scholar] [CrossRef]
- Barandiaran, S.; Martínez Vivot, M.; Pérez, A.M.; Cataldi, A.A.; Zumárraga, M.J. Bovine tuberculosis in domestic pigs: Genotyping and distribution of isolates in Argentina. Res. Vet. Sci. 2015, 103, 44–50. [Google Scholar] [CrossRef]
- Max, V.; Paredes, L.; Rivera, A.; Ternicier, C. National control and eradication program of bovine tuberculosis in Chile. Vet. Microbiol. 2011, 151, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Picasso-Risso, C.; Gil, A.; Nunez, A.; Suanes, A.; Macchi, V.; Salaberry, X.; Alvarez, J.; Perez, A. Diagnostic interaction between bovine tuberculosis (bTB) and Johne’s disease in bTB highly prevalent dairy farms of Uruguay. Vet. Anim. Sci. 2019, 7, 100052. [Google Scholar] [CrossRef]
- Gallo, C.; Véjar, L.; Galindo, F.; Huertas, S.M.; Tadich, T. Animal welfare in Latin America: Trends and characteristics of scientific publications. Front. Vet. Sci. 2022, 9, 1030454. [Google Scholar] [CrossRef] [PubMed]
- Thoen, C.O.; Kaplan, B.; Thoen, T.C.; Gilsdorf, M.J.; Shere, J.A. Zoonotic tuberculosis. A comprehensive ONE HEALTH approach. Medicina 2016, 76, 159–165. [Google Scholar] [PubMed]
- Brebu, M.; Simion, V.E.; Andronie, V.; Jaimes-Mogollon, A.L.; Beleno-Saenz, K.J.; Ionescu, F.; Welearegay, T.G.; Suschinel, R.; de Lema, J.B.; Ionescu, R. Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle. Mol. Cell. Biochem. 2023, 478, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Sierra, A.; Camelo, D.; Lota, C.; Arenas, N.E.; Soto, C.Y. Specific identification of Mycobacterium bovis by Loop-Mediated Isothermal Amplification (LAMP) targeting the Region of Difference 12 (RD12) of the M. tuberculosis complex. MethodsX 2023, 10, 102223. [Google Scholar] [CrossRef] [PubMed]
- de Jesús Beleño-Sáenz, K.; Cáceres-Tarazona, J.M.; Nol, P.; Jaimes-Mogollón, A.L.; Gualdrón-Guerrero, O.E.; Durán-Acevedo, C.M.; Barasona, J.A.; Vicente, J.; Torres, M.J.; Welearegay, T.G.; et al. Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System. Sensors 2021, 21, 584. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, C.A.D.; Franco, M.M.J.; Souza Filho, A.F.; Ikuta, C.Y.; Burbano-Rosero, E.M.; Ferreira Neto, J.S.; Heinemann, M.B.; Motta, R.G.; Paula, C.L.; Morais, A.B.C.; et al. Nontuberculous mycobacteria in milk from positive cows in the intradermal comparative cervical tuberculin test: Implications for human tuberculosis infections. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e6. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.E.; Garzón, D.L.; Mejía, G.A.; Monroy, W.; Patarroyo, M.E.; Murillo, L.A. Identification of Mycobacterium bovis in bovine clinical samples by PCR species-specific primers. Can. J. Vet. Res. = Rev. Can. Rech. Vet. 1999, 63, 101–106. [Google Scholar] [PubMed]
- Rodríguez, J.G.; Fissanoti, J.C.; Del Portillo, P.; Patarroyo, M.E.; Romano, M.I.; Cataldi, A. Amplification of a 500-base-pair fragment from cultured isolates of Mycobacterium bovis. J. Clin. Microbiol. 1999, 37, 2330–2332. [Google Scholar] [CrossRef]
- Bonilla-Aldana, D.K.; Jimenez-Diaz, S.D.; Barboza, J.J.; Rodriguez-Morales, A.J. Mapping the Spatiotemporal Distribution of Bovine Rabies in Colombia, 2005–2019. Trop. Med. Infect. Dis. 2022, 7, 406. [Google Scholar] [CrossRef]
- Idarraga-Bedoya, S.E.; Álvarez-Chica, J.; Bonilla-Aldana, D.K.; Moore, D.P.; Rodríguez-Morales, A.J. Seroprevalence of Neospora caninum infection in cattle from Pereira, Colombia (⋆). Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100469. [Google Scholar] [CrossRef]
- Instituto Colombiano Agropecuario ICA. Censo Pecuario Nacional; Instituto Colombiano Agropecuario ICA: Caucasia, Colombia, 2019. [Google Scholar]
- Rivière, J.; Le Strat, Y.; Hendrikx, P.; Dufour, B. Cost-effectiveness evaluation of bovine tuberculosis surveillance in wildlife in France (Sylvatub system) using scenario trees. PLoS ONE 2017, 12, e0183126. [Google Scholar] [CrossRef]
- Guimaraes, A.M.S.; Zimpel, C.K. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020, 8, 667. [Google Scholar] [CrossRef]
- Ellis, C.K.; Rice, S.; Maurer, D.; Stahl, R.; Waters, W.R.; Palmer, M.V.; Nol, P.; Rhyan, J.C.; VerCauteren, K.C.; Koziel, J.A. Use of fecal volatile organic compound analysis to discriminate between non-vaccinated and BCG-Vaccinated cattle prior to and after Mycobacterium bovis challenge. PLoS ONE 2017, 12, e0179914. [Google Scholar] [CrossRef]
- Liu, A.; Xue, T.; Zhao, X.; Zou, J.; Pu, H.; Hu, X.; Tian, Z. Pseudorabies Virus Associations in Wild Animals: Review of Potential Reservoirs for Cross-Host Transmission. Viruses 2022, 14, 2254. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.; Zakar, R.; Zakar, M.Z.; Fischer, F. The influence of social and cultural practices on maternal mortality: A qualitative study from South Punjab, Pakistan. Reprod. Health 2021, 18, 97. [Google Scholar] [CrossRef]
- Rony, M.K.K.; Sharmi, P.D.; Alamgir, H.M. Addressing antimicrobial resistance in low and middle-income countries: Overcoming challenges and implementing effective strategies. Environ. Sci. Pollut. Res. Int. 2023, 30, 101896–101902. [Google Scholar] [CrossRef]
- Aggarwal, D.; Ramachandran, A. One Health Approach to Address Zoonotic Diseases. Indian J. Community Med. 2020, 45, S6–S8. [Google Scholar] [CrossRef] [PubMed]
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef]
- Ladbury, G.; Allan, K.J.; Cleaveland, S.; Davis, A.; de Glanville, W.A.; Forde, T.L.; Halliday, J.E.B.; Haydon, D.T.; Kibiki, G.; Kiwelu, I.; et al. One Health Research in Northern Tanzania—Challenges and Progress. East Afr. Health Res. J. 2017, 1, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.L.; Barddal, J.E.I.; Santos, J.C.Q.; Negreiros, R.L.; Rosa, B.M.; Teixeira, R.C.; Prada, J.R.R.; Gonçalves, V.S.P.; Ferreira Neto, J.S. Retrospective benefit-cost analysis of bovine brucellosis control in the state of Mato Grosso, Brazil. Prev. Vet. Med. 2023, 218, 105992. [Google Scholar] [CrossRef]
- Bonilla-Aldana, D.K.; Trejos-Mendoza, A.E.; Pérez-Vargas, S.; Rivera-Casas, E.; Muñoz-Lara, F.; Zambrano, L.I.; Arteaga-Livias, K.; Ulloque-Badaracco, J.R.; Alarcon-Braga, E.A.; Hernandez-Bustamante, E.A.; et al. A systematic review and meta-analysis of bovine brucellosis seroprevalence in Latin America and the Caribbean. New Microbes New Infect. 2023, 54, 101168. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Downs, S.H.; Mitchell, A.; Hayward, A.C.; Fry, H.; Le Comber, S.C. Spatial Targeting for Bovine Tuberculosis Control: Can the Locations of Infected Cattle Be Used to Find Infected Badgers? PLoS ONE 2015, 10, e0142710. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.A.; Carter, S.P.; Wilson, G.J.; Jones, G.; Brown, E.; Hewinson, R.G.; Vordermeier, M. Vaccination against tuberculosis in badgers and cattle: An overview of the challenges, developments and current research priorities in Great Britain. Vet. Rec. 2014, 175, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Corner, L.A.; Ni Bhuachalla, D.; Gormley, E.; More, S.J. The role of badgers in the epidemiology of Mycobacterium bovis infection (tuberculosis) in cattle in the United Kingdom and the Republic of Ireland: Current perspectives on control strategies. Vet. Med. 2015, 6, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Nugent, G.; Gortazar, C.; Knowles, G. The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N. Z. Vet. J. 2015, 63 (Suppl. S1), 54–67. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.R.; Lee, L.J.; Yan, L.T.; Syafinaz, A.N.; Rosnah, I.; Chin, V.K. Occupational exposure and challenges in tackling M. bovis at human-animal interface: A narrative review. Int. Arch. Occup. Environ. Health 2021, 94, 1147–1171. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Vordermeier, H.M.; Chambers, M.A.; de Klerk-Lorist, L.M. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front. Vet. Sci. 2018, 5, 259. [Google Scholar] [CrossRef]
- Cardenas, N.C.; Pozo, P.; Lopes, F.P.N.; Grisi-Filho, J.H.H.; Alvarez, J. Use of Network Analysis and Spread Models to Target Control Actions for Bovine Tuberculosis in a State from Brazil. Microorganisms 2021, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Hardstaff, J.L.; Häsler, B.; Rushton, J.R. Livestock trade networks for guiding animal health surveillance. BMC Vet. Res. 2015, 11, 82. [Google Scholar] [CrossRef]
- Mekonnen, G.A.; Ameni, G.; Wood, J.L.N.; Berg, S.; Conlan, A.J.K. Network analysis of dairy cattle movement and associations with bovine tuberculosis spread and control in emerging dairy belts of Ethiopia. BMC Vet. Res. 2019, 15, 262. [Google Scholar] [CrossRef]
- Gormley, E.; Corner, L.A. Control strategies for wildlife tuberculosis in Ireland. Transbound. Emerg. Dis. 2013, 60 (Suppl. S1), 128–135. [Google Scholar] [CrossRef] [PubMed]
- Moennig, V.; Becher, P. Control of Bovine Viral Diarrhea. Pathogens 2018, 7, 29. [Google Scholar] [CrossRef]
- Conlan, A.J.K.; Vordermeier, M.; de Jong, M.C.; Wood, J.L. The intractable challenge of evaluating cattle vaccination as a control for bovine Tuberculosis. eLife 2018, 7, e27694. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Rocha, I.D.; Clementino, I.J.; Canuto de Sousa, D.L.; Alves, C.J.; de Sousa Américo Batista Santos, C.; de Azevedo, S.S. Distribution, seroprevalence and risk factors for bovine brucellosis in Brazil: Official data, systematic review and meta-analysis. Rev. Argent. Microbiol. 2024, in press. [CrossRef] [PubMed]
- Franc, K.A.; Krecek, R.C.; Häsler, B.N.; Arenas-Gamboa, A.M. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health 2018, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Saqib, S.E.; Yaseen, M.; Visetnoi, S.; Sikandar; Ali, S. Epidemiological and economic consequences of lumpy skin disease outbreaks on farm households in Khyber Pakhtunkhwa, Pakistan. Front. Vet. Sci. 2023, 10, 1238771. [Google Scholar] [CrossRef]
- Retamal, P.; Ábalos, P.; Alegría-Morán, R.; Valdivieso, N.; Vordermeier, M.; Jones, G.; Saadi, K.; Perez Watt, C.; Salinas, C.; Ávila, C.; et al. Vaccination of Holstein heifers with Mycobacterium bovis BCG strain induces protection against bovine tuberculosis and higher milk production yields in a natural transmission setting. Transbound. Emerg. Dis. 2022, 69, 1419–1425. [Google Scholar] [CrossRef]
- Barnes, A.P.; Moxey, A.; Brocklehurst, S.; Barratt, A.; McKendrick, I.J.; Innocent, G.; Ahmadi, B.V. The consequential costs of bovine tuberculosis (bTB) breakdowns in England and Wales. Prev. Vet. Med. 2023, 211, 105808. [Google Scholar] [CrossRef]
- Vora, N.M.; Hannah, L.; Walzer, C.; Vale, M.M.; Lieberman, S.; Emerson, A.; Jennings, J.; Alders, R.; Bonds, M.H.; Evans, J.; et al. Interventions to Reduce Risk for Pathogen Spillover and Early Disease Spread to Prevent Outbreaks, Epidemics, and Pandemics. Emerg. Infect. Dis. 2023, 29, 1–9. [Google Scholar] [CrossRef]
- Veysset, P.; Lherm, M.; Boussemart, J.P.; Natier, P. Generation and distribution of productivity gains in beef cattle farming: Who are the winners and losers between 1980 and 2015? Animal 2019, 13, 1063–1073. [Google Scholar] [CrossRef]
- Pérez-Morote, R.; Pontones-Rosa, C.; Gortázar-Schmidt, C.; Muñoz-Cardona Á, I. Quantifying the Economic Impact of Bovine Tuberculosis on Livestock Farms in South-Western Spain. Animals 2020, 10, 2433. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.; Knapp, C.; Muckaden, M.A.; Fowler-Kerry, S.; Marston, J. Priorities for global research into children’s palliative care: Results of an International Delphi Study. BMC Palliat. Care 2015, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Meunier, N.V.; McKenzie, K.; Graham, D.A.; More, S.J. Stakeholder perceptions of non-regulatory bovine health issues in Ireland: Past and future perspectives. Ir. Vet. J. 2020, 73, 25. [Google Scholar] [CrossRef] [PubMed]
- Bahta, Y.T. Perception of agricultural drought resilience in South Africa: A case of smallholder livestock farmers. Jamba 2021, 13, 984. [Google Scholar] [CrossRef] [PubMed]
- Kaneene, J.B.; Miller, R.; Steele, J.H.; Thoen, C.O. Preventing and controlling zoonotic tuberculosis: A One Health approach. Vet. Ital. 2014, 50, 7–22. [Google Scholar] [CrossRef]
- Carpenter, A.; Waltenburg, M.A.; Hall, A.; Kile, J.; Killerby, M.; Knust, B.; Negron, M.; Nichols, M.; Wallace, R.M.; Behravesh, C.B.; et al. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines 2022, 10, 993. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vazquez, M.J.; Hidalgo-Hermoso, E.; Zanette, L.C.; de Campos Binder, L.; Rivera, A.M.; Molina-Flores, B.; Maia-Elkhoury, A.N.S.; Vianna, R.S.; Valadas, S.Y.O.B.; Vigilato, M.A.N.; et al. Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in Central and South America. In Diseases at the Wildlife—Livestock Interface: Research and Perspectives in a Changing World; Vicente, J., Vercauteren, K.C., Gortázar, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 271–304. [Google Scholar] [CrossRef]
- Abdala, A.A.; Garbaccio, S.; Zumárraga, M.; Tarabla, H.D. Mycobacterium bovis in wildlife of the dairy regions of Santa Fe (Argentina). Rev. Argent. Microbiol. 2015, 47, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Murakami, P.S.; Monego, F.; Ho, J.L.; Gibson, A.; Vilani, R.G.; Soresini, G.C.; Brockelt, S.R.; Biesdorf, S.M.; Fuverki, R.B.; Nakatani, S.M.; et al. An outbreak of tuberculosis by Mycobacterium bovis in coatis (Nasua nasua). J. Zoo Wildl. Med. 2012, 43, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, V.L.; Souza, S.O.; Casagrande, R.A.; Wouters, A.T.B.; Wouters, F.; Rolim, V.M.; Santos, E.O.; Driemeier, D. Infecção por Mycobacterium sp. em herbívoros selvagens de cativeiro no Rio Grande do Sul: Estudo retrospectivo e detecção imuno-histoquímica (2003–2015). Pesqui. Veterinária Bras. 2017, 37, 58–65. [Google Scholar] [CrossRef]
- Villa, S.; Carugati, M.; Rubach, M.P.; Cleaveland, S.; Mpagama, S.G.; Khan, S.S.; Mfinanga, S.; Mmbaga, B.T.; Crump, J.A.; Raviglione, M.C. ‘One Health’ approach to end zoonotic TB. Int. J. Tuberc. Lung Dis. 2023, 27, 101–105. [Google Scholar] [CrossRef]
- Acharya, K.P.; Acharya, N.; Phuyal, S.; Upadhyaya, M.; Lasee, S. One-health approach: A best possible way to control rabies. One Health 2020, 10, 100161. [Google Scholar] [CrossRef] [PubMed]
- Macedo Couto, R.; Ranzani, O.T.; Waldman, E.A. Zoonotic Tuberculosis in Humans: Control, Surveillance, and the One Health Approach. Epidemiol. Rev. 2019, 41, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Romha, G.; Gebru, G.; Asefa, A.; Mamo, G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Prev. Vet. Med. 2018, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Belay, E.D.; Kile, J.C.; Hall, A.J.; Barton-Behravesh, C.; Parsons, M.B.; Salyer, S.; Walke, H. Zoonotic Disease Programs for Enhancing Global Health Security. Emerg. Infect. Dis. 2017, 23, S65–S70. [Google Scholar] [CrossRef]
- Michel, A.L. Improving specific disease outcomes through a One Health approach--tuberculosis. Rev. Sci. Tech. 2014, 33, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, A.; Zenobio, V.; Cioci, D.; Dall’Acqua, F.; Tora, S.; Iannetti, S.; Rulli, M.; Di Sabatino, D. A web-based geographic information system monitoring wildlife diseases in Abruzzo and Molise regions, Southern Italy. BMC Vet. Res. 2023, 19, 183. [Google Scholar] [CrossRef]
- Bronner, A.; Hénaux, V.; Fortané, N.; Hendrikx, P.; Calavas, D. Why do farmers and veterinarians not report all bovine abortions, as requested by the clinical brucellosis surveillance system in France? BMC Vet. Res. 2014, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.Y.; Mohamed, H.; Mumin, F.I.; Mahrous, H.; Saidouni, A.; Elmi, S.A.; Adawe, A.K.; Mo’allim, A.A.; Lubogo, M.; Malik, S.; et al. Prioritization of zoonoses for multisectoral, One Health collaboration in Somalia, 2023. One Health 2023, 17, 100634. [Google Scholar] [CrossRef]
- Kalley, A.; Halcomb, M.; Hoet, A.; Summers, D.; Skorupski, S.; Day, C.; Berrian, A.M. A multisectoral approach to developing a state-level foreign animal disease response plan: The Ohio African Swine Fever Response Plan Workshop. J. Am. Vet. Med. Assoc. 2024, 262, 109–116. [Google Scholar] [CrossRef]
- Sichewo, P.R.; Vander Kelen, C.; Thys, S.; Michel, A.L. Risk practices for bovine tuberculosis transmission to cattle and livestock farming communities living at wildlife-livestock-human interface in northern KwaZulu Natal, South Africa. PLoS Neglected Trop. Dis. 2020, 14, e0007618. [Google Scholar] [CrossRef]
- Kemal, J.; Sibhat, B.; Abraham, A.; Terefe, Y.; Tulu, K.T.; Welay, K.; Getahun, N. Bovine tuberculosis in eastern Ethiopia: Prevalence, risk factors and its public health importance. BMC Infect. Dis. 2019, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, A.I.; Phillips, P.W.B.; Ochieng, B.J. Driving Adoption and Commercialization of Subunit Vaccines for Bovine Tuberculosis and Johne’s Disease: Policy Choices and Implications for Food Security. Vaccines 2020, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- Manageiro, V.; Caria, A.; Furtado, C.; Botelho, A.; Oleastro, M.; Gonçalves, S.C. Intersectoral collaboration in a One Health approach: Lessons learned from a country-level simulation exercise. One Health 2023, 17, 100649. [Google Scholar] [CrossRef] [PubMed]
- Togami, E.; Behravesh, C.B.; Dutcher, T.V.; Hansen, G.R.; King, L.J.; Pelican, K.M.; Mazet, J.A.K. Characterizing the One Health workforce to promote interdisciplinary, multisectoral approaches in global health problem-solving. PLoS ONE 2023, 18, e0285705. [Google Scholar] [CrossRef]
- Laing, G.; Vigilato, M.A.N.; Cleaveland, S.; Thumbi, S.M.; Blumberg, L.; Salahuddin, N.; Abdela-Ridder, B.; Harrison, W. One Health for neglected tropical diseases. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 182–184. [Google Scholar] [CrossRef]
Year | Department | Positive Animals | Number of Animals | Rate |
---|---|---|---|---|
2016 | Putumayo | 45 | 197,611 | 22.8 |
2016 | Caldas | 60 | 370,345 | 16.2 |
2016 | Huila | 53 | 415,246 | 12.8 |
2016 | Cundinamarca | 138 | 1,256,535 | 11 |
2016 | Antioquia | 221 | 2,632,125 | 8.4 |
2016 | Santander | 55 | 1,412,313 | 3.9 |
2016 | Norte de Santander | 3 | 389,694 | 0.8 |
2016 | Arauca | 3 | 1,048,543 | 0.3 |
2016 | Bolivar | 0 | 925,446 | 0 |
2016 | Boyacá | 0 | 748,701 | 0 |
2016 | Caquetá | 0 | 1,340,049 | 0 |
2016 | Cauca | 0 | 273,663 | 0 |
2016 | Cesar | 0 | 1,357,512 | 0 |
2016 | Córdoba | 0 | 1,942,770 | 0 |
2016 | La Guajira | 0 | 285,298 | 0 |
2016 | Magdalena | 0 | 1,207,764 | 0 |
2016 | Meta | 0 | 1,660,147 | 0 |
2016 | Nariño | 0 | 384,686 | 0 |
2016 | Quindío | 0 | 81,788 | 0 |
2016 | Risaralda | 0 | 109,117 | 0 |
2016 | Sucre | 0 | 862,008 | 0 |
2016 | Tolima | 0 | 547,647 | 0 |
2016 | Valle | 0 | 459,596 | 0 |
2016 | Vaupés | 0 | 1223 | 0 |
2016 | Vichada | 0 | 242,633 | 0 |
Total | 578 | 20,152,460 | 76.1 | |
2017 | 12 Departments Assessed | 0 | 14,103,998 | 0 |
2018 | 9 Departments Assessed | 0 | 25,044,896 | 0 |
2019 | 4 Departments Assessed | 0 | 5,804,865 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla-Aldana, D.K.; Jiménez-Diaz, S.D.; Lozada-Riascos, C.; Silva-Cajaleon, K.; Rodríguez-Morales, A.J. Mapping Bovine Tuberculosis in Colombia, 2001–2019. Vet. Sci. 2024, 11, 220. https://doi.org/10.3390/vetsci11050220
Bonilla-Aldana DK, Jiménez-Diaz SD, Lozada-Riascos C, Silva-Cajaleon K, Rodríguez-Morales AJ. Mapping Bovine Tuberculosis in Colombia, 2001–2019. Veterinary Sciences. 2024; 11(5):220. https://doi.org/10.3390/vetsci11050220
Chicago/Turabian StyleBonilla-Aldana, D. Katterine, S. Daniela Jiménez-Diaz, Carlos Lozada-Riascos, Kenneth Silva-Cajaleon, and Alfonso J. Rodríguez-Morales. 2024. "Mapping Bovine Tuberculosis in Colombia, 2001–2019" Veterinary Sciences 11, no. 5: 220. https://doi.org/10.3390/vetsci11050220
APA StyleBonilla-Aldana, D. K., Jiménez-Diaz, S. D., Lozada-Riascos, C., Silva-Cajaleon, K., & Rodríguez-Morales, A. J. (2024). Mapping Bovine Tuberculosis in Colombia, 2001–2019. Veterinary Sciences, 11(5), 220. https://doi.org/10.3390/vetsci11050220