EⅡB Mutation Reduces the Pathogenicity of Listeria monocytogenes by Negatively Regulating Biofilm Formation Ability, Infective Capacity, and Virulence Gene Expression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cell Lines
2.2. Animals
2.3. Experimental Design
2.4. Primers
2.5. Construction of the Mutant and Complemented Strain
2.6. Analysis of Biological Characteristics of L. monocytogenes Strains
2.7. Detection of Biofilm Formation
2.8. Determination of Infective Capacity of L. monocytogenes
2.9. Quantitation of Hemolytic Activity by Microplate Technique
2.10. Mouse Survival Rate Assay
2.11. Assessment of Bacterial Loads and Inflammatory Factor Levels
2.12. Real-Time PCR
2.13. Statistical Analysis
3. Results
3.1. Construction of EⅡB Deletion Strain and Complement Strain
3.2. Deletion of EⅡB Did Not Affect Bacterial Growth In Vitro
3.3. Biofilm Formation Is Defective in ΔEⅡB
3.4. The Infective Capacity of the Deletion Mutant ΔEⅡB Was Decreased
3.5. Absence of EⅡB Did Not Affect the Hemolytic Capacity of L. monocytogenes
3.6. Inactivation of EⅡB Impairs the Virulence of L. monocytogenes
3.7. Deletion of EⅡB Decreased the Secretion of Cytokines in Mice
3.8. Deletion of EⅡB Affected the Transcription Levels of Virulence and Biofilm-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piveteau, P.; Depret, G.; Pivato, B.; Garmyn, D.; Hartmann, A. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment. PLoS ONE 2011, 6, e24881. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, J.; Feurer, C.; Denis, M.; Douarre, P.E.; Piveteau, P.; Roussel, S. Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiol. 2024, 119, 104430. [Google Scholar] [CrossRef] [PubMed]
- The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406.
- CDC. (Listeria (Listeriosis)). 2024. Available online: https://www.cdc.gov/listeria/index.html (accessed on 6 June 2024).
- Qu, H.; Wang, Y.; Diao, H.; Ren, G.; Wang, Z.; Shang, J.; Shangguan, L.; Wang, H. Clinical characteristics of 15 patients with listeria meningitis in adult. Heliyon 2024, 10, e23755. [Google Scholar] [CrossRef] [PubMed]
- Lechowicz, J.; Krawczyk-Balska, A. An update on the transport and metabolism of iron in Listeria monocytogenes: The role of proteins involved in pathogenicity. Biometals 2015, 28, 587–603. [Google Scholar] [CrossRef]
- Maury, M.M.; Tsai, Y.H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, Y.; Pettengill, J.; Timme, R.; Melka, D.; Doyle, M.; Jackson, A.; Parish, M.; Hammack, T.S.; Allard, M.W.; et al. Singleton Sequence Type 382, an Emerging Clonal Group of Listeria monocytogenes Associated with Three Multistate Outbreaks Linked to Contaminated Stone Fruit, Caramel Apples, and Leafy Green Salad. J. Clin. Microbiol. 2017, 55, 931–941. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, L.; Li, Q.; Wang, H.; Wang, Y.; Sun, H.; Xu, J.; Lan, R.; Ye, C. Genomic dissection of the most prevalent Listeria monocytogenes clone, sequence type ST87, in China. BMC Genom. 2019, 20, 1014. [Google Scholar] [CrossRef]
- Lee, S.; Parsons, C.; Chen, Y.; Dungan, R.S.; Kathariou, S. Contrasting Genetic Diversity of Listeria Pathogenicity Islands 3 and 4 Harbored by Nonpathogenic Listeria spp. Appl. Environ. Microbiol. 2023, 89, e0209722. [Google Scholar] [CrossRef]
- Kundig, W.; Ghosh, S.; Roseman, S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc. Natl. Acad. Sci. USA 1964, 52, 1067–1074. [Google Scholar] [CrossRef]
- Wu, X.; Hou, J.; Chen, X.; Chen, X.; Zhao, W. Identification and functional analysis of the L-ascorbate-specific enzyme Ⅱ complex of the phosphotransferase system in Streptococcus mutans. BMC Microbiol. 2016, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Aboulwafa, M.; Saier, M.H. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. Microbiology 2013, 159, 2213–2224. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, B.; Feng, J.; Li, W.; Jiang, B.; Liu, C.; Huang, Y.; Su, Y. The influence of enzyme EⅡ of the cellobiose-phosphotransferase system on the virulence of Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 535, 736340. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Cheng, L.; Ren, G.; Xu, X.; Lu, K.; Zhuang, N.; Sun, J.; Song, H.; Cheng, C. Biological function study of the phosphotransferase system(PTS)transporter protein ⅡBman in mediating motility and infection in Listeria monocytogenes. Chin. J. Prev. Vet. Med. 2023, 45, 1179–1187. [Google Scholar]
- Kong, X.; Li, C.; Sun, X.; Niu, B.; Guo, D.; Jiang, Y.; Yang, J.; Chen, Q. The maltose transporter subunit ⅡCB of the phosphotransferase system: An important factor for biofilm formation of Cronobacter. Int. J. Food Microbiol. 2022, 370, 109517. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yoo, B.B.; Hwang, C.A.; Suo, Y.; Sheen, S.; Khosravi, P.; Huang, L. LMOf2365_0442 Encoding for a Fructose Specific PTS Permease ⅡA May Be Required for Virulence in L. monocytogenes Strain F2365. Front. Microbiol. 2017, 8, 1611. [Google Scholar]
- Chen, M.; Zhang, J.; Xia, J.; Sun, J.; Zhang, X.; Xu, J.; Deng, S.; Han, Y.; Jiang, L.; Song, H.; et al. Listeria monocytogenes GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Microbiol. Spectr. 2023, 11, e0236523. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kang, L.; Ma, X.; Wang, J.; Li, H.; Qian, L. Typing, virulence and biofilm formation of the food-borne Listeria monocytogenes carrying pathogenicity island 4. Chin. J. Prev. Vet. Med. 2020, 42, 567–571+600. [Google Scholar]
- Liu, T.P.; Lin, L.C.; Chang, S.C.; Ou, Y.H.; Lu, J.J. Molecular Characteristics and Virulence Profile of Clinical Listeria monocytogenes Isolates in Northern Taiwan, 2009–2019. Foodborne Pathog. Dis. 2024, 21, 386–394. [Google Scholar] [CrossRef]
- Hong, S.; Moon, J.S.; Yoon, S.S.; Kim, H.Y.; Lee, Y.J. Genetic and Phenotypic Diversity of Listeria monocytogenes in Pig Slaughterhouses in Korea. Foodborne Pathog. Dis. 2024, 21, 1–9. [Google Scholar] [CrossRef]
- Mejía, L.; Espinosa-Mata, E.; Freire, A.L.; Zapata, S.; González-Candelas, F. Listeria monocytogenes, a silent foodborne pathogen in Ecuador. Front. Microbiol. 2023, 14, 1278860. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiao, Y.; Du, D.; Wang, J.; Ma, X. Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes. J. Vet. Sci. 2020, 21, e88. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yu, S.; Cheng, K.; Miao, Y.; Xu, Y.; Hu, R.; Zheng, W.; Yi, J.; Zhang, H.; Li, R.; et al. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J. Vet. Sci. 2022, 23, e8. [Google Scholar] [CrossRef]
- Netterling, S.; Bäreclev, C.; Vaitkevicius, K.; Johansson, J. RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression. Infect. Immun. 2016, 84, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Han, X.; Xu, J.; Sun, J.; Li, K.; Han, Y.; Chen, M.; Song, H. YjbH mediates the oxidative stress response and infection by regulating SpxA1 and the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) in Listeria monocytogenes. Gut Microbes 2021, 13, 1884517. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Pensinger, D.A.; Sauer, J.D. Listeria monocytogenes cytosolic metabolism promotes replication, survival, and evasion of innate immunity. Cell Microbiol. 2017, 19, e12762. [Google Scholar] [CrossRef] [PubMed]
- Stoll, R.; Goebel, W. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. Microbiology 2010, 156, 1069–1083. [Google Scholar] [CrossRef]
- Lim, S.; Seo, H.S.; Jeong, J.; Yoon, H. Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol. Res. 2019, 223–225, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Lin, S.M.; Jang, A.Y.; Ahn, K.B.; Ji, H.J.; Guo, H.C.; Lim, S.; Seo, H.S. Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr. J. Microbiol. 2019, 57, 64–73. [Google Scholar] [CrossRef]
- Bier, N.; Hammerstrom, T.G.; Koehler, T.M. Influence of the phosphoenolpyruvate:carbohydrate phosphotransferase system on toxin gene expression and virulence in Bacillus anthracis. Mol. Microbiol. 2020, 113, 237–252. [Google Scholar] [CrossRef]
- Xu, J.; Xie, Y.D.; Liu, L.; Guo, S.; Su, Y.L.; Li, A.X. Virulence regulation of cel-EⅡB protein mediated PTS system in Streptococcus agalactiae in Nile tilapia. J. Fish. Dis. 2019, 42, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Abranches, J.; Chen, Y.Y.; Burne, R.A. Characterization of Streptococcus mutans strains deficient in EⅡAB Man of the sugar phosphotransferase system. Appl. Environ. Microbiol. 2003, 69, 4760–4769. [Google Scholar] [CrossRef] [PubMed]
- Abranches, J.; Candella, M.M.; Wen, Z.T.; Baker, H.V.; Burne, R.A. Different roles of EⅡABMan and EⅡGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J. Bacteriol. 2006, 188, 3748–3756. [Google Scholar] [CrossRef] [PubMed]
- Dussurget, O.; Pizarro-Cerda, J.; Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 2004, 58, 587–610. [Google Scholar] [CrossRef]
- Jiang, L.; Ke, C.; Xu, J.; Chen, J.; Chen, X.; Chen, N.; Shuai, J.; Fang, W. Listeria monocytogenes mutants carrying Newcastle disease virus F gene fused to its actA and plcB: In vitro expression and immunogenicity in chickens. Acta Biochim. Biophys. Sin. 2007, 39, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Stoll, R.; Mertins, S.; Joseph, B.; Müller-Altrock, S.; Goebel, W. Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology 2008, 154, 3856–3876. [Google Scholar] [CrossRef] [PubMed]
- van Schaik, W.; Tempelaars, M.H.; Wouters, J.A.; de Vos, W.M.; Abee, T. The alternative sigma factor sigmaB of Bacillus cereus: Response to stress and role in heat adaptation. J. Bacteriol. 2004, 186, 316–325. [Google Scholar] [CrossRef]
- Kazmierczak, M.J.; Mithoe, S.C.; Boor, K.J.; Wiedmann, M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 2003, 185, 5722–5734. [Google Scholar] [CrossRef] [PubMed]
- Autret, N.; Raynaud, C.; Dubail, I.; Berche, P.; Charbit, A. Identification of the agr locus of Listeria monocytogenes: Role in bacterial virulence. Infect. Immun. 2003, 71, 4463–4471. [Google Scholar] [CrossRef] [PubMed]
- Gandra, T.K.V.; Volcan, D.; Kroning, I.S.; Marini, N.; de Oliveira, A.C.; Bastos, C.P.; da Silva, W.P. Expression levels of the agr locus and prfA gene during biofilm formation by Listeria monocytogenes on stainless steel and polystyrene during 8 to 48 h of incubation 10 to 37 °C. Int. J. Food Microbiol. 2019, 300, 1–7. [Google Scholar] [CrossRef]
- Riedel, C.U.; Monk, I.R.; Casey, P.G.; Waidmann, M.S.; Gahan, C.G.; Hill, C. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 2009, 71, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Rohde, M.; Schughart, K.; Lengeling, A. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice. Gut Pathog. 2013, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Gorski, L.; Duhé, J.M.; Flaherty, D. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes. PLoS ONE 2009, 4, e5142. [Google Scholar] [CrossRef] [PubMed]
- Todhanakasem, T.; Young, G.M. Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J. Bacteriol. 2008, 190, 6030–6034. [Google Scholar] [CrossRef] [PubMed]
- Gueriri, I.; Bay, S.; Dubrac, S.; Cyncynatus, C.; Msadek, T. The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis. Mol. Microbiol. 2008, 70, 1342–1357. [Google Scholar] [CrossRef] [PubMed]
- Sela, S.; Frank, S.; Belausov, E.; Pinto, R. A Mutation in the luxS gene influences Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 2006, 72, 5653–5658. [Google Scholar] [CrossRef] [PubMed]
- Monk, I.R.; Gahan, C.G.; Hill, C. Tools for functional postgenomic analysis of Listeria monocytogenes. Appl. Environ. Microbiol. 2008, 74, 3921–3934. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yoo, B.B.; Hwang, C.-A.; Martinez, M.R.; Datta, A.R.; Fratamico, P.M. Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS ONE 2022, 17, e0268924. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.E.; Filak, H.C.; Guthrie, B.S.; Schmidt, R.L.; Jamieson, A.; Merkel, P.; Knight, V.; Cole, C.M.; Raulet, D.H.; Lenz, L.L. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection. PLoS Pathog. 2016, 12, e1005708. [Google Scholar] [CrossRef]
- Clark, S.E.; Schmidt, R.L.; McDermott, D.S.; Lenz, L.L. A Batf3/Nlrp3/IL-18 Axis Promotes Natural Killer Cell IL-10 Production during Listeria monocytogenes Infection. Cell Rep. 2018, 23, 2582–2594. [Google Scholar] [CrossRef]
- Foulds, K.E.; Rotte, M.J.; Seder, R.A. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J. Immunol. 2006, 177, 2565–2574. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.J.; Köhler, G.; Brombacher, F. Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice. J. Immunol. 1997, 158, 2259–2267. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Qian, R.; Shi, W.; Kou, L.; Wang, J.; Ma, X.; Ren, H.; Gao, S.; Ren, J. EⅡB Mutation Reduces the Pathogenicity of Listeria monocytogenes by Negatively Regulating Biofilm Formation Ability, Infective Capacity, and Virulence Gene Expression. Vet. Sci. 2024, 11, 301. https://doi.org/10.3390/vetsci11070301
Liu C, Qian R, Shi W, Kou L, Wang J, Ma X, Ren H, Gao S, Ren J. EⅡB Mutation Reduces the Pathogenicity of Listeria monocytogenes by Negatively Regulating Biofilm Formation Ability, Infective Capacity, and Virulence Gene Expression. Veterinary Sciences. 2024; 11(7):301. https://doi.org/10.3390/vetsci11070301
Chicago/Turabian StyleLiu, Caixia, Ruixuan Qian, Weidi Shi, Lijun Kou, Jing Wang, Xun Ma, Huijie Ren, Shengjie Gao, and Jingjing Ren. 2024. "EⅡB Mutation Reduces the Pathogenicity of Listeria monocytogenes by Negatively Regulating Biofilm Formation Ability, Infective Capacity, and Virulence Gene Expression" Veterinary Sciences 11, no. 7: 301. https://doi.org/10.3390/vetsci11070301
APA StyleLiu, C., Qian, R., Shi, W., Kou, L., Wang, J., Ma, X., Ren, H., Gao, S., & Ren, J. (2024). EⅡB Mutation Reduces the Pathogenicity of Listeria monocytogenes by Negatively Regulating Biofilm Formation Ability, Infective Capacity, and Virulence Gene Expression. Veterinary Sciences, 11(7), 301. https://doi.org/10.3390/vetsci11070301