Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
Antimicrobial | Family | References |
---|---|---|
Amoxicillin | Penicillin | [12,13,14] |
Ampicillin | Penicillin | [13,14,15,16,17,18] |
Azithromycin | Macrolide | [12,13,14,15,17,18] |
Aztreonam | Monobactam | [13,14] |
Cefixime | 3rd gen. cephalosporin | [13] |
Cefoperazone | 3rd gen. cephalosporin | [12] |
Cefotaxime | 3rd gen. cephalosporin | [12,13,14,17] |
Ceftazidime | 3rd gen. cephalosporin | [14] |
Ceftriaxone | 3rd gen. cephalosporin | [12,13,14,15,17,18,19,20,21] |
Chloramphenicol | Amphenicol | [12,13,14,17,21] |
Ciprofloxacin | Quinolone | [12,13,14,17,19,20,21,22,23] |
Delafloxacin | Quinolone | [22] |
Ertapenem | Carbapenem | [14] |
Fleroxacin | Quinolone | [12] |
Gatifloxacin | Quinolone | [12,14,22] |
Gemifloxacin | Quinolone | [19,22] |
Imipenem | Carbapenem | [12,14] |
Levofloxacin | Quinolone | [14,19,22] |
Meropenem | Carbapenem | [12,14,18] |
Moxalactam | Beta-lactam | [14] |
Moxifloxacin | Quinolone | [17,19,22] |
Nalidixic acid | Quinolone | [17,22] |
Norfloxacin | Quinolone | [14,22] |
Ofloxacin | Quinolone | [12,14,22] |
Pefloxacin | Quinolone | [12,14,22] |
Tigecycline | Glycylcycline | [12,14,18] |
Trimethoprim-sulfamethoxazole | Dihydropyrimidine-sulfonamide | [12,13,14,15,17,18,24] |
Trovafloxacin | Fluoronaphthyridone | [14] |
Rifaximin | Rifamycin | [25] |
2. Salmonellosis in Cattle, Sheep and Goats
Antimicrobial | Antimicrobial Class | References |
---|---|---|
Amikacin | Aminoglycoside | [33] |
Amoxicillin-clavulanic acid | Penicillin | [34] |
Ampicillin | Penicillin | [35] |
Apramycin | Aminoglycoside | [34] |
Ceftiofur | 3rd gen. cephalosporin | [33,36,37] |
Cephalotin | 1st gen. cephalosporin | [33] |
Chloramphenicol | Amphenicol | [33] |
Enrofloxacin | Quinolone | [27,32,33,34] |
Florfenicol | Amphenicol | [35,36,38] |
Gentamicin | Aminoglycoside | [33] |
Kanamycin | Aminoglycoside | [33] |
Neomycin | Aminoglycoside | [35] |
Oxytetracycline | Tetracycline | [33,35,39] |
Trimethoprim-sulfamethoxazole | Sulfonamide | [27,33,34,35,36,37] |
3. Epidemiology, Public Health Significance and Antimicrobial Resistance of Salmonella spp.
Antimicrobial | % | Country | Reference |
---|---|---|---|
Amikacin | 3.40 | Italy | [66] |
0.01 | United States | [67] | |
0.00 | Central African Republic | [68] | |
Amoxicillin-clavulanic acid | 40.00 | Turkey | [69] |
22.50 | United States | [70] | |
8.10 | United States | [71] | |
7.69 | Morocco | [72] | |
5.20 | Iran | [73] | |
4.30 | China | [74] | |
3.12 | Tunisia | [75] | |
3.00 | United States | [67] | |
3.00 | United States | [76] | |
0.60 | United States | [77] | |
0.34 | Central African Republic | [68] | |
0.00 | China | [78] | |
0.00 | Switzerland | [79] | |
Amoxicillin | 27.80 | Thailand | [80] |
6.87 | Central African Republic | [68] | |
0.00 | Morocco | [72] | |
Ampicillin | 100.00 | Ethiopia | [81] |
92.16 | China | [78] | |
72.60 | Italy | [82] | |
73.00 | Taiwan | [83] | |
62.50 | Tunisia | [75] | |
60.00 | Turkey | [69] | |
57.50 | Italy | [66] | |
55.00 | United States | [70] | |
40.62 | Switzerland | [79] | |
40.30 | Thailand | [84] | |
39.99 | Denmark | [83] | |
33.33 | India | [85] | |
31.30 | China | [74] | |
29.80 | Europe | [54] | |
28.40 | Spain | [86] | |
25.00 | Nigeria | [87] | |
23.33 | Nigeria | [87] | |
22.40 | Iran | [73] | |
18.00 | United States | [67] | |
10.71 | United States | [88] | |
9.20 | United States | [71] | |
7.20 | United States | [77] | |
3.00 | United States | [76] | |
0.00 | Brazil | [89] | |
Azithromycin | 36.30 | Italy | [66] |
1.96 | China | [78] | |
0.80 | Europe | [54] | |
Aztreonam | 8.60 | Iran | [73] |
Cefalotin | 25.00 | Switzerland | [79] |
4.00 | United States | [67] | |
3.00 | United States | [76] | |
3.60 | United States | [77] | |
3.20 | Spain | [86] | |
1.80 | Iran | [73] | |
0.17 | Central African Republic | [68] | |
0.00 | Brazil | [89] | |
0.00 | Morocco | [72] | |
Cefepime | 13.73 | China | [78] |
7.40 | India | [85] | |
2.10 | China | [74] | |
Cefixime | 6.90 | Iran | [73] |
Cefoperazone | 6.3 | Thailand | [84] |
Cefotaxime | 77.77 | India | [85] |
25.00 | Nigeria | [87] | |
20.00 | Nigeria | [87] | |
10.3 | Taiwan | [83] | |
4.10 | Italy | [66] | |
3.60 | China | [74] | |
3.40 | Iran | [73] | |
0.80 | Europe | [54] | |
0.10 | Spain | [86] | |
0.10 | United States | [82] | |
0.00 | Turkey | [69] | |
0.00 | Central African Republic | [68] | |
0.00 | Denmark | [83] | |
0.00 | Switzerland | [79] | |
Cefoxitin | 22.50 | United States | [70] |
8.30 | United States | [71] | |
0.70 | United States | [77] | |
0.00 | Central African Republic | [68] | |
Ceftazidine | 17.65 | China | [78] |
12.10 | Iran | [73] | |
8.60 | Taiwan | [83] | |
3.80 | China | [74] | |
3.40 | Italy | [66] | |
3.12 | Tunisia | [75] | |
0.80 | Europe | [54] | |
0.00 | Morocco | [72] | |
0.00 | Denmark | [83] | |
Ceftiofur | 22.50 | United States | [70] |
8.20 | United States | [71] | |
6.40 | China | [74] | |
0.00 | United States | [77] | |
Ceftriaxone | 19.61 | China | [78] |
11.11 | India | [85] | |
8.10 | United States | [71] | |
6.90 | Iran | [73] | |
5.00 | United States | [70] | |
3.00 | United States | [76] | |
1.00 | United States | [67] | |
0.00 | United States | [77] | |
0.00 | Ethiopia | [81] | |
Ciprofloxacin | 25.00 | Nigeria | [87] |
14.81 | India | [85] | |
14.10 | Europe | [54] | |
10.10 | United States | [71] | |
8.90 | Italy | [66] | |
6.50 | Thailand | [84] | |
5.00 | United States | [70] | |
3.92 | China | [78] | |
3.33 | Nigeria | [87] | |
2.80 | China | [74] | |
1.80 | Iran | [73] | |
1.60 | Taiwan | [83] | |
1.56 | Switzerland | [79] | |
0.10 | United States | [67] | |
0.00 | Brazil | [89] | |
0.00 | Thailand | [80] | |
0.00 | Ethiopia | [81] | |
0.00 | Morocco | [72] | |
0.00 | Spain | [86] | |
0.00 | United States | [82] | |
0.00 | Turkey | [69] | |
0.00 | United States | [77] | |
0.00 | Central African Republic | [68] | |
0.00 | Denmark | [83] | |
Chloramphenicol | 48.10 | Taiwan | [83] |
42.00 | United States | [70] | |
38.8 | Thailand | [84] | |
35.29 | China | [78] | |
29.90 | United States | [82] | |
20.40 | Thailand | [80] | |
17.20 | Iran | [73] | |
15.70 | China | [74] | |
14.20 | Spain | [86] | |
11.11 | India | [85] | |
10.10 | Denmark | [83] | |
10.00 | United States | [67] | |
9.60 | Italy | [66] | |
9.60 | United States | [71] | |
6.40 | Europe | [54] | |
5.85 | Central African Republic | [68] | |
3.12 | Tunisia | [75] | |
2.90 | United States | [77] | |
1.00 | United states | [76] | |
1.56 | Switzerland | [79] | |
0.00 | Morocco | [72] | |
0.00 | Ethiopia | [81] | |
0.00 | Brazil | [89] | |
Colistin | 2.70 | Italy | [66] |
Doxycycline | 77.50 | Iran | [73] |
Furazolidone | 3.12 | Tunisia | [75] |
Gentamicin | 62.96 | India | [85] |
33.70 | Thailand | [84] | |
24.30 | Taiwan | [83] | |
15.20 | China | [74] | |
12.50 | Nigeria | [87] | |
12.50 | Tunisia | [75] | |
10.00 | Nigeria | [87] | |
9.60 | United States | [71] | |
6.90 | Iran | [73] | |
5.60 | Thailand | [80] | |
5.00 | United States | [70] | |
3.00 | United States | [76] | |
3.00 | United States | [82] | |
3.00 | United States | [67] | |
2.60 | Spain | [86] | |
1.60 | Europe | [54] | |
1.10 | United States | [77] | |
0.60 | Denmark | [83] | |
0.17 | Central African Republic | [68] | |
0.00 | Italy | [66] | |
0.00 | Morocco | [72] | |
0.00 | Ethiopia | [81] | |
0.00 | Brazil | [89] | |
0.00 | Turkey | [69] | |
0.00 | Switzerland | [79] | |
Kanamycin | 33.33 | Ethiopia | [81] |
22.40 | Iran | [73] | |
14.20 | United States | [71] | |
9.37 | Tunisia | [75] | |
5.00 | United State | [67] | |
3.12 | Switzerland | [79] | |
3.10 | United States | [77] | |
3.00 | United States | [70] | |
3.00 | United States | [76] | |
2.10 | United States | [82] | |
1.60 | Spain | [86] | |
0.00 | Morocco | [72] | |
Imipenem | 0.00 | China | [78] |
0.00 | Central African Republic | [68] | |
0.00 | Denmark | [83] | |
0.00 | Taiwan | [83] | |
0.00 | Iran | [73] | |
Levofloxacin | 0.00 | China | [78] |
Piperacin/tazobactam | 3.33 | Nigeria | [87] |
0.00 | China | [78] | |
Nalidixic acid | 74.10 | Iran | [73] |
70.31 | Switzerland | [79] | |
50.90 | China | [74] | |
35.00 | Spain | [86] | |
23.33 | Nigeria | [87] | |
21.60 | Taiwan | [83] | |
20.00 | United States | [70] | |
18.75 | Tunisia | [75] | |
13.10 | Europe | [54] | |
10.71 | United States | [88] | |
11.30 | United States | [71] | |
9.80 | United States | [82] | |
8.20 | Italy | [66] | |
6.25 | Nigeria | [87] | |
4.40 | Denmark | [83] | |
1.00 | United States | [67] | |
0.50 | United States | [77] | |
0.34 | Central African Republic | [68] | |
0.00 | Morocco | [72] | |
0.00 | Brazil | [89] | |
Meropenem | 10.00 | Nigeria | [87] |
0.00 | Italy | [66] | |
0.00 | Europe | [54] | |
Neomycin | 12.50 | Tunisia | [75] |
Nitrofurantoin | 64.70 | Brazil | [89] |
33.30 | Ethiopia | [81] | |
30.00 | Nigeria | [87] | |
6.25 | Nigeria | [87] | |
Ofloxacin | 1.40 | China | [74] |
Ticarcillin | 6.87 | Central African Republic | [68] |
Tigecycline | 0.20 | Europe | [54] |
Tetracycline | 92.60 | Thailand | [80] |
85.40 | Taiwan | [83] | |
85.18 | India | [85] | |
80.00 | United States | [70] | |
76.40 | United States | [82] | |
68.75 | Switzerland | [79] | |
67.50 | Thailand | [84] | |
66.66 | Ethiopia | [81] | |
50.70 | Italy | [66] | |
46.66 | Nigeria | [87] | |
43.00 | Nigeria | [87] | |
40.00 | Turkey | [69] | |
37.30 | Denmark | [83] | |
31.20 | Europe | [54] | |
30.50 | China | [74] | |
27.30 | Spain | [86] | |
21.00 | United States | [67] | |
12.50 | Tunisia | [75] | |
11.80 | Brazil | [89] | |
11.53 | Morocco | [72] | |
10.71 | United States | [88] | |
9.90 | United States | [77] | |
5.00 | United States | [76] | |
3.51 | Central African Republic | [68] | |
Norfloxacin | 0.00 | Thailand | [80] |
0.00 | Brazil | [89] | |
Trimethoprim | 62.96 | India | [85] |
59.70 | Thailand | [84] | |
19.70 | China | [74] | |
6.20 | Italy | [66] | |
6.10 | Europe | [54] | |
5.90 | Brazil | [89] | |
3.12 | Switzerland | [79] | |
Trim-sulpha | 35.29 | China | [78] |
31.50 | Thailand | [80] | |
20.00 | United States | [70] | |
19.70 | China | [74] | |
12.30 | United States | [82] | |
10.40 | United States | [71] | |
9.60 | Europe | [54] | |
7.61 | Central African Republic | [68] | |
7.00 | Turkey | [69] | |
6.00 | Spain | [86] | |
2.00 | United States | [67] | |
3.12 | Tunisia | [75] | |
0.60 | United States | [77] | |
Tigecycline | 2.70 | Italy | [66] |
Spectinomycin | 48.00 | Thailand | [84] |
Streptomycin | 100.00 | Thailand | [80] |
100.00 | Ethiopia | [81] | |
87.00 | Thailand | [84] | |
81.60 | Taiwan | [83] | |
70.30 | United States | [82] | |
62.50 | Switzerland | [79] | |
42.50 | United States | [70] | |
40.50 | Denmark | [83] | |
37.60 | China | [74] | |
19.50 | Spain | [86] | |
19.00 | United States | [67] | |
10.00 | United States | [76] | |
12.40 | United States | [77] | |
10.71 | United States | [88] | |
8.80 | United States | [71] | |
3.84 | Morocco | [72] | |
3.12 | Tunisia | [75] | |
0.00 | Brazil | [89] | |
Sulfamethoxazole | 100 | Italy | [66] |
100 | Brazil | [80] | |
96.10 | Thailand | [84] | |
89.20 | Taiwan | [83] | |
43.00 | Denmark | [83] | |
30.10 | Europe | [54] | |
20.00 | United States | [67] | |
10.00 | United States | [77] | |
9.37 | Switzerland | [79] | |
5.00 | United states | [76] | |
Sulfisoxazole | 70.00 | United States | [70] |
50.00 | United States | [88] | |
47.90 | China | [74] | |
8.40 | United States | [71] | |
Sulfonamide | 88.20 | Brazil | [89] |
75.40 | United States | [82] | |
22.30 | Spain | [86] | |
3.84 | Morocco | [72] |
4. Material and Methods
4.1. Search Strategy
4.2. Inclusion and Exclusion Criteria
4.3. Review of the Scientific Literature and Data Analysis
4.4. Meta-Analysis and Statistical Analysis
5. Results
5.1. Salmonella spp. Prevalence in Slaughtered Large and Small Ruminants
5.2. Antimicrobial Resistance of Salmonella spp. from Slaughtered Domestic Ruminants
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, food safety and food handling practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [PubMed]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Lübbert, C. Antimicrobial therapy of acute diarrhoea: A clinical review. Exp. Rew. Anti-Infect. Ther. 2016, 14, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Onwuezobe, I.A.; Oshun, P.O.; Odigwe, C.C. Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. Cochrane Database Syst. Rev. 2012, 11, CD001167. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological effects of quinolones: A family of broad-spectrum antimicrobial agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Matheson, N.; Kingsley, R.A.; Sturgess, K.; Aliyu, S.H.; Wain, J.; Dougan, G.; Cooke, F.J. Ten years experience of Salmonella infections in Cambridge, UK. J. Infect. 2010, 60, 21–25. [Google Scholar] [CrossRef]
- Karkey, A.; Thwaites, G.E.; Baker, S. The evolution of antimicrobial resistance in Salmonella Typhi. Curr. Opin. Gastroenterol. 2018, 34, 25–30. [Google Scholar] [CrossRef]
- Jin, C.; Gibani, M.M.; Pennington, S.H.; Liu, X.; Ardrey, A.; Aljayyoussi, G.; Moore, M.; Angus, B.; Parry, C.M.; Biagini, G.A.; et al. Treatment responses to azithromycin and ciprofloxacin in uncomplicated Salmonella Typhi infection: A comparison of clinical and microbiological data from a controlled human infection model. PLoS Neglected Trop. Dis. 2019, 13, e0007955. [Google Scholar] [CrossRef]
- Haeusler, G.M.; Curtis, N. Non-typhoidal Salmonella in children: Microbiology, epidemiology and treatment. In Hot Topics in Infection and Immunity in Children IX; Curtis, N., Finn, A., Pollard, A.J., Eds.; Springer: New York, NY, USA, 2013; pp. 13–26. [Google Scholar] [CrossRef]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed]
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Salmonella infection–prevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology 2018, 164, 1327–1344. [Google Scholar] [CrossRef] [PubMed]
- Tack, B.; Vanaenrode, J.; Verbakel, J.Y.; Toelen, J.; Jacobs, J. Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: A systematic review on antimicrobial resistance and treatment. BMC Med. 2020, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.J. Red Book. Atlas of Pediatric Infectious Diseases, 4th ed.; American Academy of Pediatrics: Itasca, IL, USA, 2020. [Google Scholar]
- Doi, Y. Penicillins and b-lactamase inhibitors. In Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Sandoe, J.A.T.; Dockrell, D.H. Principles of infectious disease. In Davidson’s Principles and Practice of Medicine, 24th ed.; Penman, I.D., Ralston, S.H., Strachan, M.W.J., Hobson, R.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Wen, S.C.; Best, E.; Nourse, C. Non-typhoidal Salmonella infections in children: Review of literature and recommendations for management. J. Paediatr. Child Health 2017, 53, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Chin-Hong, P.V.; Guglielmo, B.J. Common problens in infectious diseases & antimicrobial therapy. In Current Medical Diagnosis and Treatmen; Papadakis, M.A., McPhee, S.J., Rabow, M.W., Eds.; Lange McGrawHill: New York, NY, USA, 2022. [Google Scholar]
- Dennehy, P.H. Infectious gastroenteritis. In Introduction to Clinical Infectious Diseases. A Problem-Based Approach; Domachowske, J., Ed.; Springer: New York, NY, USA, 2019; pp. 157–170. [Google Scholar]
- Moffa, B. Tetracyclines, glycycyclines, and chloramphenicol. In Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Hooper, D.C.; Strahilevitz, C. Quinolones. In Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Wright, W.F. Infectious diarrea. In Essentials of Clinical Infectious Diseases, 2nd ed.; Wright, W.F., Ed.; Demosmedical: New York, NY, USA, 2018; pp. 155–161. [Google Scholar]
- Zinner, S.H.; Mayer, K.H. Sulfonemide and trimethoprim; trimethoprim-sulfamethoxazole. In Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Maslow, M.J.; Portal-Celhay, C. Rifamycins. In Principles and Practice of Infectious Diseases, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Demirbilek, S.K. Salmonellosis in animals. In Salmonella—A Re-Emerging Pathogen; Mascellino, M.T., Ed.; Intechopen: London, UK, 2017. [Google Scholar] [CrossRef]
- Holschbach, C.L.; Peek, S.F. Salmonella in dairy cattle. Vet. Clin. Food Anim. Pract. 2018, 34, 133–154. [Google Scholar] [CrossRef]
- Farouk, M.M.; El-Molla, A.; Salib, F.A.; Soliman, Y.A. Epidemiology of Salmonella species in diarrheic sheep and goats. Pak. J. Zool. 2021, 54, 381–389. [Google Scholar] [CrossRef]
- Mussayeva, A.; Yegorova, N.; Namet, A.; Kozhabayev, M.; Syrym, N. Salmonella sheep abortion: Distribution, diagnosis, and control measures. J. Appl. Anim. Welf. Sci. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Peek, S.F.; McGuirk, S.M.; Sweeney, R.W.; Cummings, K.J. Infectious Diseases of the gastrointestinal tract. In Rebhun´s Diseases of Dairy Cattle, 3rd ed.; Peek, S.F., Divers, T.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 249–356. [Google Scholar]
- Smith, G. Antimicrobial decision making for enteric diseases of cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 47–60. [Google Scholar] [CrossRef]
- Pugh, D.G.; Baird, N.N.; Edmondson, M.; Passler, T. Sheep, Goat, and Cervid Medicine, 3rd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Smith, B.P. Salmonellosis in ruminants. In Large Animal Internal Medicine, 6th ed.; Smith, B.P., Van Metre, D.C., Pusterla, N., Eds.; Elsevier: St. Louis, MO, USA, 2020. [Google Scholar]
- Scott, P.R.; Penny, C.D.; Macrae, A.I. Cattle Medicine; Manson Publishing: London, UK, 2011. [Google Scholar]
- Abbott, K. The Practice of Sheep Veterinary Medicine; University of Adelaide Press: Adelaide, Australia, 2018. [Google Scholar]
- McGuirk, S.M.; Peek, S. Salmonellosis in cattle: A review. In Proceedings of the American Association of Bovine Practitioners 36th Annual Conference, Colombus, OH, USA, 18–20 September 2003. [Google Scholar]
- Navarre, C.B.; Pugh, D.G. Diseases of the gastrointestinal system. In Sheep and Goat Medicine; Pugh, D.C., Ed.; Saunders: London, UK, 2002; pp. 69–105. [Google Scholar]
- Silva, D.G.; Silva, P.R.L.; Fagliari, J.J. Efficacy of florfenicol and intravenous fluid therapy for treatment of experimental salmonellosis in newborn calves. Arq. Bras. Med. Vet. Zootec. 2010, 62, 499–503. [Google Scholar] [CrossRef]
- Sargison, N. Sheep Flock Health: A Planned Approach; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kim, Y.S.; Park, K.H.; Chun, H.S.; Choi, C.; Bahk, G.J. Correlations between climatic conditions and foodborne disease. Food Res. Int. 2015, 68, 24–30. [Google Scholar] [CrossRef]
- ECDC—European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021. Stockholm. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-EARS-Net-2021_2022-final.pdf (accessed on 15 December 2023).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union one health 2022 zoonoses report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Bonifait, L.; Thépault, A.; Baugé, L.; Rouxel, S.; Le Gall, F.; Chemaly, M. Occurrence of Salmonella in the cattle production in France. Microorganisms 2021, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.; Strain, S.A.; Bagdonaite, G.; McDowell, S.W.; Bronckaers, T.; Sherrey, M.; Devine, P.; Pascual-Linaza, A.V.; Spence, N.; Porter, R.; et al. Trends in Salmonella serovars and antimicrobial resistance in pigs and poultry in Northern Ireland between 1997 and 2016. Vet. Rec. 2020, 186, 156. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, M.; Małaszczuk, M.; Paluch, E.; Pawlak, A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect. Ecol. Epidemiol. 2021, 11, 1975530. [Google Scholar] [CrossRef] [PubMed]
- Marin, C.; Lorenzo-Rebenaque, L.; Laso, O.; Villora-Gonzalez, J.; Vega, S. Pet reptiles: A potential source of transmission of multidrug-resistant Salmonella. Front. Vet. Sci. 2021, 7, 613718. [Google Scholar] [CrossRef]
- Lauteri, C.; Festino, A.R.; Conter, M.; Vergara, A. Prevalence and antimicrobial resistance profile in Salmonella spp. isolates from swine food chain. Ital. J. Food Saf. 2022, 11, 9980. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, L.C.; Mughini-Gras, L.; Franz, E.; Hald, T.; Pires, S.M. Sources and trends of human salmonellosis in Europe, 2015–2019: An analysis of outbreak data. Int. J. Food Microbiol. 2022, 379, 109850. [Google Scholar] [CrossRef]
- Schirone, M.; Visciano, P. Trends of major foodborne outbreaks in the european union during the years 2015–2019. Hygiene 2021, 1, 106–119. [Google Scholar] [CrossRef]
- Whitham, H.K.; Sundararaman, P.; Dewey-Mattia, D.; Manikonda, K.; Marshall, K.E.; Griffin, P.M.; Gleason, B.L.; Subramhanya, S.; Crowe, S.J. Novel outbreak-associated food vehicles, United States. Emerg. Infect. Dis. 2021, 27, 2554. [Google Scholar] [CrossRef]
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Rodriguez, F.P.; Astorga Márquez, R.J. Salmonella and salmonellosis: An update on public health implications and control strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella detection in commercially prepared livestock. feed and the raw ingredients and equipment used to manufacture the feed: A systematic review and meta-analysis. Prev. Vet. Med. 2022, 198, 105546. [Google Scholar] [CrossRef] [PubMed]
- Canning, M.; Birhane, M.G.; Dewey-Mattia, D.; Lawinger, H.; Cote, A.; Gieraltowski, L.; Schwensohn, C.; Tagg, K.A.; Watkins, L.K.F.; Robyn, M.P.; et al. Salmonella outbreaks linked to beef, United States, 2012–2019. J. Food Prot. 2023, 86, 100071. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar] [CrossRef]
- NARMS. National Antimicrobial Resistance Monitoring System. Integrated Report Summary. 2020. Available online: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2020-narms-update-integrated-report-summary (accessed on 12 September 2023).
- Bennani, H.; Mateus, A.; Mays, N.; Eastmure, E.; Stärk, K.D.; Häsler, B. Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics 2020, 9, 49. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Wee, B.A.; Muloi, D.M.; van Bunnik, B.A. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin. Microbiol. Infect. 2020, 26, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Morel, C.M.; Lindahl, O.; Harbarth, S.; de Kraker, M.E.; Edwards, S.; Hollis, A. Industry incentives and antibiotic resistance: An introduction to the antibiotic susceptibility bonus. J. Antibiot. 2020, 73, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Vinayamohan, P.G.; Pellissery, A.J.; Venkitanarayanan, K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr. Opin. Food Sci. 2022, 47, 100882. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef]
- Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; van Bunnik, B.A.D.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef]
- Rogers Van Katwyk, S.; Hoffman, S.J.; Mendelson, M.; Taljaard, M.; Grimshaw, J.M. Strengthening the science of addressing antimicrobial resistance: A framework for planning, conducting and disseminating antimicrobial resistance intervention research. Health Res. Policy Syst. 2020, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Alessiani, A.; Goffredo, E.; Mancini, M.; Occhiochiuso, G.; Faleo, S.; Didonna, A.; Fischetto, R.; Suglia, F.; Vito, D.; Stallone, A.; et al. Evaluation of antimicrobial resistance in Salmonella strains isolated from food, animal and human samples between 2017 and 2021 in southern Italy. Microorganisms 2022, 10, 812. [Google Scholar] [CrossRef]
- Varma, J.K.; Mølbak, K.; Barrett, T.J.; Beebe, J.L.; Jones, T.F.; Rabatsky-Ehr, T.; Smith, K.E.; Vugia, D.J.; Chang, H.-G.H.; Angulo, F.J. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations. J. Infect. Dis. 2005, 191, 554–561. [Google Scholar] [CrossRef]
- Breurec, S.; Reynaud, Y.; Frank, T.; Farra, A.; Costilhes, G.; Weill, F.X.; Le Hello, S. Serotype distribution and antimicrobial resistance of human Salmonella enterica in Bangui, Central African Republic, from 2004 to 2013. PLoS Neglected Trop. Dis. 2019, 13, e0007917. [Google Scholar] [CrossRef]
- Erdem, B.; Ercis, S.; Hascelik, G.; Gur, D.; Aysev, A.D. Antimicrobial resistance of Salmonella enterica group C strains isolated from humans in Turkey, 2000–2002. Int. J. Antimicrob. Agents 2005, 26, 33–37. [Google Scholar] [CrossRef]
- Soyer, Y.E.Ş.İ.M.; Richards, J.; Hoelzer, K.; Warnick, L.D.; Fortes, E.; McDonough, P.; Dumas, N.B.; Grohn, Y.T.; Wiedmann, M. Antimicrobial drug resistance patterns among cattle-and human-associated Salmonella strains. J. Food Prot. 2013, 76, 1676–1688. [Google Scholar] [CrossRef]
- Angelo, K.M.; Reynolds, J.; Karp, B.E.; Hoekstra, R.M.; Scheel, C.M.; Friedman, C. Antimicrobial resistance among nontyphoidal Salmonella isolated from blood in the United States, 2003–2013. J. Infect. Dis. 2016, 214, 1565–1570. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Karraouan, B.; El Allaoui, A.; Khayatti, M.; El Ossmani, H.; Filali, F.R.; ElMdaghri, N.; Bouchrif, B. Antimicrobial resistance and genetic diversity of Salmonella infantis isolated from foods and human samples in Morocco. J. Glob. Antimicrob. Resist. 2018, 14, 297–301. [Google Scholar] [CrossRef]
- Firoozeh, F.; Shahcheraghi, F.; Salehi, T.Z.; Karimi, V.; Aslani, M.M. Antimicrobial resistance profile and presence of class I integrongs among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran. J. Microbiol. 2011, 3, 112. [Google Scholar]
- Zhang, J.; Jin, H.; Hu, J.; Yuan, Z.; Shi, W.; Ran, L.; Zhao, S.; Yang, X.; Meng, J.; Xu, X. Serovars and antimicrobial resistance of non-typhoidal Salmonella from human patients in Shanghai, China, 2006–2010. Epidemiol. Infect. 2014, 142, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Abbassi-Ghozzi, I.; Jaouani, A.; Aissa, R.B.; Martinez-Urtaza, J.; Boudabous, A.; Gtari, M. Antimicrobial resistance and molecular analysis of non-typhoidal Salmonella isolates from human in Tunisia. Pathol. Biol. 2011, 59, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Gebreyes, W.A.; Thakur, S. Multidrug-resistant Salmonella enterica serovar muenchen from pigs and humans and potential interserovar transfer of antimicrobial resistance. Antimicrob. Agents Chemother. 2005, 49, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, D.A.; Singh, A.; Zhao, S.; Bartholomew, M.; Womack, N.; Ayers, S.; Fields, P.I.; McDermott, P.F. Antimicrobial resistance in Salmonella in the United States from 1948 to 1995. Antimicrob. Agents Chemother. 2016, 60, 2567–2571. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Li, H.; Feng, Y.; Zeng, S.; Zhuo, Z.; Luo, J.; Chen, X.; Li, X. Prevalence, serotype distribution and antimicrobial resistance of non-typhoidal Salmonella in hospitalized patients in Conghua District of Guangzhou, China. Front. Cell. Infect. Microbiol. 2022, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Cernela, N.; Nüesch-Inderbinen, M.; Hächler, H.; Stephan, R. Antimicrobial resistance patterns and genotypes of Salmonella enterica serovar Hadar strains associated with human infections in Switzerland, 2005–2010. Epidemiol. Infect. 2014, 142, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Angkititrakul, S.; Chomvarin, C.; Chaita, T.; Kanistanon, K.; Waethewutajarn, S. Epidemiology of antimicrobial resistance in Salmonella isolated from pork, chicken meat and humans in Thailand. S. Asian J. Trop. Med. Public Health 2005, 36, 1510–1515. [Google Scholar]
- Addis, Z.; Kebede, N.; Sisay, Z.; Alemayehu, H.; Wubetie, A.; Kassa, T. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: A cross sectional study. BMC Infect. Dis. 2011, 11, 222. [Google Scholar] [CrossRef]
- Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418. [Google Scholar] [CrossRef]
- Torpdahl, M.; Lauderdale, T.L.; Liang, S.Y.; Li, I.; Wei, S.H.; Chiou, C.S. Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark. Int. J. Food Microbiol. 2013, 161, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Sinwat, N.; Angkittitrakul, S.; Chuanchuen, R. Characterization of antimicrobial resistance in Salmonella enterica isolated from pork, chicken meat, and humans in Northeastern Thailand. Foodborne Pathog. Dis. 2015, 12, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Soler, P.; Gonzalez-Sanz, R.; Bleda, M.J.; Hernandez, G.; Echeíta, A.; Usera, M.A. Antimicrobial resistance in non-typhoidal Salmonella from human sources, Spain, 2001–2003. J. Antimicrob. Chemother. 2006, 58, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Borah, P.; Dutta, R.; Das, L.; Hazarika, G.; Choudhury, M.; Deka, N.K.; Malakar, D.; Hussain, I.; Barkalita, L.M. Prevalence, antimicrobial resistance and virulence genes of Salmonella serovars isolated from humans and animals. Vet. Res. Commun. 2022, 46, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Adesiji, Y.O.; Deekshit, V.K.; Karunasagar, I. Antimicrobial-resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nutr. 2014, 2, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gokulan, K.; Barnette, D.; Khare, S.; Rooney, A.W.; Deck, J.; Ñayak, R.; Stefanoiva, R.; Hart, M.E.; Foley, S.L. Evaluation of virulence and antimicrobial resistance in Salmonella enterica serovar Enteritidis isolates from humans and chicken-and egg-associated sources. Foodborne Pathog. Dis. 2013, 10, 1008–1015. [Google Scholar] [CrossRef]
- de Oliveira, S.D.; Flores, F.S.; dos Santos, L.R.; Brandelli, A. Antimicrobial resistance in Salmonella enteritidis strains isolated from broiler carcasses, food, human and poultry-related samples. Int. J. Food Microbiol. 2005, 97, 297–305. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; The PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis. Protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- Botella, J.; Sánchez-Meca, J. Meta-Análisis en Ciencias Sociales y de la Salud; Síntesis: Madrid, Spain, 2015. [Google Scholar]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marin-Martinez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- CIR-Commission Implementing Regulation (EU) 2022/1255 of 19 July 2022 Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, in Accordance with Regulation (EU) 2019/6 of the European Parliament and of the Council (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2022/1255/oj (accessed on 8 July 2024).
- European Centre for Disease Prevention and Control. Salmonellosis. In Annual Epidemiological Report for 2021; ECDC, Ed.; ECDC: Stockholm, Sweden, 2022; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/SALM_AER_2021.pdf (accessed on 23 October 2023).
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, 6th ed.; CLSI: Wayne, PA, USA, 2023; ISBN 978-1-68440-167-3. [Google Scholar]
- Toutain, P.L.; Bousquet-Mélou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En route towards European clinical breakpoints for veterinary antimicrobial susceptibility testing: A position paper explaining the VetCAST approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ahmad, F.; Yaqub, B.; Ramzan, A.; Imran, A.; Afzaal, M.; Mirza, S.A.; Mazhar, I.; Younus, M.; Akram, Q.; et al. Current trends of antimicrobials used in food animals and aquaculture. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Hashmi, M.Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–69. [Google Scholar] [CrossRef]
- Bonke, R.; Wacheck, S.; Bumann, C.; Thum, C.; Stüber, E.; König, M.; Stephan, R.; Fredriksson-Ahomaa, M. High prevalence of Salmonella enterica subsp. diarizonae in tonsils of sheep at slaughter. Food Res. Int. 2012, 45, 880–884. [Google Scholar] [CrossRef]
- Dargatz, D.A.; Marshall, K.L.; Fedorka-Cray, P.J.; Erdman, M.M.; Kopral, C.A. Salmonella prevalence and antimicrobial susceptibility from the national animal health monitoring system sheep 2011 study. Foodborne Pathog. Dis. 2015, 12, 953–957. [Google Scholar] [CrossRef]
- Methner, U.; Moog, U. Occurrence and characterisation of Salmonella enterica subspecies diarizonae serovar 61: K: 1, 5,(7) in sheep in the federal state of Thuringia, Germany. BMC Vet. Res. 2018, 14, 401. [Google Scholar] [CrossRef]
- Cummings, K.J.; Perkins, G.A.; Khatibzadeh, S.M.; Warnick, L.D.; Altier, C. Antimicrobial resistance trends among Salmonella isolates obtained from dairy cattle in the northeastern United States, 2004–2011. Foodborne Pathog. Dis. 2013, 10, 353–361. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.P.; Quiroga, M.P.; Álvarez, V.E.; Centrón, D.; Tittonell, P. Antimicrobial resistance dissemination associated with intensive animal production practices in Argentina: A systematic review and meta-analysis. Rev. Argent. Microbiol. 2022, 55, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Williams, D.R.; Rossitto, P.; Adaska, J.; Okello, E.; Champagne, J.; Lehenbauer, T.W.; Li, X.; Chase, J.; Nguyen, T.; et al. Association between herd management practices and antimicrobial resistance in Salmonella spp. from cull dairy cattle in Central California. PeerJ 2019, 7, e6546. [Google Scholar] [CrossRef]
- Alexander, K.A.; Warnick, L.D.; Wiedmann, M. Antimicrobial resistant Salmonella in dairy cattle in the United States. Vet. Res. Commun. 2009, 33, 191–209. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Magstadt, D.R.; Sidhu, P.K.; Follett, L.; Schuler, A.M.; Krull, A.C.; Cooper, V.L.; Engelken, T.J.; Kleinhenz, M.D.; O’Connor, A.M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS ONE 2019, 14, e0219104. [Google Scholar] [CrossRef]
- Rodriguez-Rivera, L.D.; Cummings, K.J.; Loneragan, G.H.; Rankin, S.C.; Hanson, D.L.; Leone, W.M.; Edrington, T.S. Salmonella prevalence and antimicrobial susceptibility among dairy farm environmental samples collected in Texas. Foodborne Pathog. Dis. 2016, 13, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Fegan, N.; Vanderlinde, P.; Higgs, G.; Desmarchelier, P. Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. J. Appl. Microbiol. 2004, 97, 892–898. [Google Scholar] [CrossRef]
- Duffy, L.; Barlow, R.; Fegan, N.; Vanderlinde, P. Prevalence and serotypes of Salmonella associated with goats at two Australian abattoirs. Lett. Appl. Microbiol. 2009, 48, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, E.; Molla, B.; Alemayehu, D.; Muckle, A. Prevalence and distribution of Salmonella in apparently healthy slaughtered sheep and goats in Debre Zeit, Ethiopia. Small Rumin. Res. 2005, 58, 19–24. [Google Scholar] [CrossRef]
- Rubira, I.; Figueras, L.P.; Jiménez, J.C.; de Arcaute, M.R.; Ruiz, H.; Ventura, J.A.; Lacasta, D. Salmonella enterica subsp. diarizonae serotype 61: K: 1: 5:(7) a Host Adapted to Sheep. In Salmonella spp. A Global Challenge; Lamas, A., Regal, P., Franco, C.M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Weber, M.; Zanolari, P.; Ardüser, F.; Stucki, D.; Akarsu, H.; Overesch, G. Prevalence and antimicrobial resistance of Salmonella enterica subsp. diarizonae serovar 61: K: 1, 5,(7) in Swiss sheep flocks. Prev. Vet. Med. 2022, 206, 105697. [Google Scholar] [CrossRef]
- McDermott, P.F.; Zhao, S.; Tate, H. Antimicrobial resistance in nontyphoidal Salmonella. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; Aarestrup, F.M., Ed.; ASM Press: Washinton, DC, USA, 2006; pp. 261–287. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- Ekli, R.; Adzitey, F.; Huda, N. Prevalence of resistant Salmonella spp. isolated from raw meat and liver of cattle in the Wa Municipality of Ghana. IOP Conf. Ser. Earth Environ. Sci. 2019, 287, 012006. [Google Scholar] [CrossRef]
- Ferede, B.; Desissa, F.; Feleke, A.; Tadesse, G.; Moje, N. Prevalence and antimicrobial susceptibility of Salmonella isolates from apparently healthy slaughtered goats at Dire Dawa municipal abattoir, Eastern Ethiopia. J. Microbiol. Antimicrob. 2015, 7, 1–5. [Google Scholar] [CrossRef]
- Mustefa, B.A.; Gebremedhin, E.Z. Carriage and antimicrobial resistance of non-typhoidal Salmonella in cattle slaughtered in Ambo municipality abattoir, West Shewa zone, Oromia, Ethiopia-a point prevalence survey. Ethiop. Vet. J. 2018, 22, 94–109. [Google Scholar] [CrossRef]
- Nouichi, S.; Quatouat, R.; Can, H.; Mezali, L.; Belkader, C.; Ouar Korichi, M.; Bertrand, S.; Cantekin, Z.; Hamdi, T. Prevalence and antimicrobial resistance of Salmonella isolated from bovine and ovine samples in slaughterhouses of Algiers, Algeria. J. Hell. Vet. Med. Soc. 2018, 69, 863–872. [Google Scholar] [CrossRef]
- Obaidat, M.M. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101447. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, W.; Rjeibi, M.R.; Mhadhbi, M.; Jbeli, M.; Zrelli, S.; Ettriqui, A. Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains, isolated from beef in Greater Tunis (Tunisia). Meat Sci. 2016, 119, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Takele, S.; Woldemichael, K.; Gashaw, M.; Tassew, H.; Yohannes, M.; Abdissa, A. Prevalence and drug susceptibility pattern of Salmonella isolates from apparently healthy slaughter cattle and personnel working at the Jimma municipal abattoir, south-West Ethiopia. Trop. Dis. Travel Med. Vaccines 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xue, K.; Yi, P.; Zhu, X.; Peng, Q.; Wang, Z.; Peng, Y.; Chen, Y.; Robertson, I.D.; Li, X.; et al. An abattoir-based study on the prevalence of Salmonella fecal carriage and ESBL related antimicrobial resistance from culled adult dairy cows in Wuhan, China. Pathogens 2020, 9, 853. [Google Scholar] [CrossRef] [PubMed]
- Al-Zubaid, A.A.; Yousif, A.A. Prevalence and antimicrobial susceptibility of Salmonella species isolate from slaughtered cows in Iraq. Iraq. J. Vet. Med. 2013, 37, 96–101. [Google Scholar]
- Gabana, A.D.A.; Núncio, A.S.P.; Lopes, B.C.; de Oliveira, J.A.; da Silva Monteiro, L.; de Menezes Coppola, M.; Furian, T.Q.; Borges, K.A.; Rodriguez, L.B.; Mayer, F.Q. Different multidrug-resistant Salmonella spp. serovars isolated from slaughter calves in Southern Brazil. Curr. Microbiol. 2023, 80, 11. [Google Scholar] [CrossRef] [PubMed]
- Lynne, A.M.; Kaldhone, P.; David, D.; White, D.G.; Foley, S.L. Characterization of antimicrobial resistance in Salmonella enterica serotype heidelberg isolated from food animals. Foodborne Pathog. Dis. 2009, 6, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zare, P.; Ghorbani, C.H.; Jaberi, S.; Razzaghi, S.; Mirzaei, M.; Mafuni, K. Occurrence and antimicrobial resistance of Salmonella spp. and Escherichia coli isolates in apparently healthy slaughtered cattle, sheep and goats in East Azarbaijan province. Int. J. Enteric Pathog. 2014, 2, e15451. [Google Scholar] [CrossRef]
- Thomas, E.; Roy, O.; Skowronski, V.; Zschiesche, E.; Martin, G.; Bottner, A. Comparative field efficacy study between cefquinome and gentamicin in neonatal calves with clinical signs of septicaemia. Rev. Med. Vet. 2004, 155, 489–493. [Google Scholar]
- Cetin, E.; Temelli, S.; Eyigor, A. Nontyphoid Salmonella prevalence, serovar distribution and antimicrobial resistance in slaughter sheep. Food Sci. Anim. Resour. 2020, 40, 21. [Google Scholar] [CrossRef] [PubMed]
- Blau, D.M.; McCluskey, B.J.; Ladely, S.R.; Dargatz, D.A.; Fedorka-Cray, P.J.; Ferris, K.E.; Headrick, M.L. Salmonella in dairy operations in the United States: Prevalence and antimicrobial drug susceptibility. J. Food Prot. 2005, 68, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.A.; Warnick, L.D.; Mitchell, R.M.; Kaneene, J.B.; Ruegg, P.L.; Wells, S.J.; Fossler, C.P.; Halbert, L.W.; May, K. Prevalence of antimicrobial resistance among Salmonella on midwest and northeast USA dairy farms. Prev. Vet. Med. 2007, 79, 204–223. [Google Scholar] [CrossRef] [PubMed]
- Edrington, T.S.; Schultz, C.L.; Bischoff, K.M.; Callaway, T.R.; Looper, M.L.; Genovese, K.J.; Jung, Y.S.; McReynolds, J.L.; Anderson, R.C.; Nisbet, D.J. Antimicrobial resistance and serotype prevalence of Salmonella isolated from dairy cattle in the southwestern United States. Microb. Drug Resist. 2004, 101, 51–56. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K.E.; Moreno, M.A.; Rantala, M.; Ruzauskas, M.; Sanders, P.; et al. The use of aminoglycosides in animals within the EU: Development of resistance in animals and possible impact on human and animal health: A review. J. Antimicrob. Chemother. 2019, 74, 2480–2496. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A.; Hancock, D.D.; Besser, T.E.; Daniels, J.B.; Baker, K.N.; Call, D.R. Antimicrobial resistance in Salmonella enterica serovar Dublin isolates from beef and dairy sources. Vet. Microbiol. 2007, 119, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Srednik, M.E.; Lantz, K.; Hicks, J.A.; Morningstar-Shaw, B.R.; Mackie, T.A.; Schlater, L.K. Antimicrobial resistance and genomic characterization of Salmonella Dublin isolates in cattle from the United States. PLoS ONE 2021, 16, e0249617. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.R.M.I.H.; Rahman, M.M.; Islam, M.Z.; Das, B.C.; Habib, A.; Belal, S.M.S.H.; Islam, K. Prevalence and antimicrobial resistance profile of Escherichia coli and Salmonella isolated from diarrheic calves. J. Anim. Health Prod. 2014, 2, 12–15. [Google Scholar] [CrossRef]
- EMA—European Medicines Agency. Advice on the Designation of Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans—In Relation to Implementing Measures under Article 37 (5) of Regulation (EU) 2019/6 on Veterinary Medicinal Products. 2021. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/advice-designation-antimicrobials-or-groups-antimicrobials-reserved-treatment-certain-infections-humans-relation-implementing-measures-under-article-375-regulation-eu-20196-veterinary-medicinal_en.pdf (accessed on 8 July 2024).
- Tadesse, G. A meta-analysis of the proportion of animal Salmonella isolates resistant to drugs used against human salmonellosis in Ethiopia. BMC Infect. Dis. 2015, 15, 84. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Hendrick, S.; McAllister, T.A. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Can. J. Vet. Res. 2014, 78, 38–45. [Google Scholar]
- Figueiredo, R.; Henriques, A.; Sereno, R.; Mendonça, N.; da Silva, G.J. Antimicrobial resistance and extended-spectrum β-lactamases of Salmonella enterica serotypes isolated from livestock and processed food in Portugal: An update. Foodborne Pathog. Dis. 2015, 12, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Sangeda, R.Z.; Baha, A.; Erick, A.; Mkumbwa, S.; Bitegeko, A.; Sillo, H.B.; Fimbo, A.M.; Chambuso, M.; Mbugi, E.V. Consumption trends of antibiotic for veterinary use in Tanzania: A longitudinal retrospective survey from 2010–2017. Front. Trop. Dis. 2021, 2, 694082. [Google Scholar] [CrossRef]
- Palmeira, J.D.; Ferreira, H.M.N. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production—A threat around the world. Heliyon 2020, 6, e03206. [Google Scholar] [CrossRef] [PubMed]
- Huttner, A.; Bielicki, J.; Clements, M.N.; Frimodt-Møller, N.; Muller, A.E.; Paccaud, J.P.; Mouton, J.W. Oral amoxicillin and amoxicillin–clavulanic acid: Properties, indications and usage. Clin. Microbiol. Infect. 2020, 26, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Webb, H.E.; Brichta-Harhay, D.M.; Brashears, M.M.; Nightingale, K.K.; Arthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Schmidt, J.W.; Wang, R.; Granier, S.A.; et al. Salmonella in peripheral lymph nodes of healthy cattle at slaughter. Front. Microbiol. 2017, 8, 2214. [Google Scholar] [CrossRef] [PubMed]
- Kebede, A.; Kemal, J.; Alemayehu, H.; Habte Mariam, S. Isolation, identification, and antibiotic susceptibility testing of Salmonella from slaughtered bovines and ovines in Addis Ababa Abattoir Enterprise, Ethiopia: A cross-sectional study. Int. J. Bacteriol. 2016, 2016, 3714785. [Google Scholar] [CrossRef] [PubMed]
- Ketema, L.; Ketema, Z.; Kiflu, B.; Alemayehu, H.; Terefe, Y.; Ibrahim, M.; Eguale, T. Prevalence and antimicrobial susceptibility profile of Salmonella serovars isolated from slaughtered cattle in Addis Ababa, Ethiopia. BioMed Res. Int. 2018, 2018, 9794869. [Google Scholar] [CrossRef] [PubMed]
- Shaibu, A.O.; Okolocha, E.C.; Maikai, B.V.; Olufemi, O.T. Isolation and antibiogram of Salmonella species from slaughtered cattle and the processing environment in Abuja abattoirs, Nigeria. Food Control 2021, 125, 107972. [Google Scholar] [CrossRef]
- Wells, S.J.; Fedorka-Cray, P.J.; Dargatz, D.A.; Ferris, K.; Green, A. Fecal shedding of Salmonella spp. by dairy cows on farm and at cull cow markets. J. Food Prot. 2001, 64, 3–11. [Google Scholar] [CrossRef]
- CDC. Subject: National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria Website. 2006. Available online: http://www.cdc.gov/narms/ (accessed on 15 December 2023).
- de Toro, M.; Sáenz, Y.; Cercenado, E.; Rojo-Bezares, B.; García-Campello, M.; Undabeitia, E.; Torres, C. Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals. Int. Microbiol. 2011, 201114, 173–181. [Google Scholar] [CrossRef]
- Brunelle, B.W.; Bearson, B.L.; Allen, H.K. Prevalence, evolution, and dissemination of antibiotic resistance in Salmonella. In Foodborne Pathogens and Antibiotic Resistance; Singh, O.V., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 331–348. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Pace, M.C. Mechanisms of action of carbapenem resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Tshitshi, L.; Manganyi, M.C.; Montso, P.K.; Mbewe, M.; Ateba, C.N. Extended spectrum beta-lactamase-resistant determinants among carbapenem-resistant Enterobacteriaceae from beef cattle in the north West Province, South Africa: A critical assessment of their possible public health implications. Antibiotics 2020, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Solgi, H.; Nematzadeh, S.; Giske, C.G.; Badmasti, F.; Westerlund, F.; Lin, Y.-L.; Goyal, G.; Nikbin, V.S.; Nemati, A.H.; Shahcheraghi, F. Molecular epidemiology of OXA-48 and NDM-1 producing enterobacterales species at a university hospital in Tehran, Iran, between 2015 and 2016. Front. Microbiol. 2020, 11, 936. [Google Scholar] [CrossRef]
- Delgado-Suárez, E.J.; Palós-Gutiérrez, T.; Ruíz-López, F.A.; Hernández Pérez, C.F.; Ballesteros-Nova, N.E.; Soberanis-Ramos, O.; Mendez-Medina, R.D.; Allard, M.W.; Rubio-Lozano, M.S. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS ONE 2021, 16, e0243681. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R.S.; McMillan, K.E.; Duffy, L.L.; Fegan, N.; Jordan, D.; Mellor, G.E. Prevalence and antimicrobial resistance of Salmonella and Escherichia coli from Australian cattle populations at slaughter. J. Food Prot. 2015, 78, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Rovira, A.; Davies, P.; Ahlstrom, C.; Muellner, P.; Rendahl, A.; Olsen, K.; Bender, J.B.; Wells, S.; Perez, A.; et al. Serotypes and antimicrobial resistance in Salmonella enterica recovered from clinical samples from cattle and swine in Minnesota, 2006 to 2015. PLoS ONE 2016, 11, e0168016. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.L.; Fenton, R.J.; Moriyama, E.N.; Loy, J.D.; Moxley, R.A. Association of IS Vsa3 with multidrug resistance in Salmonella enterica isolates from cattle (Bos taurus). Microorganisms 2023, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Varela-Guerrero, J.A.; Talavera-Rojas, M.; Gutiérrez-Castillo, A.D.C.; Reyes-Rodríguez, N.E.; Vázquez-Guadarrama, J. Phenotypic–genotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Trop. Anim. Health Prod. 2013, 45, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, D.; Molla, B.; Muckle, A. Prevalence and antimicrobial resistance pattern of Salmonella isolates from apparently healthy slaughtered cattle in Ethiopia. Trop. Anim. Health Prod. 2003, 35, 309–319. [Google Scholar] [CrossRef]
- Small, A.; James, C.; James, S.; Davies, R.; Liebana, E.; Howell, M.; Howell, M.; Hutchison, M.; Buncic, S. Presence of Salmonella in the red meat abattoir lairage after routine cleansing and disinfection and on carcasses. J. Food Prot. 2006, 69, 2342–2351. [Google Scholar] [CrossRef]
- Pavelquesi, S.L.S.; de Oliveira Ferreira, A.C.A.; Rodrigues, A.R.M.; de Souza Silva, C.M.; Orsi, D.C.; da Silva, I.C.R. Presence of tetracycline and sulfonamide resistance genes in Salmonella spp.: Literature review. Antibiotics 2021, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Min, F.; Wang, J.; Luo, Y.; Huang, S.; Chen, M.; Wu, R.; Zhang, Y. Development and evaluation of a Luminex xTAG assay for sulfonamide resistance genes in Escherichia coli and Salmonella isolates. Mol. Cell Probes. 2019, 49, 101476. [Google Scholar] [CrossRef]
- Rao, S.; Van Donkersgoed, J.; Bohaychuk, V.; Besser, T.; Song, X.M.; Wagner, B.; Hancock, D.; Renter, D.; Dargatz, D.; Morley, P.S. Antimicrobial drug use and antimicrobial resistance in enteric bacteria among cattle from Alberta feedlots. Foodborne Pathog. Dis. 2010, 7, 449–457. [Google Scholar] [CrossRef]
- Casaux, M.L.; Caffarena, R.D.; Schild, C.O.; Giannitti, F.; Riet-Correa, F.; Fraga, M. Antibiotic resistance in Salmonella enterica isolated from dairy calves in Uruguay. Braz. J. Microbiol. 2019, 50, 1139–1144. [Google Scholar] [CrossRef]
- Eguale, T.; Engidawork, E.; Gebreyes, W.A.; Asrat, D.; Alemayehu, H.; Medhin, G.; Johnson, R.P.; Gunn, J.S. Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia. BMC Microbiol. 2016, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Okafor, C. Effect of veterinary feed directive rule changes on tetracycline-resistant and erythromycin-resistant bacteria (Salmonella, Escherichia, and Campylobacter) in retail meats in the United States. PLoS ONE 2023, 18, e0289208. [Google Scholar] [CrossRef]
- Vicente, D.; Pérez-Trallero, E. Tetraciclinas, sulfamidas y metronidazol. Enf. Infect. Microbiol. Clin. 2020, 28, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Murugkar, H.V.; Rahman, H.; Kumar, A.; Bhattacharyya, D. Isolation, phage typing & antibiogram of Salmonella from man and animals in northeastern India. Indian J. Med. Res. 2005, 122, 237. [Google Scholar]
- Yu, Y.; Shao, C.; Gong, X.; Quan, H.; Liu, D.; Chen, Q.; Chu, Y. Antimicrobial resistance surveillance of tigecycline-resistant strains isolated from herbivores in northwest China. Microorganisms 2022, 10, 2432. [Google Scholar] [CrossRef]
- Linkevicius, M.; Sandegren, L.; Andersson, D.I. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob. Agents Chemother. 2016, 60, 789–796. [Google Scholar] [CrossRef]
- Chiou, C.S.; Hong, Y.P.; Wang, Y.W.; Chen, B.H.; Teng, R.H.; Song, H.Y.; Liao, Y.S. Antimicrobial resistance and mechanisms of azithromycin resistance in nontyphoidal Salmonella isolates in Taiwan, 2017 to 2018. Microbiol. Spectr. 2023, 11, e03364-22. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Beaudry, F.; Theriault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef] [PubMed]
- Atlaw, N.A.; Keelara, S.; Correa, M.; Foster, D.; Gebreyes, W.; Aidara-Kane, A.; Harden, L.; Thakur, S.; Fedorka-Cray, P.J. Evidence of sheep and abattoir environment as important reservoirs of multidrug resistant Salmonella and extended-spectrum beta-lactamase Escherichia coli. Int. J. Food Microbiol. 2022, 363, 109516. [Google Scholar] [CrossRef] [PubMed]
- Gutema, F.D.; Abdi, R.D.; Agga, G.E.; Firew, S.; Rasschaert, G.; Mattheus, W.; Crombe, F.; Duchateau, L.; Gabriel, S.; De Zutter, L. Assessment of beef carcass contamination with Salmonella and E. coli O:157 in slaughterhouses in Bishoftu, Ethiopia. Int. J. Food Contam. 2021, 8, 3. [Google Scholar] [CrossRef]
- Khaitsa, M.L.; Kegode, R.B.; Bauer, M.L.; Gibbs, P.S.; Lardy, G.P.; Doetkott, D.K. A longitudinal study of Salmonella shedding and antimicrobial resistance patterns in North Dakota feedlot cattle. J. Food Prot. 2007, 70, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.T.; Kabir, S.L.; Rahman, M.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World 2019, 12, 984. [Google Scholar] [CrossRef] [PubMed]
- Wabeto, W.; Abraham, Y.; Anjulo, A.A. Detection and identification of antimicrobial-resistant Salmonella in raw beef at Wolaita Sodo municipal abattoir, Southern Ethiopia. J. Health Popul. Nutr. 2017, 36, 52. [Google Scholar] [CrossRef] [PubMed]
- Pyörälä, S.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Greko, C.; Moreno, M.A.; Pomba, M.C.M.F.; Rantala, M.; Ruzauskas, M.; Sanders, P.; et al. Macrolides and lincosamides in cattle and pigs: Use and development of antimicrobial resistance. Vet. J. 2014, 200, 230–239. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- Schwarz, S.; Feßler, A.T.; Loncaric, I.; Wu, C.; Kadlec, K.; Wang, Y.; Shen, J. Antimicrobial resistance among staphylococci of animal origin. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Prescott, J.F. Beta-lactam antibiotics: Cephalosporins. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguere, S., Prescott, J.F., Dowling, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 153–173. [Google Scholar] [CrossRef]
- EMA—European Medicine Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021. 2022. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac-report_en.pdf (accessed on 8 July 2024).
- EMA—European Medicine Agency. Categorisation of Antibiotics in the European Union Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals. 2019. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 13 November 2023).
- Sibhat, B.; Molla Zewde, B.; Zerihun, A.; Muckle, A.; Cole, L.; Boerlin, P.; Wilkie, E.; Perets, A.; Mistry, K.; Gebreyes, W.A. Salmonella serovars and antimicrobial resistance profiles in beef cattle, slaughterhouse personnel and slaughterhouse environment in Ethiopia. Zoonoses Public Health 2011, 58, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Molla, W.; Molla, B.; Alemayehu, D.; Muckle, A.; Cole, L.; Wilkie, E. Occurrence and antimicrobial resistance of Salmonella serovars in apparently healthy slaughtered sheep and goats of central Ethiopia. Trop. Anim. Health Prod. 2006, 38, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Kijima, M.; Shirakawa, T.; Uchiyama, M.; Kawanishi, M.; Ozawa, M.; Koike, R. Trends in the serovar and antimicrobial resistance in clinical isolates of Salmonella enterica from cattle and pigs between 2002 and 2016 in Japan. J. Appl. Microbiol. 2019, 127, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Najafi Asl, M.; Mahmoodi, P.; Bahari, A.; Goudarztalejerdi, A. Isolation, molecular identification, and antibiotic resistance profile of Salmonella typhimurium isolated from calves fecal samples of dairy farms in Hamedan. J. Med. Microbiol. Infect. Dis. 2022, 10, 42–47. [Google Scholar] [CrossRef]
- Aleri, J.W.; Sahibzada, S.; Harb, A.; Fisher, A.D.; Waichigo, F.K.; Lee, T.; Robertson, I.D.; Abraham, S. Molecular epidemiology and antimicrobial resistance profiles of Salmonella isolates from dairy heifer calves and adult lactating cows in a Mediterranean pasture-based system of Australia. J. Dairy Sci. 2022, 105, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Furlan, J.P.R.; Ramos, M.S.; Dos Santos, L.D.R.; da Silva Rosa, R.; Stehling, E.G. Multidrug-resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of bovine origin. Vet. Res. Commun. 2023, 47, 1907–1913. [Google Scholar] [CrossRef]
- Worku, W.; Desta, M.; Menjetta, T. High prevalence and antimicrobial susceptibility pattern of Salmonella species and extended-spectrum β-lactamase producing Escherichia coli from raw cattle meat at butcher houses in Hawassa city, Sidama regional state, Ethiopia. PLoS ONE 2022, 17, e0262308. [Google Scholar] [CrossRef]
- Arbab, S.; Ullah, H.; Wei, X.; Wang, W.; Ahmad, S.U.; Zhang, J. Drug resistance and susceptibility testing of Gram negative bacterial isolates from healthy cattle with different β–Lactam resistance phenotypes from Shandong province China. Braz. J. Biol. 2021, 83, e247061. [Google Scholar] [CrossRef]
- Ohta, N.; Norby, B.; Loneragan, G.H.; Vinasco, J.; den Bakker, H.C.; Lawhon, S.D.; Scott, H.M. Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline. PLoS ONE 2019, 14, e0225697. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, H.; Dettman, B.; Doyle, M.P. Analysis of fecal microbial flora for antibiotic resistance in ceftiofur-treated calves. Foodborne Pathog. Dis. 2006, 3, 355–365. [Google Scholar] [CrossRef]
- Agga, G.E.; Schmidt, J.W.; Arthur, T.M. Antimicrobial-resistant fecal bacteria from ceftiofur-treated and nonantimicrobial-treated comingled beef cows at a cow–calf operation. Microb. Drug Resist. 2016, 22, 598–608. [Google Scholar] [CrossRef]
- Mataseje, L.F.; Xiao, J.; Kost, S.; Ng, L.K.; Dore, K.; Mulvey, M.R. Canadian Public Health Laboratory Network (CPHLN). Characterization of Canadian cefoxitin-resistant non-typhoidal Salmonella isolates, 2005–2006. J. Antimicrob. Chemother. 2009, 64, 723–730. [Google Scholar] [CrossRef]
- Seiffert, S.N.; Hilty, M.; Perreten, V.; Endimiani, A. Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: An emerging problem for human health? Drug Resist. Updates 2013, 16, 22–45. [Google Scholar] [CrossRef]
- Hao, H.; Sander, P.; Iqbal, Z.; Wang, Y.; Cheng, G.; Yuan, Z. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis. Front. Microbiol. 2016, 7, 1626. [Google Scholar] [CrossRef]
- Pérez, D.S.; Tapia, M.O.; Soraci, A.L. Fosfomycin: Uses and potentialities in veterinary medicine. Open Vet. J. 2014, 4, 26–43. [Google Scholar]
- Kuang, X.; Hao, H.; Dai, M.; Wang, Y.; Ahmad, I.; Liu, Z.; Zonghui, Y. Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front. Microbiol. 2015, 6, 602. [Google Scholar] [CrossRef] [PubMed]
- da Cunha-Neto, A.; Castro, V.S.; Carvalho, L.A.; dos Prazeres Rodrigues, D.; Mano, S.B.; de Souza Figueiredo, E.E.; Conte-Junior, C.A. Serotypes and antimicrobial resistance profiles of Salmonella isolated from fresh beef processing and chilled fresh rbeef samples produced and marketed in the metropolitan region of Cuiab, in the State of Mato Grosso, Brazil. Afr. J. Microbiol. Res. 2017, 11, 1626–1631. [Google Scholar] [CrossRef]
- Seyfarth, A.M.; Wegener, H.C.; Frimodt-Møller, N. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar Typhimurium from humans and production animals. J. Antimicrob. Chemother. 1997, 40, 67–75. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Wannet, W.J.B.; Houwers, D.J.; Van Pelt, W. Antimicrobial susceptibilities of Salmonella strains isolated from humans, cattle, pigs, and chickens in the Netherlands from 1984 to 2001. J. Clin. Microbiol. 2003, 41, 3574–3578. [Google Scholar] [CrossRef]
- Ho, P.L.; Ng, K.Y.; Lo, W.U.; Law, P.Y.; Lai, E.L.Y.; Wang, Y.; Chow, K.H. Plasmid-mediated OqxAB is an important mechanism for nitrofurantoin resistance in Escherichia coli. Antimicrob. Agents Chemother. 2016, 60, 537–543. [Google Scholar] [CrossRef]
- Valenzuela, J.R.; Sethi, A.K.; Aulik, N.A.; Poulsen, K.P. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006–2015. J. Dairy Sci. 2017, 100, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Younis, E.E.; Ishida, Y.; Shimamoto, T. Genetic basis of multidrug resistance in Salmonella enterica serovars Enteritidis and Typhimurium isolated from diarrheic calves in Egypt. Acta Trop. 2009, 111, 144–149. [Google Scholar] [CrossRef]
- El-Seedy, F.R.; Abed, A.H.; Yanni, H.A.; Abd El-Rahman, S.A.A. Prevalence of Salmonella and E. coli in neonatal diarrheic calves. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Esaki, H.; Morioka, A.; Ishihara, K.; Kojima, A.; Shiroki, S.; Tamura, Y.; Takahashi, T. Antimicrobial susceptibility of Salmonella isolated from cattle, swine and poultry (2001–2002): Report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. J. Antimicrob. Chemother. 2004, 53, 266–270. [Google Scholar] [CrossRef]
- Sime, M.G. Occurrence and antimicrobial susceptibility of Salmonella in fecal and carcass swab samples of small ruminants at Addis Ababa livestock market. J. Vet. Sci. 2021, 12, 1–5. [Google Scholar]
- Trouchon, T.; Lefebvre, S. A review of enrofloxacin for veterinary use. Open J. Vet. Med. 2016, 6, 40–58. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef] [PubMed]
- Fritz, H.M.; Pereira, R.V.; Toohey-Kurth, K.; Marshall, E.; Tucker, J.; Clothier, K.A. Salmonella enterica serovar Dublin from cattle in California from 1993–2019: Antimicrobial resistance trends of clinical relevance. Antibiotics 2022, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, Y.; Rodas-González, A.; Carruyo, G.; Hoet, A.E.; Wittum, T.; Narváez-Bravo, C. Salmonella prevalence and antimicrobial drug resistance in dual-purpose cattle operations in the eastern region of Zulia State, Venezuela. Foodborne Pathog. Dis. 2019, 16, 205–213. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A. Isolation and characterization of antibiotic susceptibility profile of Salmonella species isolated from abattoir environment. Ife J. Sci. 2017, 19, 389–397. [Google Scholar] [CrossRef]
- Mathole, M.A.; Muchadeyi, F.C.; Mdladla, K.; Malatji, D.P.; Dzomba, E.F.; Madoroba, E. Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa. Food Control 2017, 72, 219–224. [Google Scholar] [CrossRef]
- Mukuna, W.; Aniume, T.; Pokharel, B.; Khwatenge, C.; Basnet, A.; Kilonzo-Nthenge, A. Antimicrobial susceptibility profile of pathogenic and commensal bacteria recovered from cattle and goat farms. Antibiotics 2023, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Eaves, D.J.; Randall, L.; Gray, D.T.; Buckley, A.; Woodward, M.J.; White, A.P.; Piddock, L.J. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 2004, 48, 4012–4015. [Google Scholar] [CrossRef] [PubMed]
- Musa, D.; Aremu, H.; Ajayi, A.; Smith, S. Simplex PCR assay for detection of blaTEM and gyrA genes, antimicrobial susceptibility pattern and plasmid profile of Salmonella spp. isolated from stool and raw meat samples in Niger state, Nigeria. Microbiol. Biotechnol. Lett. 2020, 48, 230–235. [Google Scholar] [CrossRef]
- Olivares-Pérez, J.; Kholif, A.E.; Rojas-Hernández, S.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Bastida, A.Z.; Velazquez-Reinosa, D.; Cipriano-Salazar, M.; Camacho-Diaz, L.M.; Alonso-Fresan, M.U.; et al. Prevalence of bovine subclinical mastitis, its etiology and diagnosis of antibiotic resistance of dairy farms in four municipalities of a tropical region of Mexico. Trop. Anim. Health Prod. 2015, 47, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Jaja, I.F.; Bhembe, N.L.; Green, E.; Oguttu, J.; Muchenje, V. Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta Trop. 2019, 190, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Hald, T.; Lo Fo Wong, D.M.; Aarestrup, F.M. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin. Foodborne Pathog. Dis. 2007, 4, 313–326. [Google Scholar] [CrossRef]
- Morgan, A.L.K.; Woolhouse, M.E.J.; Wagenaar, J.A.; Van Bunnik, B.A.D. Modelling the effects of antibiotic usage in livestock on human salmonellosis. One Health 2023, 17, 100639. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Tawana, M.; Onyiche, T.E.; Lekota, K.E.; Thekisoe, O. Prevalence of antibiotic resistance in Salmonella serotypes concurrently isolated from the environment, animals, and humans in South Africa: A systematic review and meta-analysis. Antibiotics 2021, 10, 1435. [Google Scholar] [CrossRef]
- Talukder, H.; Roky, S.A.; Debnath, K.; Sharma, B.; Ahmed, J.; Roy, S. Prevalence and antimicrobial resistance profile of Salmonella isolated from human, animal and environment samples in South Asia: A 10-year meta-analysis. J. Epidemiol. Glob. Health 2023, 13, 637–652. [Google Scholar] [CrossRef]
K | Prev. (%) | Tau2 | I2 (%) | Q | C.I. (95%) | |
---|---|---|---|---|---|---|
Overall | 49 | 8.01 | 1.962 | 98.69 | 2651.969 | 5.29–11.52 |
Cattle | 39 | 8.31 | 1.85 | 98.68 | 2144.36 | 5.54–12.29 |
Goats | 5 | 7.04 | 2.39 | 96.19 | 42.318 | 1.83–23.61 |
Sheep | 5 | 8.31 | 4.19 | 97.64 | 185.142 | 1.14–41.31 |
Stud. a | Stud b | Prev. c | Tau2 | I2 (%) | Q | C.I. (95%) | |
---|---|---|---|---|---|---|---|
Carcass | 35 | 33 | 4.60 | 2.43 | 98.38 | 2267.348 | 2.71–7.66 |
Feces | 23 | 22 | 3.73 | 3.77 | 99.24 | 1772.599 | 1.63–8.06 |
Int. mucosa | 4 | 3 | 8.37 | 0.46 | 96.83 | 58.266 | 4.00–16.63 |
Kidney | 3 | 0 | - | - | - | - | - |
Liver | 8 | 4 | 1.65 | 3.20 | 91.97 | 53.892 | 0.26–9.55 |
Lungs | 2 | 0 | - | - | - | - | - |
LN | 14 | - | 3.95 | 4.57 | 98.72 | 466.521 | 1.24–11.83 |
Rumen | 3 | 0 | - | - | - | - | - |
Spleen | 5 | 0 | - | - | - | - | - |
Aminoglycosides | Amphenicols | Carbapenems | Cephalosporins | Quinolones | |||||
Amikacin | Florfenicol | Ertapenem | Cefaclor | Ciprofloxacin | |||||
Gentamicin | Chloramphenicol | Imipenem | Cephalothin | Enrofloxacin | |||||
Kanamycin | Meropenem | Cefazolin | Levofloxacin | ||||||
Neomycin | Cefixime | Nalidixic acid | |||||||
Netilmicin | Cefotaxime | Norfloxacin | |||||||
Tobramycin | Cefoxitin | Ofloxacin | |||||||
Streptomycin | Ceftiofur | ||||||||
Ceftriaxone | |||||||||
Ceftazidime | |||||||||
Cefuroxime | |||||||||
Lincosamides | Macrolides | Oxazolidinona | Penicillins | Phosphonic antm. | |||||
Clindamycin | Azithromycin | Linezolid | Amoxicillin | Fosfomycin | |||||
Lincomycin | Erythromycin | Amox-clav | |||||||
Tilmicosin | Ampicillin | ||||||||
Aztreonam | |||||||||
Cloxacillin | |||||||||
Mecillinam | |||||||||
Mezlocillin | |||||||||
Ticarcillin | |||||||||
Piperacillin | |||||||||
Sulfonamides | Tetracyclines | Nitrofurans | Others | ||||||
Trim-sulpha | Doxycycline | Furazolidone | Colistin | ||||||
Sulfisoxazole | Tetracycline | Nitrofurantoin | Polymyxin | ||||||
Sulphamtx | Quinupristin | ||||||||
Sulfonamide | Trimethoprim | ||||||||
Tigecycline | |||||||||
Spectinomycin |
Low | High | Very High | |||
---|---|---|---|---|---|
Amphenicols | Amynoglycosides | Aminoglycosides | |||
Florfenicol | Amikacin | Kanamycin | |||
Carbapenems | Gentamicin | Streptomycin | |||
Ertapenem | Neomycin | Cephalosporins | |||
Imipenem | Tobramycin | Cefixime | |||
Meropenem | Cephalosporins | Cephalothin | |||
Cephalosporins | Cefoxitin | Amphenicols | |||
Cefazolin | Ceftriaxone | Chloramphenicol | |||
Cefotaxime | Ceftiofur | Quinolones | |||
Ceftazidime | Quinolones | Ofloxacin | |||
Lincosamides A | Ciprofloxacin | Penicillin | |||
- | Enrofloxacin | Amox-Clav | |||
Macrolides A | Nalidixic acid | Amoxicillin | |||
Azithromycin | Norfloxacin | Ampicillin | |||
Oxazolidinone | Penicillins | Sulfonamides | |||
Linezolid | Piperacillin | Trim-sulpha | |||
Penicillins | Other | Sulfisoxazole | |||
Mellicinam | Colistin | Tetracyclines | |||
Mezlocillin | Polymyxin | Tetracycline | |||
Ticarcillin | Nitrofuran | ||||
Tetracyclines | Nitrofurantoin | ||||
Doxycycline | |||||
Nitrofurans | |||||
Furazolidone | |||||
Others | |||||
Trimethoprim | |||||
Tigecycline | |||||
Spectinomycin |
Parte Superior do Formulário | ||||||||
---|---|---|---|---|---|---|---|---|
Antimicrobial Family | N | Prev. (%) | Tau2 | I2 (%) | Q | C.I. (95%) | p | |
Aminoglycosides | ||||||||
Amikacin | 13 | 5.06 | 1.1986 | 56.69 | 28.997 | 2.19–11.36 | p < 0.01 | |
Gentamicin | 41 | 8.62 | 2.1485 | 84.03 | 138.962 | 5.17–14.12 | p < 0.001 | |
Kanamycin | 22 | 23.86 | 2.8203 | 93.92 | 195.623 | 12.47–40.68 | p < 0.001 | |
Neomycin | 7 | 7.24 | 4.1856 | 81.87 | 34.289 | 1.37–30.34 | p < 0.001 | |
Tobramycin | 5 | 7.24 | 2.446 | 64.03 | 11.480 | 0.61–16.56 | p < 0.05 | |
Streptomycin | 34 | 40.87 | 3.1341 | 95.95 | 491.214 | 26.38–57.15 | p < 0.001 | |
Amphenicols | ||||||||
Florfenicol | 10 | 3.80 | 2.901 | 75.22 | 40.454 | 1.03–12.92 | p < 0.001 | |
Chloramphenicol | 39 | 12.23 | 2.6235 | 91.43 | 270.663 | 7.10–20.26 | p < 0.001 | |
Carbapenems | ||||||||
Ertapenem | 4 | 0 | - | - | - | - | - | |
Imipenem | 7 | 1.01 | 0 | 0 | 1.409 | 0.35–2.85 | ns | |
Meropenem | 3 | 0 | - | - | - | - | - | |
Cephalosporins | ||||||||
Cefaclor | 1 | 61.53 | - | - | - | - | - | |
Cephalothin | 5 | 22.79 | 1.9548 | 96.26 | 112.840 | 7.58–51.67 | p < 0.001 | |
Cefazolin | 5 | 2.10 | 1.7956 | 61.15 | 12.680 | 0.45–9.34 | p < 0.01 | |
Cefixime | 4 | 75.21 | 2.2453 | 66.37 | 10.676 | 32.47–95.06 | p < 0.05 | |
Cefotaxime | 14 | 2.73 | 1.8477 | 61.49 | 50.123 | 1.03–7.05 | p < 0.001 | |
Cefoxitin | 21 | 5.84 | 3.8066 | 86.98 | 118.054 | 2.31–13.99 | p < 0.001 | |
Ceftiofur | 3 | 7.24 | 7.3732 | 95.32 | 27.839 | 65.18 | p < 0.001 | |
Ceftriaxone | 22 | 6.47 | 3.8475 | 91.74 | 127.765 | 2.61–15.21 | p < 0.001 | |
Ceftazidime | 7 | 0.00 | - | - | - | - | - | |
Cefuroxime | 1 | 5.88 | - | - | - | - | - | |
Quinolones | ||||||||
Ciprofloxacin | 36 | 5.89 | 2.6675 | 85.68 | 156.243 | 3.15–10.70 | p < 0.001 | |
Enrofloxacin | 13 | 9.97 | 3.7761 | 85.55 | 47.663 | 3.06–27.84 | p < 0.001 | |
Levofloxacin | 1 | 0.00 | ||||||
Nalidixic acid | 28 | 8.62 | 3.4502 | 92.70 | 507.717 | 4.15–16.98 | p < 0.001 | |
Norfloxacin | 12 | 6.53 | 1.5325 | 74.29 | 35.969 | 2.76–14.77 | p < 0.001 | |
Ofloxacin | 6 | 100 | - | - | - | - | - | |
Lincosamides | ||||||||
Clindamycin | 8 | 1.72 | 3.6211 | 75.87 | 54.922 | 0.35–8.01 | p < 0.001 | |
Lincomycin | 1 | 100 | - | - | - | - | - | |
Macrolides | ||||||||
Azithromycin | 11 | 2.73 | 3.2313 | 80.50 | 55.446 | 0.77–9.18 | p < 0.001 | |
Erythromycin | 5 | 2.08 | 8.2394 | 85.18 | 41.647 | 0.13–25.12 | p < 0.001 | |
Tilmicosin | 3 | 0 | - | - | - | - | - | |
Oxazolidinone | ||||||||
Linezolid | 4 | 0.00 | - | - | - | - | - | |
Penicillins | ||||||||
Amoxicillin | 11 | 14.55 | 5.6126 | 90.69 | 66.508 | 3.52–44.32 | p < 0.001 | |
Amox-clav | 27 | 16.11 | 4.6991 | 96.03 | 254.694 | 7.28–31.90 | p < 0.001 | |
Ampicillin | 42 | 30.49 | 2.8935 | 94.27 | 456.560 | 19.76–43.83 | p < 0.001 | |
Aztreonam | 1 | 0 | - | - | - | - | - | |
Cloxacillin | 1 | 100 | - | - | - | - | - | |
Mecillinam | 4 | 3.13 | 0.1372 | 9.86 | 2.749 | 1.17–8.02 | ns | |
Mezlocillin | 3 | 0 | - | - | - | - | - | |
Penicillin | 8 | 4.74 | 9.2684 | 81.51 | 37.311 | 0.47–34.02 | p < 0.001 | |
Piperacillin | 7 | 6.23 | 1.885 | 68.84 | 17.462 | 1.71–20.10 | p < 0.01 | |
Ticarcillin | 4 | 2.23 | 3.1391 | 74.31 | 15.818 | 0.28–15.43 | p < 0.001 | |
Phosphonic antm. | ||||||||
Fosfomycin | 1 | 0 | - | - | - | - | - | |
Sulfonamides | ||||||||
Trim-sulpha | 29 | 13.70 | 2.8992 | 96.18 | 312.112 | 7.55–23.59 | p < 0.001 | |
Sulfisoxazole | 14 | 16.90 | 2.1318 | 93.49 | 94.230 | 7.95–32.30 | p < 0.001 | |
Sulfamethoxazole | 1 | 41.94 | - | - | - | - | - | |
Sulfonamide | 1 | 17.67 | - | - | - | - | - | |
Tetracyclines | ||||||||
Doxycycline | 4 | 2.46 | 3.7076 | 72.86 | 13.848 | 0.26–19.21 | p < 0.01 | |
Tetracycline | 42 | 32.43 | 2.2847 | 94.60 | 400.293 | 22.25–4457 | p < 0.001 | |
Nitrofurans | ||||||||
Furazolidone | 3 | 0 | - | - | - | - | - | |
Nitrofurantoin | 13 | 27.48 | 4.3785 | 94.3 | 85.483 | 9.93–56.53 | p < 0.001 | |
Others | ||||||||
Colistin | 11 | 5.95 | 6.5904 | 81.16 | 58.626 | 1.12–26.17 | p < 0.001 | |
Polymyxin | 3 | 8.86 | 9.0049 | 80.76 | 10.025 | 0.22–81.04 | p < 0.01 | |
Quinupristin | 1 | 0 | - | - | - | - | - | |
Trimethoprim | 8 | 0 | - | - | - | - | - | |
Tigecycline | 5 | 2.00 | 0.4398 | 19.85 | 4.364 | 0.53–6.98 | ns | |
Spectinomycin | 4 | 0 | - | - | - | - | - |
Antimicrobial Substance | Qbetween | p |
---|---|---|
Amikacin | 0.2224 | 0.637 |
Amoxicillin | 3.7010 | 0.054 A |
Amoxicillin–clavulanic acid | 0.4758 | 0.4903 |
Ampicillin | 1.5730 | 0.209 |
Azithromycin | 0.5495 | 0.459 |
Aztreonam | - | - B |
Ciprofloxacin | 6.6788 | 0.009 C |
Cefaclor | - | - B |
Cefepime | 0.0389 | 0.8437 |
Cephalothin | 0.5218 | 0.470 |
Cefazolin | 0.5143 | 0.473 |
Cefixime | - | - D |
Cefotaxime | 0.9410 | 0.332 |
Cefoxitin | 2.4960 | 0.114 |
Ceftiofur | 0.1048 | 0.746 |
Ceftriaxone | 1.1128 | 0.291 |
Ceftazidime | 0.1398 | 0.708 |
Cefuroxime | - | - B |
Clindamycin | 0.2772 | 0.598 |
Colistin | 1.0607 | 0.301 |
Chloramphenicol | 1.5414 | 0.214 |
Cloxacillin | - | - B |
Dalfopristin | - | - B |
Doxycycline | - | - D |
Ertapenem | - | - D |
Erythromycin | - | - D |
Enrofloxacin | 0.2229 | 0.636 |
Florfenicol | 1.2040 | 0.272 |
Fosfomycin | - | - B |
Furazolidone | - | - D |
Gentamicin | 9.2505 | 0.002 C |
Imipenem | 0.5650 | 0.452 |
Kanamycin | 3.8575 | 0.049 C |
Levofloxacin | - | - B |
Lincomycin | - | - B |
Linezolid | - | - D |
Mecillinam | - | - D |
Meropenem | - | - E |
Mezlocillin | - | - D |
Nalidixic acid | 4.6581 | 0.030 |
Norfloxacin | 0.1121 | 0.737 |
Neomycin | - | - D |
Netilmicin | - | - D |
Nitrofurantoin | 0.0003 | 0.986 |
Ofloxacin | - | - B |
Penicillin | - | - D |
Piperacillin | 0.2045 | 0.651 |
Polymyxin | 0.3233 | 0.569 |
Quinupristin | - | - B |
Trimethoprim-sulfamethoxazole | 4.5165 | 0.033 C |
Trimethoprim | 0.0167 | 0.897 |
Tigecycline | 0.1502 | 0.698 |
Ticarcillin | 0.3210 | 0.571 |
Tobramycin | - | - D |
Tetracycline | 1.4475 | 0.228 |
Tilmicosin | - | - D |
Spectinomycin | - | - D |
Streptomycin | 4.8390 | 0.027 C |
Sulfixoxazole | 0.0457 | 0.830 |
Sulfafurazole | - | - B |
Sulfamethoxazole | - | - B |
Sulfonamide | - | - B |
Antimicrobial Family | (a) | (b) | Observations | |
---|---|---|---|---|
Aminoglycosides | ||||
Amikacin 1,2,* | 5.06 | 1.13 | Commercialized exclusively for horses | |
Gentamicin 1,2,* | 8.62 | 8.82 | - | |
Kanamycin 1,2,* | 23.86 | 8.35 | - | |
Neomycin 1,2,* | 7.24 | 12.5 | - | |
Netilmicin 2 | - | - | - | |
Tobramycin 1 | 7.24 | - | Commercialized exclusively for cat and dogs | |
Streptomycin 1,2,* | 40.87 | 39.40 | - | |
Amphenicols | ||||
Florfenicol 1,* | 3.80 | - | - | |
Chloramphenicol 1,2,* | 12.23 | 14.47 | Not authorized in the EU for large and small ruminants | |
Carbapenems | ||||
Ertapenem 2 | 0.00 | - | - | |
Imipenem 2 | 1.01 | 0 | - | |
Meropenem 2 | 0.00 | 3.33 | - | |
Cephalosporins | ||||
Cefaclor 2 | 61.53 | - | - | |
Cephalothin 2,* | 22.79 | 4.53 | - | |
Cefazolin 1,2 | 2.10 | - | - | |
Cefixime 2 | 75.21 | 6.90 | - | |
Cefotaxime 2 | 2.73 | 5.84 | - | |
Cefoxitin 2 | 7.87 | - | ||
Ceftiofur 1,* | 7.24 | 9.27 | - | |
Ceftriaxone 2 | 6.47 | 6.08 | - | |
Ceftazidime 2 | 0.00 | 5.49 | - | |
Cefuroxime 2 | 5.88 | - | - | |
Cefepime 2 | - | 7.74 | - | |
Cefoperazone 1,2 | - | 6.3 | - | |
Quinolones | ||||
Ciprofloxacin 2 | 5.89 | 4.14 | - | |
Enrofloxacin 1,* | 9.97 | - | - | |
Levofloxacin 2 | 0.00 | 0.00 | - | |
Nalidixic acid 2 | 8.62 | 18.97 | - | |
Norfloxacin 1,2 | 6.53 | 0.00 | Not authorized in the EU for large and small ruminants | |
Ofloxacin 1,2 | 100 | 1.40 | Not authorized in the EU for large and small ruminants | |
Lincosamides | ||||
Clindamycin 1,2 | 1.72 | - | Commercialized exclusively for cat and dogs | |
Lincomycin 1,2 | 100 | - | - | |
Macrolides | ||||
Azithromycin 2 | 2.73 | 13.02 | - | |
Erythromycin 1,2 | 2.08 | - | - | |
Tilmicosin 1,2 | 0.00 | - | - | |
Oxazolidinone | ||||
Linezolid 2 | 0.00 | - | ||
Penicillins | ||||
Amoxicillin 1,2 | 14.55 | - | - | |
Amox-clav 1,2,* | 16.11 | - | - | |
Ampicillin 1,2,* | 30.49 | 38.97 | - | |
Aztreonam 2 | 0.00 | 8.60 | - | |
Mecillinam 2 | 3.13 | - | - | |
Cloxacillin 1,2 | 100 | - | - | |
Mezlocillin 2 | 0.00 | - | - | |
Piperacillin 2 | 6.23 | - | - | |
Ticarcillin 2 | 2.23 | 6.87 | - | |
Phosphonic antm. | ||||
Fosfomycin 2 | 0 | - | - | |
Sulfonamides | ||||
Tri-sulfa 1,2,* | 13.70 | 14.19 | - | |
Sulfisoxazole 2 | 16.9 | 44.07 | - | |
Sulphamtx 2 | 41.94 | - | - | |
Sulfonamide 2 | 17.67 | 47.43 | - | |
Tetracyclines | ||||
Doxycycline 1,2 | 2.46 | - | - | |
Tetracycline 1,2,* | 32.43 | 42.29 | - | |
Nitrofurans | ||||
Furazolidone 1,2 | 0.00 | 3.12 | Not authorized in the EU for large and small ruminants | |
Nitrofurantoin 2 | 27.48 | 33.56 | - | |
Others | ||||
Colistin 1,2 | 5.95 | 2.70 | - | |
Polymyxin 1,2 | 8.86 | - | Only authorized in the EU for sheep | |
Quinupristin 2 | 0.00 | - | - | |
Trimethoprim 1,2 | 0.00 | 23.38 | - | |
Tigecycline 2 | 2.00 | - | - | |
Spectinomycin 1,2 | 0.00 | 48.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Díez, J.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.; Saraiva, S.; Silva, F.; Saraiva, C.; Ausina, J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis. Vet. Sci. 2024, 11, 315. https://doi.org/10.3390/vetsci11070315
García-Díez J, Moura D, Grispoldi L, Cenci-Goga B, Saraiva S, Silva F, Saraiva C, Ausina J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis. Veterinary Sciences. 2024; 11(7):315. https://doi.org/10.3390/vetsci11070315
Chicago/Turabian StyleGarcía-Díez, Juan, Dina Moura, Luca Grispoldi, Beniamino Cenci-Goga, Sónia Saraiva, Filipe Silva, Cristina Saraiva, and Juan Ausina. 2024. "Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis" Veterinary Sciences 11, no. 7: 315. https://doi.org/10.3390/vetsci11070315
APA StyleGarcía-Díez, J., Moura, D., Grispoldi, L., Cenci-Goga, B., Saraiva, S., Silva, F., Saraiva, C., & Ausina, J. (2024). Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach—A Systematic Review and Meta-Analysis. Veterinary Sciences, 11(7), 315. https://doi.org/10.3390/vetsci11070315