Isolation, Genomic Characterization and Evolution of Six Porcine Rotavirus A Strains in a Pig Farming Group
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Background Information of Diarrheic Samples and Pathogens Detection
2.2. Cells, Virus Isolation and Immunofluorescence Assay (IFA)
2.3. RT–PCR Amplification, Genome Sequencing, and Genotyping
2.4. Homology Alignments and Phylogenetic Analysis of Each Segment
2.5. Recombination Analysis of Six Isolates
3. Results
3.1. Detection, Isolation, and Identification of PoRVA
3.2. Whole Genome Sequencing and Genotyping
3.3. Homology Alignments and Phylogenetic Analyses
3.4. Reassortment and Recombination Analysis among the Six Isolates
3.5. Neutralizing Epitope Analysis of VP7 and VP4
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rheingans, R.D.; Antil, L.; Dreibelbis, R.; Podewils, L.J.; Bresee, J.S.; Parashar, U.D. Economic costs of rotavirus gastroenteritis and cost–effectiveness of vaccination in developing countries. J. Infect. Dis. 2009, 200 (Suppl. S1), S16–S27. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Amimo, J.O.; Saif, L.J. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017, 9, 48. [Google Scholar] [CrossRef]
- Amimo, J.O.; El Zowalaty, M.E.; Githae, D.; Wamalwa, M.; Djikeng, A.; Nasrallah, G.K. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch. Virol. 2016, 161, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Theuns, S.; Vyt, P.; Desmarets, L.M.B.; Roukaerts, I.D.M.; Heylen, E.; Zeller, M.; Matthijnssens, J.; Nauwynck, H.J. Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Res. 2016, 213, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Amimo, J.O.; Otieno, T.F.; Okoth, E.; Onono, J.O.; Bett, B. Risk factors for rotavirus infection in pigs in Busia and Teso subcounties, Western Kenya. Trop. Anim. Health Prod. 2017, 49, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Chen, X.; Yan, G.; Chen, S.; Pan, J.; Zeng, M.; Han, H.; Guo, Y.; Zhang, H.; Li, J.; et al. Emergence of human–porcine reassortment G9P[19] porcine rotavirus A strain in Guangdong Province, China. Front. Vet. Sci. 2022, 9, 1111919. [Google Scholar] [CrossRef]
- Wu, F.T.; Liu, L.T.; Jiang, B.; Kuo, T.Y.; Wu, C.Y.; Liao, M.H. Prevalence and diversity of rotavirus A in pigs: Evidence for a possible reservoir in human infection. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2022, 98, 105198. [Google Scholar] [CrossRef]
- Marthaler, D.; Homwong, N.; Rossow, K.; Culhane, M.; Goyal, S.; Collins, J.; Matthijnssens, J.; Ciarlet, M. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT–qPCR in diagnostic samples. J. Virol. Methods 2014, 209, 30–34. [Google Scholar] [CrossRef]
- Xue, R.; Tian, Y.; Zhang, Y.; Zhang, M.; Li, Z.; Chen, S.; Liu, Q. Diversity of group A rotavirus of porcine rotavirus in Shandong province China. Acta Virol. 2018, 62, 229–234. [Google Scholar] [CrossRef]
- Tao, R.; Chang, X.; Zhou, J.; Zhu, X.; Yang, S.; Li, K.; Gu, L.; Zhang, X.; Li, B. Molecular epidemiological investigation of group A porcine rotavirus in East China. Front. Vet. Sci. 2023, 10, 1138419. [Google Scholar] [CrossRef]
- Qiao, M.; Li, M.; Li, Y.; Wang, Z.; Hu, Z.; Qing, J.; Huang, J.; Jiang, J.; Jiang, Y.; Zhang, J.; et al. Recent Molecular Characterization of Porcine Rotaviruses Detected in China and Their Phylogenetic Relationships with Human Rotaviruses. Viruses 2024, 16, 453. [Google Scholar] [CrossRef] [PubMed]
- Bohl, E.H.; Theil, K.W.; Saif, L.J. Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses. J. Clin. Microbiol. 1984, 19, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Maes, P.; Matthijnssens, J.; Rahman, M.; Van Ranst, M. RotaC: A web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol. 2009, 9, 238. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; Rahman, M.; Attoui, H.; Bányai, K.; Estes, M.K.; Gentsch, J.R.; Iturriza-Gómara, M.; Kirkwood, C.D.; Martella, V.; et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008, 153, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.; Greenberg, H. Fields Virology, 6th ed.; Wolters Kluwer: Alphenaar, The Nertherland, 2013. [Google Scholar]
- Ren, X.; Saleem, W.; Haes, R.; Xie, J.; Theuns, S.; Nauwynck, H.J. Milk lactose protects against porcine group A rotavirus infection. Front. Microbiol. 2022, 13, 989242. [Google Scholar] [CrossRef] [PubMed]
- Murao, L.A.E.; Bacus, M.G.; Junsay, N.X.T.; Albarillo, D.L.D.; Otero, M.C.B.; Buenaventura, S.G.C.; Ligue, K.D.B.; Alviola, P.A.t. Spatiotemporal dynamics and risk factors of rotavirus A circulation in backyard pig farms in a Philippine setting. Trop. Anim. Health Prod. 2019, 51, 929–937. [Google Scholar] [CrossRef]
- Dall Agnol, A.M.; Guimarães, N.S.; Leme, R.A.; da Costa, A.R.; Alfieri, A.F.; Alfieri, A.A. The vaccination changed the profile of rotavirus infection with the increase of non-rotavirus A species diagnosis in one-week-old diarrheic piglets. Braz. J. Microbiol. [Publ. Braz. Soc. Microbiol.] 2024, 55, 991–996. [Google Scholar] [CrossRef]
- Odagiri, K.; Yoshizawa, N.; Sakihara, H.; Umeda, K.; Rahman, S.; Nguyen, S.V.; Suzuki, T. Development of Genotype-Specific Anti–Bovine Rotavirus A Immunoglobulin Yolk Based on a Current Molecular Epidemiological Analysis of Bovine Rotaviruses A Collected in Japan during 2017–2020. Viruses 2020, 12, 1386. [Google Scholar] [CrossRef]
- Gao, L.; Shen, H.; Zhao, S.; Chen, S.; Zhu, P.; Lin, W.; Chen, F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Rotavirus Strain. Viruses 2023, 16, 21. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Ge, X.; Guo, X.; Han, J.; Yang, H. Evolutionary analysis of six isolates of porcine reproductive and respiratory syndrome virus from a single pig farm: MLV-evolved and recombinant viruses. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2018, 66, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Pan, Y.; Gong, L.; Guo, L.; Wu, L.; Jing, Z.; Zhang, G.; Tian, J.; Feng, L. Full genome characterization of a human-porcine reassortment G12P[7] rotavirus and its pathogenicity in piglets. Transbound. Emerg. Dis. 2022, 69, 3506–3517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qu, X.; Zhang, H.; Tang, X.; Bian, T.; Sun, Y.; Zhou, M.; Ren, F.; Wu, P. Evolutionary and recombination analysis of porcine reproductive and respiratory syndrome isolates in China. Virus Genes 2020, 56, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Nichols, S.L.; Nilsson, E.M.; Brown–Harding, H.; LaConte, L.E.W.; Acker, J.; Borodavka, A.; McDonald Esstman, S. Flexibility of the Rotavirus NSP2 C–Terminal Region Supports Factory Formation via Liquid–Liquid Phase Separation. J. Virol. 2023, 97, e0003923. [Google Scholar] [CrossRef]
- Vetter, J.; Papa, G.; Tobler, K.; Rodriguez, J.M.; Kley, M.; Myers, M.; Wiesendanger, M.; Schraner, E.M.; Luque, D.; Burrone, O.R.; et al. The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication. mBio 2024, 15, e0049924. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhu, X.; Bian, X.; Han, N.; Fan, B.; Gu, L.; Cheng, X.; Li, S.; Tao, R.; et al. Isolation and characterization of a G9P[23] porcine rotavirus strain AHFY2022 in China. Microb. Pathog. 2024, 190, 106612. [Google Scholar] [CrossRef]
- Reslan, L.; Mishra, N.; Finianos, M.; Zakka, K.; Azakir, A.; Guo, C.; Thakka, R.; Dbaibo, G.; Lipkin, W.I.; Zaraket, H. The origins of G12P[6] rotavirus strains detected in Lebanon. J. Gen. Virol. 2021, 102, 001535. [Google Scholar] [CrossRef]
- Yan, N.; Yue, H.; Wang, Y.; Zhang, B.; Tang, C. Genomic analysis reveals G3P[13] porcine rotavirus A interspecific transmission to human from pigs in a swine farm with diarrhoea outbreak. J. Gen. Virol. 2021, 102, 001532. [Google Scholar] [CrossRef]
- Parra, G.I.; Bok, K.; Martínez, M.; Gomez, J.A. Evidence of rotavirus intragenic recombination between two sublineages of the same genotype. J. Gen. Virol. 2004, 85, 1713–1716. [Google Scholar] [CrossRef]
- Hoxie, I.; Dennehy, J.J. Intragenic recombination influences rotavirus diversity and evolution. Virus Evol. 2020, 6, vez059. [Google Scholar] [CrossRef]
- Yim-Im, W.; Anderson, T.K.; Paploski, I.A.D.; VanderWaal, K.; Gauger, P.; Krueger, K.; Shi, M.; Main, R.; Zhang, J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol. Spectr. 2023, 11, e0291623. [Google Scholar] [CrossRef] [PubMed]
Farm | Sampling Time | Isolates | Genotypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VP7 | VP4 | VP6 | VP1 | VP2 | VP3 | NSP1 | NSP2 | NSP3 | NSP4 | NSP5 | |||
A | March 2023 | AHBZ2303 | G11 | P[7] | I5 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 |
May 2023 | AHBZ2305 | G9 | P[23] | I5 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 | |
B | April 2023 | AHBZ2304 | G9 | P[23] | I5 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 |
December 2023 | AHBZ2312 | G4 | P[6] | I1 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 | |
C | October 2023 | AHBZ2310 | G9 | P[23] | I5 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 |
February 2024 | AHBZ2402 | G5 | P[23] | I5 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 |
Gene | Closest Strain (Host, Name, Identity) | |||||
---|---|---|---|---|---|---|
Farm A | Farm B | Farm C | ||||
AHBZ2303 | AHBZ2305 | AHBZ2304 | AHBZ2312 | AHBZ2310 | AHBZ2402 | |
VP7 | Porcine ZJhz13–3 94.47% | Porcine HuNan–4RV 99.08% | Porcine HuNan–4RV 98.06% | Porcine HuNan–4RV 97.86% | Porcine HuNan–4RV 97.86% | Porcine DB/BL/2306221 98.06% |
VP4 | Porcine YT 97.89% | Porcine HLJ/15/1 95.59% | Porcine HLJ/15/1 95.59% | Porcine GUB88 95.81% | Porcine HLJ/15/1 95.80% | Porcine AHFY2022 97.34% |
VP6 | Porcine JN–1 98.43% | Porcine LH9 99.25% | Porcine LH9 99.25% | Porcine DY 97.91% | Porcine LB2 96.57% | Porcine GL 99.75% |
VP1 | Human E931 97.35% | Porcine SWU–1C 97.12% | Porcine SWU–1C 99.06% | Porcine H14020027 95.62% | Human E931 97.22% | Porcine S143 97.92% |
VP2 | Porcine SD–1 96.07% | Porcine SD–1 95.92% | Porcine SD–1 95.92% | Porcine AHFY2022 97.04% | Porcine SD–1 96.26% | Porcine JSJR2023 97.42% |
VP3 | Human R946 96.45% | Porcine SCJY–11 96.61% | Porcine SCJY–11 96.61% | Porcine SCJY–11 96.97% | Porcine SCJY–11 96.97% | Human NT0042 97.33% |
NSP1 | Porcine FX17 97.72% | Porcine SD–1 98.15% | Porcine SD–1 98.15% | Porcine SD–1 97.34% | Porcine SD–1 98.29% | Porcine 14150_53 94.39% |
NSP2 | Porcine 12070_4 97.60% | Human RVN17.0271 98.11% | Human RVN17.0271 98.11% | Human DPRU1554 98.01% | Human RVN17.0271 98.11% | Porcine SD–1 98.43% |
NSP3 | Porcine IP058 97.75% | Porcine GL 97.56% | Porcine GL 97.56% | Porcine GL 97.66% | Porcine GL 97.88% | Porcine SD–1 97.32% |
NSP4 | Human R479 94.80% | Porcine SCMY–A3 96.40% | Porcine SCMY–A3 96.40% | Porcine HLJ/15/1 95.64% | Porcine SCMY–A3 96.40% | Porcine HLJ/15/1 96.78% |
NSP5 | Porcine CN1P7 98.23% | Human LL3354 98.48% | Human LL3354 98.48% | Human LL3354 98.15% | Human LL3354 98.48% | Porcine SD–1 98.82% |
Farm | Query Strain | Pairwise % Identity (Nucleotide, Amino Acid) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VP7 | VP4 | VP6 | VP1 | VP2 | VP3 | NSP1 | NSP2 | NSP3 | NSP4 | NSP5 | ||
A | AHBZ2303 | 75.4 | 73.9 | 90.5 | 96.6 | 99.3 | 84.8 | 99.9 | 99.9 | 99.6 | 98.1 | 100 |
AHBZ2305 | 84.4 | 81.1 | 98.0 | 97.5 | 98.8 | 93.4 | 99.8 | 100 | 99.4 | 98.9 | 100 | |
B | AHBZ2304 | 76.6 | 66.3 | 82.6 | 93.3 | 87.2 | 99.8 | 98.6 | 89.6 | 99.8 | 91.1 | 99.7 |
AHBZ2312 | 80.4 | 62.4 | 94.7 | 99.0 | 97.5 | 99.8 | 96.9 | 96.2 | 100 | 95.5 | 100 | |
C | AHBZ2310 | 77.8 | 92.4 | 88.1 | 86.5 | 96.9 | 86.5 | 82.0 | 93.7 | 96.1 | 89.2 | 97.1 |
AHBZ2402 | 83.5 | 96.8 | 96.5 | 96.8 | 99.0 | 94.0 | 82.1 | 95.3 | 99.4 | 97.2 | 99.5 |
Query Strain | Potential Parental Strain | Pairwise % Identity (Nucleotide, Amino Acid) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VP7 | VP4 | VP6 | VP1 | VP2 | VP3 | NSP1 | NSP2 | NSP3 | NSP4 | NSP5 | ||
AHBZ2305 | AHBZ2303 | 75.4 | 73.9 | 90.5 | 96.6 | 99.3 | 84.8 | 99.9 | 99.9 | 99.6 | 98.1 | 100 |
AHBZ2304 | 98.3 | 99.8 | 96.0 | 96.6 | 99.3 | 99.7 | 99.9 | 99.9 | 99.7 | 100 | 100 | |
AHBZ2310 | AHBZ2304 | 98.5 | 99.8 | 99.3 | 100 | 99.9 | 99.8 | 99.7 | 100 | 100 | 100 | 100 |
AHBZ2305 | 99.8 | 99.7 | 95.6 | 96.6 | 99.2 | 99.7 | 99.7 | 99.9 | 99.7 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wu, C.; Chen, Y.; Li, Y.; Li, D.; Wang, W.; Wen, W.; Zhu, Z.; Li, X. Isolation, Genomic Characterization and Evolution of Six Porcine Rotavirus A Strains in a Pig Farming Group. Vet. Sci. 2024, 11, 436. https://doi.org/10.3390/vetsci11090436
Zhang Z, Wu C, Chen Y, Li Y, Li D, Wang W, Wen W, Zhu Z, Li X. Isolation, Genomic Characterization and Evolution of Six Porcine Rotavirus A Strains in a Pig Farming Group. Veterinary Sciences. 2024; 11(9):436. https://doi.org/10.3390/vetsci11090436
Chicago/Turabian StyleZhang, Zhendong, Chengyue Wu, Yue Chen, Yubo Li, Duo Li, Wenqiang Wang, Wei Wen, Zhenbang Zhu, and Xiangdong Li. 2024. "Isolation, Genomic Characterization and Evolution of Six Porcine Rotavirus A Strains in a Pig Farming Group" Veterinary Sciences 11, no. 9: 436. https://doi.org/10.3390/vetsci11090436
APA StyleZhang, Z., Wu, C., Chen, Y., Li, Y., Li, D., Wang, W., Wen, W., Zhu, Z., & Li, X. (2024). Isolation, Genomic Characterization and Evolution of Six Porcine Rotavirus A Strains in a Pig Farming Group. Veterinary Sciences, 11(9), 436. https://doi.org/10.3390/vetsci11090436