Administration of a Recombinant Fusion Protein of IFN-γ and CD154 Inhibited the Infection of Chicks with Salmonella enterica
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Expression Vectors, Bacteria, and Animals
2.2. Expression of Recombinant Proteins
2.3. Animal Experiments
2.4. Collection of Samples
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Measurement of Secretory IgA (sIgA)
2.7. Determination of S. Typhimurium Numbers in Feces and Internal Organs
2.8. RNA Extraction and Determination of Relative RNA Expression by Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.9. Western Blot Protein Assay
2.10. Histopathological Examination
2.11. 16S rRNA Gene Sequencing Analyses
2.12. Cecal Tissue Transcriptome Profiling
2.13. Statistical Analyses
3. Results
3.1. Expression of Recombinant Proteins
3.2. ChIFN-γ-chCD154 Pretreatment Mitigated S. Typhimurium Infection in Chickens
3.3. ChIFN-γ-chCD154 Pretreatment Attenuated Inflammation in the S. Typhimurium-Infected Chickens
3.4. ChIFN-γ-chCD154 Pretreatment Increased the Humoral Immune Response in S. Typhimurium-Infected Chickens
3.5. ChIFN-γ-chCD154 Pretreatment Reshaped the S. Typhimurium-Induced Intestinal Microbiota
3.6. ChIFN-γ-chCD154 Pretreatment Altered the Transcriptome of Cecal Tissues in S. Typhimurium-Infected Chickens
3.7. ChIFN-γ-chCD154 Pretreatment Suppressed the NF-κB Signaling Pathway to Reduce the Chicken Intestinal Inflammation Induced by S. Typhimurium
3.8. ChIFN-γ-chCD154 Pretreatment Promoted the IFN-Induced JAK/STAT1/IRF1/GBP1 Axis in the Cecum of Infected Chickens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galán, J.E. Salmonella Typhimurium and Inflammation: A Pathogen-Centric Affair. Nat. Rev. Microbiol. 2021, 19, 716–725. [Google Scholar] [CrossRef]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Zhou, A.; Li, J.; Xu, Z.; Ni, J.; Guo, J.; Yao, Y.-F.; Wu, W. Whole-Genome Comparative and Pathogenicity Analysis of Salmonella Enterica Subsp. Enterica Serovar Rissen. G3 Genes Genomes Genet. 2020, 10, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.T.; Fong, L.Y.; Abdullah, M.N.H. Interferon-Gamma (IFN-γ): Reviewing Its Mechanisms and Signaling Pathways on the Regulation of Endothelial Barrier Function. Cytokine 2023, 166, 156208. [Google Scholar] [CrossRef]
- Díaz, Á.; González-Alayón, I.; Pérez-Torrado, V.; Suárez-Martins, M. CD40-CD154: A Perspective from Type 2 Immunity. Semin. Immunol. 2021, 53, 101528. [Google Scholar] [CrossRef] [PubMed]
- Al-Ojali, S.M.; Moore, C.B.T.; Fernandez-Cabezudo, M.J.; Al-Ramadi, B.K. Enhancement of the Anti-Salmonella Immune Response in CD154-Deficient Mice by an Attenuated, IFN-γ-Expressing, Strain of Salmonella Enterica Serovar Typhimurium. Microb. Pathog. 2012, 52, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Dolowschiak, T.; Mueller, A.A.; Pisan, L.J.; Feigelman, R.; Felmy, B.; Sellin, M.E.; Namineni, S.; Nguyen, B.D.; Wotzka, S.Y.; Heikenwalder, M. IFN-γ Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection. Cell Host Microbe 2016, 20, 238–249. [Google Scholar] [CrossRef] [PubMed]
- França, T.T.; Barreiros, L.A.; Al-Ramadi, B.K.; Ochs, H.D.; Cabral-Marques, O.; Condino-Neto, A. CD40 Ligand Deficiency: Treatment Strategies and Novel Therapeutic Perspectives. Expert Rev. Clin. Immunol. 2019, 15, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.; Ohno, H.; Satoh-Takayama, N. Innate Lymphoid Cells: Important Regulators of Host–Bacteria Interaction for Border Defense. Microorganisms 2020, 8, 1342. [Google Scholar] [CrossRef]
- Klug-Micu, G.M.; Stenger, S.; Sommer, A.; Liu, P.T.; Krutzik, S.R.; Modlin, R.L.; Fabri, M. CD40 Ligand and Interferon-γ Induce an Antimicrobial Response against M Ycobacterium Tuberculosis in Human Monocytes. Immunology 2013, 139, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology. Cell Host Microbe 2023, 31, 173–186. [Google Scholar] [CrossRef]
- Huang, A.; Ji, L.; Li, Y.; Li, Y.; Yu, Q. Gut Microbiome Plays a Vital Role in Post-Stroke Injury Repair by Mediating Neuroinflammation. Int. Immunopharmacol. 2023, 118, 110126. [Google Scholar] [CrossRef]
- Maciel-Fiuza, M.F.; Muller, G.C.; Campos, D.M.S.; do Socorro Silva Costa, P.; Veit, T.; Vianna, F.S.L. Role of Gut Microbiota in Infectious and Inflammatory Diseases. Front. Microbiol. 2023, 14, 1098386. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.I.; de Llanos Frutos, R.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe 2008, 4, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Endt, K.; Stecher, B.; Chaffron, S.; Slack, E.; Tchitchek, N.; Benecke, A.; Van Maele, L.; Sirard, J.-C.; Mueller, A.J.; Heikenwalder, M. The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea. PLoS Pathog. 2010, 6, e1001097. [Google Scholar] [CrossRef]
- Pfefferle, P.I.; Renz, H. The Mucosal Microbiome in Shaping Health and Disease. F1000Prime Rep. 2014, 6, 11. [Google Scholar] [CrossRef]
- Lu, R.-Y.; Yang, W.-X.; Hu, Y.-J. The Role of Epithelial Tight Junctions Involved in Pathogen Infections. Mol. Biol. Rep. 2014, 41, 6591–6610. [Google Scholar] [CrossRef]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, H.; Lee, J.-H.; Hwangbo, C. Toll-like Receptor 4 (TLR4): New Insight Immune and Aging. Immun. Ageing. 2023, 20, 67. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef]
- Saikh, K.U.; Anam, K.; Sultana, H.; Ahmed, R.; Kumar, S.; Srinivasan, S.; Ahmed, H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int. J. Mol. Sci. 2024, 25, 8421. [Google Scholar] [CrossRef] [PubMed]
- Changle, Z.; Cuiling, F.; Feng, F.; Xiaoqin, Y.; Guishu, W.; Liangtian, S.; Jiakun, Z. Baicalin Inhibits Inflammation of Lipopolysaccharide-Induced Acute Lung Injury Toll like Receptor-4/Myeloid Differentiation Primary Response 88/Nuclear Factor-Kappa B Signaling Pathway. J. Tradit. Chinese Med. = Chung i tsa chih ying wen pan 2022, 42, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Seibert, S.A.; Mex, P.; Köhler, A.; Kaufmann, S.H.E.; Mittrücker, H.-W. TLR2-, TLR4- and Myd88-Independent Acquired Humoral and Cellular Immunity against Salmonella Enterica Serovar Typhimurium. Immunol. Lett. 2010, 127, 126–134. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Jin, Z.; Liu, F.; Li, X.; Zhang, X.; Bai, X.; Jia, Q.; Zhu, B.; Chu, Q. IFN-α/β/IFN-γ/IL-15 Pathways Identify GBP1-Expressing Tumors with an Immune-Responsive Phenotype. Clin. Exp. Med. 2024, 24, 102. [Google Scholar] [CrossRef] [PubMed]
- Zangari, T.; Zafar, M.A.; Lees, J.A.; Abruzzo, A.R.; Bee, G.C.W.; Weiser, J.N. Pneumococcal Capsule Blocks Protection by Immunization with Conserved Surface Proteins. npj Vaccines 2021, 6, 155. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, S.; Tian, Q.; Peng, W.; Tao, Y.; Bo, R.; Liu, M.; Li, J. Eugenol Exposure in Vitro Inhibits the Expressions of T3SS and TIF Virulence Genes in Salmonella Typhimurium and Reduces Its Pathogenicity to Chickens. Microb. Pathog. 2022, 162, 105314. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, W.H.; Lee, S.J.; Lillehoj, H.S. Detection of chicken interleukin-10 production in intestinal epithelial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA. Vet. Immunol. Immunopathol. 2018, 204, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, F.; Yin, H.; He, Q.; Lu, Y.; Zhu, Q.; Lan, X.; Zhao, X.; Li, D.; Liu, Y.; et al. Chicken Interferon Regulatory Factor 7 (IRF7) Can Control ALV-J Virus Infection by Triggering Type I Interferon Production through Affecting Genes Related with Innate Immune Signaling Pathway. Dev. Comp. Immunol. 2021, 119, 104026. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Gu, K.; Wen, R.; Li, C.; Zhou, C.; Zhao, Y.; Li, H.; Lei, C.; Yang, X.; Wang, H. Guanylate-binding protein 1 restricts avian coronavirus infectious bronchitis virus-infected HD11 cells. Poult. Sci. 2023, 102, 102398. [Google Scholar] [CrossRef]
- Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1463–1482. [Google Scholar] [CrossRef]
- Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Mackiewicz, A.; Schmidt, M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int. J. Mol. Sci. 2020, 21, 9254. [Google Scholar] [CrossRef]
- Li, Y.; Jin, L.; Chen, T. The Effects of Secretory IgA in the Mucosal Immune System. Biomed Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef]
- Kaminsky, L.W.; Al-Sadi, R.; Ma, T.Y. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front. Immunol. 2021, 12, 767456. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.Y.; Clark, E.A. The Role of CD40 and CD154/CD40L in Dendritic Cells. Semin. Immunol. 2009, 21, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Moschonas, A.; Kouraki, M.; Knox, P.G.; Thymiakou, E.; Kardassis, D.; Eliopoulos, A.G. CD40 Induces Antigen Transporter and Immunoproteasome Gene Expression in Carcinomas via the Coordinated Action of NF-KappaB and of NF-KappaB-Mediated de Novo Synthesis of IRF-1. Mol. Cell. Biol. 2008, 28, 6208–6222. [Google Scholar] [CrossRef] [PubMed]
- Schelle, L.; Côrte-Real, J.V.; Esteves, P.J.; Abrantes, J.; Baldauf, H.-M. Functional Cross-Species Conservation of Guanylate-Binding Proteins in Innate Immunity. Med. Microbiol. Immunol. 2023, 212, 141–152. [Google Scholar] [CrossRef]
- Johns, C.E.; Galam, L. Guanylate Binding Protein 1 (GBP1): A Key Protein in Inflammatory Pyroptosis. Cell Biochem. Biophys. 2022, 80, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Videnska, P.; Faldynova, M.; Juricova, H.; Babak, V.; Sisak, F.; Havlickova, H.; Rychlik, I. Chicken Faecal Microbiota and Disturbances Induced by Single or Repeated Therapy with Tetracycline and Streptomycin. BMC Vet. Res. 2013, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Boerlin, P.; Nicholson, V.; Brash, M.; Slavic, D.; Boyen, F.; Sanei, B.; Butaye, P. Diversity of Enterococcus cecorum from chickens. Vet. Microbiol. 2012, 157, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Yuan, L.; Deng, J.; Yang, Q. Lactobacillus Protects the Integrity of Intestinal Epithelial Barrier Damaged by Pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2015, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Massimiliano, L.; Bonvini, B.; Penna, G.; Giraffa, G.; Rescigno, M. Functional characterization and immunomodulatory properties of Lactobacillus helveticus strains isolated from Italian hard cheeses. PLoS ONE 2021, 16, e0245903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldwin, S.; Hughes, R.J.; Hao Van, T.T.; Moore, R.J.; Stanley, D. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE 2018, 3, 23. [Google Scholar] [CrossRef]
- Li, W.; Zhang, K.; Yang, H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. J. Agric. Food Chem. 2018, 66, 8015–8025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mahmood, T.; Tang, Z.; Wu, Y.; Yuan, J. Effects of Naturally Oxidized Corn Oil on Inflammatory Reaction and Intestinal Health of Broilers. Poult. Sci. 2022, 101, 101541. [Google Scholar] [CrossRef] [PubMed]
Name | Primer (5′-3′) |
---|---|
IFN-γ F | 5′-GAGAGCTCGGTACCCTCGAGATGCATACTGCAAGTAGTCT-3′ |
IFN-γ R | 5′-ATCTAGACTGCAGGTCGACAAGCTTAGAACCACCGGATCCGAGATTGTCGACGCAATTGC-3′ |
CD154 F | 5′-GAGAGCTCGGTACCCTCGAGATGAATGAAGCCTACAGCCC-3′ |
CD154 R | 5′-TATCTAGACTGCAGGTCGACAGAACCACCGGATCCCTACAGCTTGAACATGCCAA-3′ |
IFN-CD154 F | 5′-ATCTCGGATCCGGTGGTTCTATGAATGAAGCCTACAGCCC-3′ |
IFN-CD154 R | 5′-TTTTAAGCAGAGATTACCTACTACAGCTTGAACATGCCAA-3′ |
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Reference |
---|---|---|---|
TLR4 | TGCCATCCCAACCAACCACACACAG | ACACCCACTGAGCAGCACCAA | [27] |
MyD88 | AGAAGGTGTCGGAGGATGGTG | GGGCTCCAAATGCTGACTGC | |
IL-1β | GGTCAACATCGCCACCTACA | CATACGAGATGGAAACCAGCAA | |
TNF-α | AGATGGGAAGGGAATGAACC | TCAGACATCAAACGCAAAAG | |
IL-6 | CAAGGTGACGGAGGAGGAC | TGGCGAGGAGGGATTTCT | [28] |
zo-1 | TAAAGCCATTCCTGTAAGCC | AAGCATCCTCTTCAAAGTCTG | |
Claudin-1 | CTGATTGCTTCCAACCAG | ATTGATGGTGGCTGTAAAGAG | |
Occludin | TCATCGCCTCCATCGTCTAC | GCACAAAGATCTCCCAGGTC | |
β-actin | CCACCGCAAATGCTTCTAAAC | AAGACTGCTGCTGACACCTTC | |
NF-κB | ACCCCTTCAATGTGCCAATG | TCAGCCCAGAAACGAACCTC | |
STAT1 | CGTATCTTTTGCTACAGTGCT | TTTGCTTTTCCTTATGTTGTG | [29] |
IRF1 | CCTGACATTGAAGAAGTGAAG | TCTGCTGACTCCTCCATC | |
GBP1 | AAGTCCTTCCTGATGAACC | CTTGGTCTCCGCATACAC | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ren, G.; Li, W.; Xie, H.; Yang, Z.; Wang, J.; Zhou, Y.; Wang, X. Administration of a Recombinant Fusion Protein of IFN-γ and CD154 Inhibited the Infection of Chicks with Salmonella enterica. Vet. Sci. 2025, 12, 112. https://doi.org/10.3390/vetsci12020112
Zhang J, Ren G, Li W, Xie H, Yang Z, Wang J, Zhou Y, Wang X. Administration of a Recombinant Fusion Protein of IFN-γ and CD154 Inhibited the Infection of Chicks with Salmonella enterica. Veterinary Sciences. 2025; 12(2):112. https://doi.org/10.3390/vetsci12020112
Chicago/Turabian StyleZhang, Jingya, Guofan Ren, Wei Li, Honglin Xie, Zengqi Yang, Juan Wang, Yefei Zhou, and Xinglong Wang. 2025. "Administration of a Recombinant Fusion Protein of IFN-γ and CD154 Inhibited the Infection of Chicks with Salmonella enterica" Veterinary Sciences 12, no. 2: 112. https://doi.org/10.3390/vetsci12020112
APA StyleZhang, J., Ren, G., Li, W., Xie, H., Yang, Z., Wang, J., Zhou, Y., & Wang, X. (2025). Administration of a Recombinant Fusion Protein of IFN-γ and CD154 Inhibited the Infection of Chicks with Salmonella enterica. Veterinary Sciences, 12(2), 112. https://doi.org/10.3390/vetsci12020112