Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management
Simple Summary
Abstract
1. Introduction
1.1. Ticks and Their Importance as Vectors of Human and Animal Diseases
1.2. The Economic Impact of Ticks and Tick-Borne Diseases
1.2.1. Direct Economic Losses from Ticks and TBDs
1.2.2. Indirect Economic Costs
1.3. Tick Life Cycles
1.3.1. Hard Ticks (Ixodidae)
1.3.2. Soft Ticks (Argasidae)
1.3.3. Host Utilization Strategies
1.4. Host Specificity and Implications for Pathogen Transmission
2. Chemical Control
2.1. Methods of Acaricide Application
2.2. Repellents
2.2.1. DEET (N,N-Diethyl-meta-toluamide)
2.2.2. Picaridin
2.2.3. IR3535 (Ethyl Butylacetylaminopropionate)
2.2.4. Botanical Repellents
2.3. Environmental Chemical Treatments
2.4. Challenges to Chemical Control
2.4.1. Resistance
2.4.2. Environmental Toxicity
2.4.3. Non-Target Impacts
2.4.4. Impact of Environment on the Efficacy of Chemicals
3. Biological Control
3.1. Biological Control Agents for Tick Management
3.2. Challenges and Considerations
4. Physical Control
Habitat Management Strategies and Natural Tick Repellents
5. Mechanical Control
5.1. Manual Removal, Tick Traps, and Host Grooming
5.2. Livestock Rotation and Restricting Host Access
6. Molecular Control
7. Vaccination
Challenges in Vaccination
8. Novel Strategies
9. Integrated Control Approaches
9.1. The Role of Integrated Pest Management (IPM)
9.2. Success Stories in Integrated Tick Management
9.3. Challenges in Implementing IPM
Socio-Economic Constraints
10. Conclusions
11. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int. J. Parasitol. Parasites Wildl. 2015, 4, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Dibernardo, A.; Koffi, J.; Wood, H.; Leighton, P.A.; Lindsay, L.R. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 2019, 45, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Eisen, L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef]
- Eisen, R.J.; Eisen, L.; Ogden, N.H.; Beard, C.B. Linkages of Weather and Climate with Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America. J. Med. Entomol. 2016, 53, 250–261. [Google Scholar] [CrossRef]
- Meneghi, D.D.; Stachurski, F.; Adakal, H. Experiences in Tick Control by Acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Front. Public Health 2016, 4, 239. [Google Scholar] [CrossRef]
- Lyons, L.A.; Mateus-Pinilla, N.E.; Smith, R.L. Effects of Tick Surveillance Education on Knowledge, Attitudes, and Practices of Local Health Department Employees. BMC Public Health 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Vilibić-Čavlek, T.; Bogdanić, M.; Savić, V.; Barbić, L.; Stevanović, V.; Kaić, B. Tick-borne human diseases around the globe. In The TBE Book, 7th ed.; Global Health Press: Singapore, 2024. [Google Scholar]
- Yu, Z.; Wang, H.; Wang, T.; Sun, W.; Yang, X.; Liu, J. Tick-borne pathogens and the vector potential of ticks in China. Parasites Vectors 2015, 8, 24. [Google Scholar] [CrossRef]
- Rochlin, I.; Toledo, A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Peter, R.; Van den Bossche, P.; Penzhorn, B.L.; Sharp, B. Tick, fly, and mosquito control—Lessons from the past, solutions for the future. Vet. Parasitol. 2005, 132, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Ahmed, H.; Afzal, M.S.; Khan, M.R.; Birtles, R.J.; Oliver, J.D. Epidemiology, Distribution and Identification of Ticks on Livestock in Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 3024. [Google Scholar] [CrossRef] [PubMed]
- Stull, J.W.; Brophy, J.; Weese, J. Reducing the risk of pet-associated zoonotic infections. CMAJ 2015, 187, 736–743. [Google Scholar] [CrossRef]
- Pegram, R.; Tatchell, R.; De Castro, J.; Chizyuka, H.; Creek, M.; McCosker, P.; Moran, M.; Nigarura, G. Tick control: New concepts. World Anim. Rev. 1993, 74, 2–11. [Google Scholar]
- Kasaija, P.D.; Estrada-Peña, A.; Contreras, M.; Kirunda, H.; de la Fuente, J. Cattle ticks and tick-borne diseases: A review of Uganda’s situation. Ticks Tick-Borne Dis. 2021, 12, 101756. [Google Scholar] [CrossRef]
- Coetzer, J.A.W.; Thomson, G.; Tustin, R.C. Infectious Diseases of Livestock with Special Reference to Southern Africa; Oxford University Press: Cape Town, South Africa, 1994; Volume 2. [Google Scholar]
- Hadush, A. Review on the Impact of Ticks on Livestock Health and Productivity. J. Biol. Agric. Healthc. 2016, 6, 1–7. [Google Scholar]
- Bram, R.A. Tick-borne livestock diseases and their vectors. FAO Anim. Prod. Health Pap. 1983, 36. Available online: https://www.fao.org/4/x6538e/X6538E02.htm (accessed on 1 December 2024).
- Manzano-Román, R.; Díaz-Martín, V.; Pérez-Sánchez, R. Garrapatas: Características Anatómicas, Epidemiológicas y Ciclo Vital. Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC): Salamanca, España. Available online: https://www.portalveterinaria.com/rumiantes/articulos/9325/garrapatas-caracteristicas-anatomicas-epidemiologicas-y-ciclo-vital.html (accessed on 1 December 2024).
- Luan, Y.; Gou, J.-m.; Zhong, D.; Ma, L.; Yin, C.; Shu, M.; Liu, G.; Lin, Q. The Tick-Borne Pathogens: An Overview of China’s Situation. Acta Parasitol. 2023, 68, 1–20. [Google Scholar] [CrossRef]
- Garcia, K.; Weakley, M.; Do, T.; Mir, S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet. Sci. 2022, 9, 241. [Google Scholar] [CrossRef]
- Obaid, M.K.; Islam, N.; Alouffi, A.; Khan, A.Z.; da Silva Vaz, I., Jr.; Tanaka, T.; Ali, A. Acaricide Resistance in Ticks: Selection, Diagnosis, Mechanisms, and Mitigation. Front. Cell Infect. Microbiol. 2022, 12, 941831. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, M.S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Slunge, D.; Boman, A. Learning to live with ticks? The role of exposure and risk perceptions in protective behaviour against tick-borne diseases. PLoS ONE 2018, 13, e0198286. [Google Scholar] [CrossRef] [PubMed]
- Cuadera, M.K.Q.; Mader, E.M.; Safi, A.G.; Harrington, L.C. Knowledge, attitudes, and practices for tick bite prevention and tick control among residents of Long Island, New York, USA. Ticks Tick-Borne Dis. 2023, 14, 102124. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, E.R.; Tewari, D.; Farone, T.S.; Livengood, J.; Mason, K. Evidence of Powassan/Deer Tick Virus in Adult Black-legged Ticks (Ixodes scapularis) Recovered From Hunter-harvested White-tailed Deer (Odocoileus virginianus) in Pennsylvania: A Public Health Perspective. Zoonoses Public Health 2018, 65, 589–594. [Google Scholar] [CrossRef]
- Cull, B.; Pietzsch, M.; Gillingham, E.L.; McGinley, L.; Medlock, J.M.; Hansford, K.M. Seasonality and Anatomical Location of Human Tick Bites in the United Kingdom. Zoonoses Public Health 2019, 67, 112–121. [Google Scholar] [CrossRef]
- Slunge, D.; Jore, S.; Krogfelt, K.A.; Jepsen, M.T.; Boman, A. Who Is Afraid of Ticks and Tick-Borne Diseases? Results From a Cross-Sectional Survey in Scandinavia. BMC Public Health 2019, 19, 1666. [Google Scholar] [CrossRef]
- Lyons, L.A.; Brand, M.E.; Gronemeyer, P.; Mateus-Pinilla, N.E.; Ruiz, M.O.; Stone, C.; Tuten, H.C.; Smith, R.L. Comparing Contributions of Passive and Active Tick Collection Methods to Determine Establishment of Ticks of Public Health Concern Within Illinois. J. Med. Entomol. 2021, 58, 1849–1864. [Google Scholar] [CrossRef]
- Wilson, C. Surveillance for Ixodes scapularis and Ixodes pacificus Ticks and Their Associated Pathogens in Canada, 2020. Can. Commun. Dis. Rep. 2023, 49, 288–298. [Google Scholar] [CrossRef]
- Garcia-Martí, I.; Zurita-Milla, R.; Arnold, J.H.v.V.; Takken, W. Modelling and Mapping Tick Dynamics Using Volunteered Observations. Int. J. Health Geogr. 2017, 16, 41. [Google Scholar] [CrossRef]
- Park, K.B.; Jo, Y.H.; Kim, N.Y.; Lee, W.G.; Lee, H.I.; Cho, S.H.; Patnaik, B.B. Tick-borne Viruses: Current Trends in Large-scale Viral Surveillance. Entomol. Res. 2020, 50, 379–392. [Google Scholar] [CrossRef]
- İnci, A.; Yıldırım, A.; Düzlü, Ö.; Doğanay, M.; Aksoy, S. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective. PLoS Negl. Trop. Dis. 2016, 10, e0005021. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Phipps, L.P.; Hansford, K.M.; Folly, A.J.; Fooks, A.R.; Medlock, J.M.; Mansfield, K.L. One Health Approach to Tick and Tick-Borne Disease Surveillance in the United Kingdom. Int. J. Environ. Res. Public Health 2022, 19, 5833. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, R.; Garcia, M.V.; Matias, J.; Barros, J.C.; Magalhães, G.M.; Ardson, F.d.A.; de Abreu, A.A.R. Diflubenzuron Effectiveness in Cattle Tick (Rhipicephalus boophilus microplus) Control in Field Conditions. Pharm. Anal. Acta 2015, 6. Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1022437/1/AndreottiPharmaceuticaDifly.pdf (accessed on 1 December 2024). [CrossRef]
- Baron, S.; Van der, N.A.; Madder, M.; Maritz-Olivier, C. SNP Analysis Infers That Recombination Is Involved in the Evolution of Amitraz Resistance in Rhipicephalus microplus. PLoS ONE 2015, 10, e0131341. [Google Scholar] [CrossRef]
- Domingos, A.; Antunes, S.; Borges, L.; Rosário, V.E.d. Approaches Towards Tick and Tick-Borne Diseases Control. Rev. Soc. Bras. Med. Trop. 2013, 46, 265–269. [Google Scholar] [CrossRef]
- Fuente, J.d.l.; Contreras, M. Tick Vaccines: Current Status and Future Directions. Expert Rev. Vaccines 2015, 14, 1367–1376. [Google Scholar] [CrossRef]
- Menin, M.; Xavier, C.; Grigolo, M.F.; Molosse, K.F.; Weirich, M.H.; Matzembacker, B.; Collet, S.G.; Prestes, A.M.; Camillo, G. Factors Associated With the Efficiency of Acaricides on Different Populations of Rhipicephalus microplus. Braz. J. Vet. Res. Anim. Sci. 2019, 56, e157595. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, S.; Sharma, A.K.; Jacob, S.S.; RamVerma, M.; Singh, N.K.; Shakya, M.; Sankar, M.; Ghosh, S. Economic impact of predominant ticks and tick-borne diseases on Indian dairy production systems. Exp. Parasitol. 2022, 243, 108408. [Google Scholar] [CrossRef]
- Yadav, N.; Upadhyay, R.K. Status of Economic Losses and Health Impact of the Tick Bites on Farm, Field and Dairy Animals. Acta Sci. Med. Sci. 2024, 8. Available online: https://www.researchgate.net/profile/Ravi-Upadhyay/publication/386540639_Status_of_Economic_Losses_and_Health_Impact_of_the_Tick_Bites_on_Farm_Field_and_Dairy_Animals/links/675518a1ad10b614ef36f4a7/Status-of-Economic-Losses-and-Health-Impact-of-the-Tick-Bites-on-Farm-Field-and-Dairy-Animals.pdf (accessed on 1 December 2024). [CrossRef]
- Rajput, Z.I.; Hu, S.H.; Chen, W.J.; Arijo, A.G.; Xiao, C.W. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. Sci. B 2006, 7, 912–921. [Google Scholar] [CrossRef]
- Oscar Jaime Betancur, H.; Cristian, G.-R. Economic and Health Impact of the Ticks in Production Animals. In Ticks and Tick-Borne Pathogens; Muhammad, A., Piyumali, K.P., Eds.; IntechOpen: Rijeka, Croatia, 2018; p. Ch. 7. [Google Scholar]
- Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Kouassi, P.Y.; Belem, A.M.G.; Farougou, S.; Oosthuizen, M.C.; Saegerman, C.; Lempereur, L. Cattle Ticks and Associated Tick-Borne Pathogens in Burkina Faso and Benin: Apparent Northern Spread of Rhipicephalus microplus in Benin and First Evidence of Theileria velifera and Theileria annulata. Ticks Tick-Borne Dis. 2021, 12, 101733. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.A.; Jeon, S.; Niesobecki, S.A.; Hansen, A.P.; Meek, J.I.; Bjork, J.K.H.; Dorr, F.M.; Rutz, H.J.; Feldman, K.A.; White, J.L.; et al. Economic Burden of Reported Lyme Disease in High-Incidence Areas, United States, 2014–2016. Emerg. Infect. Dis. 2022, 28, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L.; Stafford, K.C. Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae). J. Med. Entomol. 2021, 58, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C. Economic Issues in Trypanosomiasis Control. Bulletin—Natural Resources Institute, No. 75; Natural Resources Institute: Harare, Zimbabwe, 1997; p. xiii + 183. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19980506202 (accessed on 1 December 2024).
- Kabayo, J.P. Aiming to eliminate tsetse from Africa. Trends Parasitol. 2002, 18, 473–475. [Google Scholar] [CrossRef]
- Abro, Z.; Kassie, M.; Muriithi, B.; Okal, M.; Masiga, D.; Wanda, G.; Gisèle, O.; Samuel, A.; Nguertoum, E.; Nina, R.A.; et al. The potential economic benefits of controlling trypanosomiasis using waterbuck repellent blend in sub-Saharan Africa. PLoS ONE 2021, 16, e0254558. [Google Scholar] [CrossRef]
- Okal, M.N.; Odhiambo, B.K.; Otieno, P.; Bargul, J.L.; Masiga, D.; Villinger, J.; Kalayou, S. Anaplasma and Theileria Pathogens in Cattle of Lambwe Valley, Kenya: A Case for Pro-Active Surveillance in the Wildlife-Livestock Interface. Microorganisms 2020, 8, 1830. [Google Scholar] [CrossRef]
- Brown, C.D. Dynamics and impact of tick-borne diseases of cattle. Trop. Anim. Health Prod. 1997, 29, 1S–3S. [Google Scholar] [CrossRef]
- Kivaria, F. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop. Anim. Health Prod. 2006, 38, 291–299. [Google Scholar] [CrossRef]
- Lombardo, R. Socioeconomic Importance of the Tick Problem in the Americas. Sci. Publ. Pan Am. Health Organ. 1976, 316, 79–89. [Google Scholar]
- Moyo, B.; Masika, P.J. Tick control methods used by resource-limited farmers and the effect of ticks on cattle in rural areas of the Eastern Cape Province, South Africa. Trop. Anim. Health Prod. 2009, 41, 517–523. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef] [PubMed]
- Klafke, G.M.; Golo, P.S.; Monteiro, C.M.O.; Costa-Júnior, L.M.; Reck, J. Brazil’s battle against Rhipicephalus (Boophilus) microplus ticks: Current strategies and future directions. Rev. Bras. Parasitol. Vet. 2024, 33, e001423. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, N.; Sharma, R.; Subramanian, M.; Nagarajan, S.A. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024, 13, 556. [Google Scholar] [CrossRef]
- Senji Laxme, R.R.; Suranse, V.; Sunagar, K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2019, 158, 84–103. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Nyangiwe, N.; Masebe, T.M.; Djikeng, A.; Nesengani, L.T.; Smith, R.M.; Mapholi, N.O. Morphological and Molecular Characterization of Tick Species Infesting Cattle in South Africa. Vet. Sci. 2024, 11, 638. [Google Scholar] [CrossRef]
- Johnson, N. Tick classification and diversity. In Ticks; Johnson, N., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 9–23. [Google Scholar]
- Makwarela, T.G.; Nyangiwe, N.; Masebe, T.; Mbizeni, S.; Nesengani, L.T.; Djikeng, A.; Mapholi, N.O. Tick Diversity and Distribution of Hard (Ixodidae) Cattle Ticks in South Africa. Microbiol. Res. 2023, 14, 42–59. [Google Scholar] [CrossRef]
- Muders, S.V. The Role of European Big Game (Capreolus capreolus and Sus scrofa) as Hosts for Ticks and in the Epidemiological Life Cycle of Tick-Borne Diseases; Karlsruhe Institute of Technology (KIT): Karlsruhe, Germany, 2015. [Google Scholar]
- Singh, B.B.; Ward, M.P.; Dhand, N.K. Host characteristics and their influence on zoonosis, disease emergence and multi-host pathogenicity. One Health 2023, 17, 100596. [Google Scholar] [CrossRef]
- Nava, S.; Venzal, J.M.; González-Acuña, D.; Martins, T.F.; Guglielmone, A.A. Tick Classification, External Tick Anatomy with a Glossary, and Biological Cycles. In Ticks of the Southern Cone of America; Nava, S., Venzal, J.M., González-Acuña, D., Martins, T.F., Guglielmone, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–23. [Google Scholar]
- Craig, A.F. Interrelationships of Warthogs (Phacochoerus africanus), Ornithodoros Ticks and African Swine Fever Virus in South Africa; University of Pretoria: Pretoria, South Africa, 2022. [Google Scholar]
- Apanaskevich, D.A.; Oliver, J.; Sonenshine, D.; Roe, R. Life cycles and natural history of ticks. In Biology of Ticks; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1, pp. 59–73. [Google Scholar]
- Nepveu-Traversy, M.-E.; Fausther-Bovendo, H.; Babuadze, G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines 2024, 12, 141. [Google Scholar] [CrossRef]
- Boulanger, N.; Boyer, P.; Talagrand-Reboul, E.; Hansmann, Y. Ticks and tick-borne diseases. Med. Mal. Infect. 2019, 49, 87–97. [Google Scholar] [CrossRef]
- Mans, B.; Louw, A.; Neitz, A. Evolution of Hematophagy in Ticks: Common Origins for Blood Coagulation and Platelet Aggregation Inhibitors from Soft Ticks of the Genus Ornithodoros. Mol. Biol. Evol. 2002, 19, 1695–1705. [Google Scholar] [CrossRef]
- Kazimírová, M.; Štibrániová, I. Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front. Cell Infect. Microbiol. 2013, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell Infect. Microbiol. 2017, 7, 281. [Google Scholar] [CrossRef] [PubMed]
- McCoy, K.D.; Léger, E.; Dietrich, M. Host specialization in ticks and transmission of tick-borne diseases: A review. Front. Cell Infect. Microbiol. 2013, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Raoult, D. Ticks and Tickborne Bacterial Diseases in Humans: An Emerging Infectious Threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef]
- Leal, B.; Zamora, E.; Fuentes, A.; Thomas, D.B.; Dearth, R.K. Questing by Tick Larvae (Acari: Ixodidae): A Review of the Influences That Affect Off-Host Survival. Ann. Entomol. Soc. Am. 2020, 113, 425–438. [Google Scholar] [CrossRef]
- van Oort, B.E.H.; Hovelsrud, G.K.; Risvoll, C.; Mohr, C.W.; Jore, S. A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region. Int. J. Environ. Res. Public Health 2020, 17, 5387. [Google Scholar] [CrossRef]
- Gray, J.S.; Dautel, H.; Estrada-Peña, A.; Kahl, O.; Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 593232. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Djikeng, A.; Masebe, T.M.; Nkululeko, N.; Nesengani, L.T.; Mapholi, N.O. Vector abundance and associated abiotic factors that influence the distribution of ticks in six provinces of South Africa. Vet. World 2024, 17, 1765. [Google Scholar] [CrossRef]
- Paul, R.E.L.; Cote, M.; Le Naour, E.; Bonnet, S.I. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasites Vectors 2016, 9, 309. [Google Scholar] [CrossRef]
- Edman, J.D.; Spielman, A. Blood-feeding by vectors: Physiology, ecology, behavior, and vertebrate defense. In The Arboviruses; CRC Press: Boca Raton, FL, USA, 2020; pp. 153–190. [Google Scholar]
- Diyes, G.C.P.; Rajakaruna, R.S. Life cycle of Spinose ear tick, Otobius megnini (Acari: Argasidae) infesting the race horses in Nuwara Eliya, Sri Lanka. Acta Trop. 2017, 166, 164–176. [Google Scholar] [CrossRef]
- Beeson, A.M. Soft tick relapsing fever—United States, 2012–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72. Available online: https://www.cdc.gov/mmwr/volumes/72/wr/mm7229a1.htm (accessed on 1 December 2024). [CrossRef] [PubMed]
- Kotál, J.; Langhansová, H.; Lieskovská, J.; Andersen, J.F.; Francischetti, I.M.B.; Chavakis, T.; Kopecký, J.; Pedra, J.H.F.; Kotsyfakis, M.; Chmelař, J. Modulation of host immunity by tick saliva. J. Proteom. 2015, 128, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Kahl, O.; Zintl, A. Pathogens transmitted by Ixodes ricinus. Ticks Tick-Borne Dis. 2024, 15, 102402. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.I.; van Duijvendijk, G.L.A.; Swart, A.; Heylen, D.; Jaarsma, R.I.; Jacobs, F.H.H.; Fonville, M.; Sprong, H.; Takken, W. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasites Vectors 2020, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Gondard, M.; Delannoy, S.; Pinarello, V.; Aprelon, R.; Devillers, E.; Galon, C.; Pradel, J.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S. Upscaling the surveillance of tick-borne pathogens in the French Caribbean Islands. Pathogens 2020, 9, 176. [Google Scholar] [CrossRef]
- Madder, M.; Horak, I.; Stoltsz, H. Tick Identification; Faculty of Veterinary Science, University of Pretoria: Pretoria, South Africa, 2014; p. 58. [Google Scholar]
- Pham, M.; Sharma, A.; Nuss, A.; Gulia-Nuss, M. Progress towards germline transformation of ticks. In Transgenic Insects: Techniques and Applications; Marchiondo, A.A., Cruthers, L.R., Fourie, J.J., Eds.; CABI: Wallingford, UK, 2022; pp. 375–394. [Google Scholar]
- Walker, A.R. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports: Edinburgh, UK, 2003; Volume 74. [Google Scholar]
- de Castro, J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef]
- Marchiondo, A.A. Arachnida. In Parasiticide Screening; Marchiondo, A.A., Cruthers, L.R., Fourie, J.J., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 1, pp. 257–377. [Google Scholar]
- Milne, A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick, review of previous work in Britain. Parasitology 1949, 39, 167–172. [Google Scholar] [CrossRef]
- Stewart, P.E.; Bloom, M.E. Sharing the ride: Ixodes scapularis symbionts and their interactions. Front. Cell Infect. Microbiol. 2020, 10, 142. [Google Scholar] [CrossRef]
- Mnisi, S.S.; Mphuthi, M.B.N.; Ramatla, T.; Mofokeng, L.S.; Thekisoe, O.; Syakalima, M. Molecular Detection and Genetic Characterization of Ehrlichia ruminantium Harbored by Amblyomma hebraeum Ticks of Domestic Ruminants in North West Province, South Africa. Animals 2022, 12, 2511. [Google Scholar] [CrossRef]
- Sarwar, M. Status of argasid (soft) ticks (Acari: Parasitiformes: Argasidae) in relation to transmission of human pathogens. Int. J. Vaccines Vaccin. 2017, 4, 00089. [Google Scholar] [CrossRef]
- Service, M.W. Soft ticks (Order Metastigmata: Family Argasidae). In A Guide to Medical Entomology; Service, M.W., Ed.; Macmillan Education UK: London, UK, 1980; pp. 154–159. [Google Scholar]
- Jakab, Á.; Kahlig, P.; Kuenzli, E.; Neumayr, A. Tick-borne relapsing fever—A systematic review and analysis of the literature. PLoS Negl. Trop. Dis. 2022, 16, e0010212. [Google Scholar] [CrossRef] [PubMed]
- Esser, H.J.; Herre, E.A.; Blüthgen, N.; Loaiza, J.R.; Bermúdez, S.E.; Jansen, P.A. Host specificity in a diverse Neotropical tick community: An assessment using quantitative network analysis and host phylogeny. Parasites Vectors 2016, 9, 372. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Gray, J.S.; Kahl, O.; Lane, R.S.; Nijhof, A.M. Research on the ecology of ticks and tick-borne pathogens—Methodological principles and caveats. Front. Cell Infect. Microbiol. 2013, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Kahl, O.; Lane, R.S.; Stanek, G. Lyme Borreliosis: Biology, Epidemiology, and Control; CABI: Wallingford, UK, 2002. [Google Scholar]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Front. Cell Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Elmieh, N. The Impacts of Climate and Land Use Change on Tick-Related Risks. National Collaborating Centre for Environmental Health (NCCEH), 2022. Available online: https://ncceh.ca/resources/evidence-reviews/impacts-climate-and-land-use-change-tick-related-risks (accessed on 29 January 2025).
- Elderd, B.D.; Reilly, J.R. Warmer temperatures increase disease transmission and outbreak intensity in a host–pathogen system. J. Anim. Ecol. 2014, 83, 838–849. [Google Scholar] [CrossRef]
- Mashebe, P.; Lyaku, J.; Mausse, F. Occurrence of Ticks and Tick-Borne Diseases of Livestock in Zambezi Region: A Review. J. Agric. Sci. 2014, 6, 142. [Google Scholar] [CrossRef]
- Shitta, K.B.; James-Rugu, N.N.; Badaki, J.A. Prevalence of Ticks on Dogs in Jos, Plateau State, Nigeria. Bayero J. Pure Appl. Sci. 2019, 11, 451. [Google Scholar] [CrossRef]
- Rizzoli, A.; Silaghi, C.; Obiegala, A.; Rudolf, I.; Hubálek, Z.; Földvári, G.; Plantard, O.; Vayssier-Taussat, M.; Bonnet, S.; Spitalská, E.; et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front. Public Health 2014, 2, 251. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasites Vectors 2010, 3, 26. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Otranto, D. Rhipicephalus sanguineus (Brown dog tick). Trends Parasitol. 2022, 38, 993–994. [Google Scholar] [CrossRef]
- Akande, F.A.; Adebowale, A.F.; Idowu, O.A.; Sofela, O.O. Prevalence of Ticks on Indigenous Breed of Hunting Dogs in Ogun State, Nigeria. Sokoto J. Vet. Sci. 2018, 16, 66. [Google Scholar] [CrossRef]
- Baasandavga, U. Geographical Distribution of Tick-Borne Encephalitis and Its Vectors in Mongolia, 2005–2016. Cent. Asian J. Med. Sci. 2017, 3, 250–258. [Google Scholar] [CrossRef]
- Berggoetz, M.; Schmid, M.; Ston, D.; Wyss, V.; Chevillon, C.; Pretorius, A.-M.; Gern, L. Protozoan and Bacterial Pathogens in Tick Salivary Glands in Wild and Domestic Animal Environments in South Africa. Ticks Tick-Borne Dis. 2014, 5, 176–185. [Google Scholar] [CrossRef]
- Chitanga, S.; Chibesa, K.; Sichibalo, K.; Mubemba, B.; Nalubamba, K.S.; Muleya, W.; Changula, K.; Simulundu, E. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks Collected From Cattle in Southern Zambia. Front. Vet. Sci. 2021, 8, 684487. [Google Scholar] [CrossRef]
- Dabasa, G.; Zewdei, W.; Shanko, T.; Jilo, K.; Gurmesa, G.; Lolo, G. Composition, Prevalence and Abundance of Ixodid Cattle Ticks at Ethio-Kenyan Border, Dillo District of Borana Zone, Southern Ethiopia. J. Vet. Med. Anim. Health 2017, 9, 204–212. [Google Scholar]
- Efstratiou, A.; Karanis, G.; Karanis, P. Tick-Borne Pathogens and Diseases in Greece. Microorganisms 2021, 9, 1732. [Google Scholar] [CrossRef]
- Eisen, R.J.; Kugeler, K.J.; Eisen, L.; Beard, C.B.; Paddock, C.D. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR J. 2017, 58, 319–335. [Google Scholar] [CrossRef]
- Fajs, L.; Humolli, I.; Saksida, A.; Knap, N.; Jelovšek, M.; Korva, M.; Dedushaj, I.; Avšič-Županc, T. Prevalence of Crimean-Congo Hemorrhagic Fever Virus in Healthy Population, Livestock and Ticks in Kosovo. PLoS ONE 2014, 9, e110982. [Google Scholar] [CrossRef]
- Földvári, G.; Szabó, É.; Tóth, G.E.; Lanszki, Z.; Zana, B.; Varga, Z.; Kemenesi, G. Emergence of Hyalomma marginatum and Hyalomma rufipes Adults Revealed by Citizen Science Tick Monitoring in Hungary. Transbound. Emerg. Dis. 2022, 69, E2240–E2248. [Google Scholar] [CrossRef]
- Galay, R.L.; Llaneta, C.R.; Maria Karla Faye, B.M.; Armero, A.L.; Baluyut, A.B.D.; Regino, C.M.F.; Sandalo, K.A.C.; Divina, B.P.; Talactac, M.R.; Tapawan, L.P.; et al. Molecular Prevalence of Anaplasma marginale and Ehrlichia in Domestic Large Ruminants and Rhipicephalus (Boophilus) microplus Ticks From Southern Luzon, Philippines. Front. Vet. Sci. 2021, 8, 746705. [Google Scholar] [CrossRef]
- Gergova, I.; Kunchev, M.; Kamarinchev, B. Crimean-Congo Hemorrhagic Fever Virus–Tick Survey in Endemic Areas in Bulgaria. J. Med. Virol. 2012, 84, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Hönig, V.; Švec, P.; Marek, L.; Mrkvička, T.; Zubríková, D.; Wittmann, M.; Masař, O.; Szturcová, D.; Růžek, D.; Grubhoffer, L. Model of Risk of Exposure to Lyme Borreliosis and Tick-Borne Encephalitis Virus-Infected Ticks in the Border Area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). Int. J. Environ. Res. Public Health 2019, 16, 1173. [Google Scholar] [CrossRef] [PubMed]
- Jore, S.; Viljugrein, H.; Hofshagen, M.; Brun-Hansen, H.; Kristoffersen, A.B.; Nygård, K.; Brun, E.; Ottesen, P.; Sævik, B.K.; Ytrehus, B. Multi-Source Analysis Reveals Latitudinal and Altitudinal Shifts in Range of Ixodes ricinus at Its Northern Distribution Limit. Parasites Vectors 2011, 4, 84. [Google Scholar] [CrossRef] [PubMed]
- Khamesipour, F.; Dida, G.O.; Anyona, D.N.; Razavi, S.M.; Rakhshandehroo, E. Tick-Borne Zoonoses in the Order Rickettsiales and Legionellales in Iran: A Systematic Review. PLoS Negl. Trop. Dis. 2018, 12, e0006722. [Google Scholar] [CrossRef]
- Kubo, S.; Tateno, M.; Ichikawa, Y.; Endo, Y. A Molecular Epidemiological Survey of Babesia, Hepatozoon, Ehrlichia, and Anaplasma Infections of Dogs in Japan. J. Vet. Med. Sci. 2015, 77, 1275–1279. [Google Scholar] [CrossRef]
- Kwak, Y.S.; Kim, T.Y.; Nam, S.-H.; Lee, I.Y.; Mduma, S.; Keyyu, J.D.; Fyumagwa, R.D.; Yong, T.-S. Ixodid Tick Infestation in Cattle and Wild Animals in Maswa and Iringa, Tanzania. Korean J. Parasitol. 2014, 52, 565–568. [Google Scholar] [CrossRef]
- Laaksonen, M.; Klemola, T.; Feuth, E.; Sormunen, J.J.; Puisto, A.I.E.; Mäkelä, S.; Penttinen, R.; Ruohomäki, K.; Hänninen, J.; Sääksjärvi, I.E.; et al. Tick-Borne Pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in Sympatric and Parapatric Areas. Parasites Vectors 2018, 11, 556. [Google Scholar] [CrossRef]
- Lenart, M.; Simoniti, M.; Strašek-Smrdel, K.; Špik, V.C.; Selič-Kurinčič, T.; Avšič–Županc, T. Case Report: First Symptomatic Candidatus Neoehrlichia mikurensis Infection in Slovenia. BMC Infect. Dis. 2021, 21, 579. [Google Scholar] [CrossRef]
- Lindblom, A.; Wallménius, K.; Sjöwall, J.; Fryland, L.; Wilhelmsson, P.; Lindgren, P.-E.; Forsberg, P.; Nilsson, K. Prevalence of Rickettsia spp. In Ticks and Serological and Clinical Outcomes in Tick-Bitten Individuals in Sweden and on the Åland Islands. PLoS ONE 2016, 11, e0166653. [Google Scholar] [CrossRef]
- Maurelli, M.P.; Pepe, P.; Colombo, L.; Armstrong, R.; Battisti, E.; Morgoglione, M.E.; Counturis, D.; Rinaldi, L.; Cringoli, G.; Ferroglio, E.; et al. A National Survey of Ixodidae Ticks on Privately Owned Dogs in Italy. Parasites Vectors 2018, 11, 420. [Google Scholar] [CrossRef]
- Mbiri, P. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks From Selected Regions of Namibia. Microorganisms 2024, 12, 912. [Google Scholar] [CrossRef] [PubMed]
- Mossaad, E.; Gaithuma, A.K.; Mohamed, Y.O.; Suganuma, K.; Umemiya-Shirafuji, R.; Ohari, Y.; Salim, B.; Liu, M.; Xu, X. Molecular Characterization of Ticks and Tick-Borne Pathogens in Cattle From Khartoum State and East Darfur State, Sudan. Pathogens 2021, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Nelder, M.P.; Russell, C.; Dibernardo, A.; Clow, K.M.; Johnson, S.R.; Cronin, K.; Patel, S.N.; Lindsay, L.R. Monitoring the Patterns of Submission and Presence of Tick-Borne Pathogens in Ixodes scapularis Collected From Humans and Companion Animals in Ontario, Canada (2011–2017). Parasites Vectors 2021, 14, 260. [Google Scholar] [CrossRef]
- Obregón, D.; Corona-González, B.; Rodríguez-Mallón, A.; González, I.R.; Alfonso, P.; Ramos, A.A.N.; Díaz-Sánchez, A.A.; Navarrete, M.G.; Fernández, R.R.; Mellor, L.M.; et al. Ticks and Tick-Borne Diseases in Cuba, Half a Century of Scientific Research. Pathogens 2020, 9, 616. [Google Scholar] [CrossRef]
- Özübek, S.; Bastos, R.G.; Alzan, H.F.; İnci, A.; Aktaş, M.; Suárez, C.E. Bovine Babesiosis in Turkey: Impact, Current Gaps, and Opportunities for Intervention. Pathogens 2020, 9, 1041. [Google Scholar] [CrossRef]
- Palomar, A.M.; García-Álvarez, L.; Santibáñez, S.; Portillo, A.; Oteo, J.A. Detection of Tick-Borne ‘Candidatus Neoehrlichia mikurensis’ and Anaplasma phagocytophilum in Spain in 2013. Parasites Vectors 2014, 7, 57. [Google Scholar] [CrossRef]
- Pańczuk, A. Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in Ixodes ricinus Collected From Dogs in Eastern Poland. J. Vet. Res. 2024, 68, 109–114. [Google Scholar] [CrossRef]
- Phonera, M.C.; Simuunza, M.; Kainga, H.; Ndebe, J.; Chembensofu, M.; Chatanga, E.; Kanyanda, S.; Changula, K.; Muleya, W.; Mubemba, B.; et al. Seroprevalence and Risk Factors of Crimean-Congo Hemorrhagic Fever in Cattle of Smallholder Farmers in Central Malawi. Pathogens 2021, 10, 1613. [Google Scholar] [CrossRef]
- Romer, Y.; Nava, S.; Govedic, F.; Cicuttin, G.L.; Denison, A.M.; Singleton, J.; Kelly, A.J.; Kato, C.Y.; Paddock, C.D. Rickettsia parkeri Rickettsiosis in Different Ecological Regions of Argentina and Its Association With Amblyomma tigrinum as a Potential Vector. Am. J. Trop. Med. Hyg. 2014, 91, 1156–1160. [Google Scholar] [CrossRef]
- Seo, M.-G.; Kwon, O.-D.; Kwak, D. Molecular Identification of Borrelia afzelii From Ticks Parasitizing Domestic and Wild Animals in South Korea. Microorganisms 2020, 8, 649. [Google Scholar] [CrossRef]
- Seo, M.-G.; Kwon, O.-D.; Kwak, D. Diversity and Genotypic Analysis of Tick-borne Pathogens Carried by Ticks Infesting Horses in Korea. Med. Vet. Entomol. 2020, 35, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Tirosh-Levy, S.; Gottlieb, Y.; Apanaskevich, D.A.; Mumcuoglu, K.Y.; Steinman, A. Species Distribution and Seasonal Dynamics of Equine Tick Infestation in Two Mediterranean Climate Niches in Israel. Parasites Vectors 2018, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Yessinou, R.E.; Adehan, S.B.; Hedegbetan, G.C.; Cassini, R.; Mantip, S.; Farougou, S. Molecular Characterization of Rickettsia spp., Bartonella spp., and Anaplasma phagocytophilum in Hard Ticks Collected From Wild Animals in Benin, West Africa. Trop. Anim. Health Prod. 2022, 54, 306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, Y.X.; Fan, Z.-W.; Ji, Y.; Liu, M.-j.; Zhang, W.; Li, X.-L.; Zhou, S.-X.; Li, H.; Liang, S.; et al. Mapping Ticks and Tick-Borne Pathogens in China. Nat. Commun. 2021, 12, 1075. [Google Scholar] [CrossRef]
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as Vectors of Pathogens That Cause Disease in Humans and Animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef]
- Nimo-Paintsil, S.C.; Mosore, M.; Addo, S.O.; Lura, T.; Tagoe, J.; Ladzekpo, D.; Addae, C.; Bentil, R.E.; Behene, E.; Dafeamekpor, C.; et al. Ticks and prevalence of tick-borne pathogens from domestic animals in Ghana. Parasites Vectors 2022, 15, 86. [Google Scholar] [CrossRef]
- Sonenshine, D.E. Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. Int. J. Environ. Res. Public Health 2018, 15, 478. [Google Scholar] [CrossRef]
- Wilson, C.; Gasmi, S.; Bourgeois, A.-C.; Badcock, J.; Chahil, N.; Kulkarni, M.A.; Lee, M.-K.; Lindsay, L.R.; Leighton, P.A.; Morshed, M.; et al. Surveillance for Ixodes scapularis and Ixodes pacificus Ticks and Their Associated Pathogens in Canada, 2019. Can. Commun. Dis. Rep. 2022, 48, 208–218. [Google Scholar] [CrossRef]
- Paoletta, M.S.; López Arias, L.; de la Fournière, S.; Guillemi, E.C.; Luciani, C.; Sarmiento, N.F.; Mosqueda, J.; Farber, M.D.; Wilkowsky, S.E. Epidemiology of Babesia, Anaplasma, and Trypanosoma species using a new expanded reverse line blot hybridization assay. Ticks Tick-Borne Dis. 2018, 9, 155–163. [Google Scholar] [CrossRef]
- Kanduma, E.G.; Emery, D.; Githaka, N.W.; Nguu, E.K.; Bishop, R.P.; Šlapeta, J. Molecular evidence confirms occurrence of Rhipicephalus microplus Clade A in Kenya and sub-Saharan Africa. Parasites Vectors 2020, 13, 432. [Google Scholar] [CrossRef]
- Sales, D.P.; Silva-Junior, M.H.S.; Tavares, C.P.; Sousa, I.C.; Sousa, D.M.; Brito, D.R.B.; Camargo, A.M.; Leite, R.C.; Faccini, J.L.H.; Lopes, W.D.Z.; et al. Biology of the non-parasitic phase of the cattle tick Rhipicephalus (Boophilus) microplus in an area of Amazon influence. Parasites Vectors 2024, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Puentes, J.D.; Riet-Correa, F. Epidemiological aspects of cattle tick fever in Brazil. Rev. Bras. Parasitol. Vet. 2023, 32, e014422. [Google Scholar] [CrossRef] [PubMed]
- Hall-Mendelin, S.; Craig, S.B.; Hall, R.A.; O’Donoghue, P.; Atwell, R.B.; Tulsiani, S.M.; Graham, G.C. Tick paralysis in Australia caused by Ixodes holocyclus Neumann. Ann. Trop. Med. Parasitol. 2011, 105, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Selles, S.M.A.; Kouidri, M.; González, M.G.; González, J.; Sánchez, M.; González-Coloma, A.; Sanchis, J.; Elhachimi, L.; Olmeda, A.S.; Tercero, J.M.; et al. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021, 10, 1379. [Google Scholar] [CrossRef]
- Shanmuganath, C.; Kumar, S.; Singh, R.; Sharma, A.K.; Saminathan, M.; Saini, M.; Chigure, G.; Fular, A.; Kumar, R.; Juliet, S.; et al. Development of an efficient antitick natural formulation for the control of acaricide-resistant ticks on livestock. Ticks Tick-Borne Dis. 2021, 12, 101655. [Google Scholar] [CrossRef]
- Abbas, R.; Colwell, D.; Iqbal, Z.; Khan, A. Acaricidal drug resistance in poultry red mite (Dermanyssus gallinae) and approaches to its management. World’s Poult. Sci. J. 2014, 70, 113–124. [Google Scholar] [CrossRef]
- Sonenshine, D.E.; Lane, R.S.; Nicholson, W.L. Ticks (Ixodida). In Medical and Veterinary Entomology; Mullen, G., Durden, L., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 517–558. [Google Scholar]
- Beugnet, F.; Franc, M. Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites. Trends Parasitol. 2012, 28, 267–279. [Google Scholar] [CrossRef]
- Ware, G.W.; Whitacre, D.M. An Introduction to Insecticides. In The Pesticide Book, 6th ed.; Thomson Publications: Fresno, CA, USA, 2004. [Google Scholar]
- Riga, M.; Ilias, A.; Vontas, J.; Douris, V. Co-Expression of a Homologous Cytochrome P450 Reductase Is Required for In Vivo Validation of the Tetranychus urticae CYP392A16-Based Abamectin Resistance in Drosophila. Insects 2020, 11, 829. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the Control of Rhipicephalus microplus Ticks in a World of Conventional Acaricide and Macrocyclic Lactone Resistance. Parasitol. Res. 2017, 117, 3–29. [Google Scholar] [CrossRef]
- Quadros, D.G.; Johnson, T.L.; Whitney, T.R.; Oliver, J.D.; Oliva Chávez, A.S. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects 2020, 11, 490. [Google Scholar] [CrossRef]
- Emsley, E. Assessment of Gastrointestinal Nematode Anthelmintic Resistance and Acaricidal Efficacy of Fluazuron-Flumethrin on Sheep and Goat Ticks in the North West Province of South Africa. Vet. World 2023, 16, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Makgabo, S.M.; Brayton, K.A.; Biggs, L.J.; Oosthuizen, M.C.; Collins, N.E. Temporal Dynamics of Anaplasma marginale Infections and the Composition of Anaplasma spp. in Calves in the Mnisi Communal Area, Mpumalanga, South Africa. Microorganisms 2023, 11, 465. [Google Scholar] [CrossRef] [PubMed]
- Dzemo, W.D.; Thekisoe, O.; Vudriko, P. Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon 2022, 8, e08718. [Google Scholar] [CrossRef] [PubMed]
- Oundo, J.W.; Masiga, D.K.; Okal, M.N.; Bron, G.M.; Akutse, K.S.; Subramanian, S.; Bosch, Q.A.t.; Koenraadt, C.J.M.; Kalayou, S. Evaluating the Efficacy of Mazao Tickoff (Metarhizium anisopliae ICIPE 7) in Controlling Natural Tick Infestations on Cattle in Coastal Kenya: Study Protocol for a Randomized Controlled Trial. PLoS ONE 2022, 17, e0272865. [Google Scholar] [CrossRef] [PubMed]
- Allan, F.K.; Sindoya, E.; Adam, K.E.; Byamungu, M.; Lea, R.S.; Lord, J.; Mbata, G.; Paxton, E.; Mramba, F.; Torr, S.J.; et al. A Cross-Sectional Survey to Establish Theileria parva Prevalence and Vector Control at the Wildlife-Livestock Interface, Northern Tanzania. Prev. Vet. Med. 2021, 196, 105491. [Google Scholar] [CrossRef]
- Mbatidd, I.; Bugenyi, A.W.; Natuhwera, J.; Tugume, G.; Kirunda, H. Effectiveness and Limitations of the Recently Adopted Acaricide Application Methods in Tick Control on Dairy Farms in South-Western Uganda. J. Agric. Ext. Rural Dev. 2021, 13, 192–201. [Google Scholar]
- Wale, M.; Tadesse, E. Efficacy of Indigenous Alcoholic Beverage, Areki, Against Ticks on Cattle in Woldia Area of Ethiopia. Preprint 2021. Available online: https://www.researchgate.net/publication/367931186_Efficacy_of_Indigenous_Alcoholic_Beverage_Areki_Against_Ticks_on_Cattle_in_Woldia_Area_of_Ethiopia/citations (accessed on 29 January 2025). [CrossRef]
- Silva, H.C.; Prette, N.; Lopes, W.D.; Sakamoto, C.A.; Buzzulini, C.; Dos Santos, T.R.; Cruz, B.C.; Teixeira, W.F.; Felippelli, G.; Carvalho, R.S.; et al. Endectocide activity of a pour-on formulation containing 1.5 percent ivermectin +0.5 percent abamectin in cattle. Vet. Rec. Open 2015, 2, e000072. [Google Scholar] [CrossRef]
- Khursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant-based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations, and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef]
- Aioub, A.A.A.; Ghosh, S.; Al-Farga, A.; Khan, A.N.; Bibi, R.; Elwakeel, A.M.; Nawaz, A.; Sherif, N.T.; Elmasry, S.A.; Ammar, E.E. Back to the origins: Biopesticides as promising alternatives to conventional agrochemicals. Eur. J. Plant Pathol. 2024, 169, 697–713. [Google Scholar] [CrossRef]
- Mawcha, K.T.; Malinga, L.; Muir, D.; Ge, J.; Ndolo, D. Recent Advances in Biopesticide Research and Development with a Focus on Microbials. F1000Research 2024, 13, 1071. [Google Scholar] [CrossRef]
- Brown, M.; Hebert, A.A. Insect repellents: An overview. J. Am. Acad. Dermatol. 1997, 36, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L. Efficacy of Unregulated Minimum Risk Products to Kill and Repel Ticks. Emerg. Infect. Dis. 2024, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Büchel, K.; Bendin, J.; Gharbi, A.; Rahlenbeck, S.; Dautel, H. Repellent efficacy of DEET, Icaridin, and EBAAP against Ixodes ricinus and Ixodes scapularis nymphs (Acari, Ixodidae). Ticks Tick-Borne Dis. 2015, 6, 494–498. [Google Scholar] [CrossRef]
- Lewis, M.; Silva, M.; Sanborn, J.; Pfeifer, K.; Schreider, P.; Helliker, E. N, N-diethyl-meta-toluamide (DEET): Risk Characterization Document; California Environmental Protection Agency, Department of Pesticide Regulation, Pesticide Registration Branch: Sacramento, CA, USA, 2000; pp. 219–223. [Google Scholar]
- Moore, S.J.; Debboun, M. History of insect repellents. In Insect Repellents: Principles, Methods and Uses; Debboun, M., Frances, S.P., Strickman, D., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–29. [Google Scholar]
- Costantini, C.; Badolo, A.; Ilboudo-Sanogo, E. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other Afrotropical vector mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 644–652. [Google Scholar] [CrossRef]
- Roy, D.N.; Goswami, R.; Pal, A. The insect repellents: A silent environmental chemical toxicant to the health. Environ. Toxicol. Pharmacol. 2017, 50, 91–102. [Google Scholar] [CrossRef]
- Goodyer, L.; Schofield, S. Mosquito repellents for the traveller: Does picaridin provide longer protection than DEET? J. Travel Med. 2018, 25 (Suppl. S1), S10–S15. [Google Scholar] [CrossRef]
- Van Roey, K.; Sokny, M.; Denis, L.; Van den Broeck, N.; Heng, S.; Siv, S.; Sluydts, V.; Sochantha, T.; Coosemans, M.; Durnez, L. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses. PLoS Negl. Trop. Dis. 2014, 8, e3326. [Google Scholar] [CrossRef]
- Carr, A.L.; Salgado, V.L. Ticks Home in on Body Heat: A New Understanding of Ectoparasite Host-Seeking and Repellent Action.bioRxiv 2019. Available online: https://www.researchgate.net/publication/331433991_Ticks_Home_in_on_Body_Heat_A_New_Understanding_of_Ectoparasite_Host-Seeking_and_Repellent_Action (accessed on 30 January 2025).
- Diaz, J.H. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity. Wilderness Environ. Med. 2016, 27, 153–163. [Google Scholar] [CrossRef]
- Natsuaki, M. Tick Bites in Japan. J. Dermatol. 2021, 48, 423–430. [Google Scholar] [CrossRef]
- Carroll, J.F.; Benante, J.P.; Kramer, M.; Lohmeyer, K.H.; Lawrence, K. Formulations of DEET, picaridin, and IR3535 applied to skin repel nymphs of the lone star tick (Acari: Ixodidae) for 12 hours. J. Med. Entomol. 2010, 47, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Traoré, A.; Niyondiko, G.; Sanou, A.; Langevin, F.; Sagnon, N.F.; Gansané, A.; Guelbeogo, M.W. Laboratory and Field Evaluation of MAÏA®, an Ointment Containing N, N-Diethyl-3-Methylbenzamide (DEET) Against Mosquitoes in Burkina Faso. Malar. J. 2021, 20, 226. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.P. Prolonged Efficacy of IR3535 Repellents Against Mosquitoes and Blacklegged Ticks in North America. J. Med. Entomol. 2008, 45, 706–714. [Google Scholar] [CrossRef]
- Magano, S.R.; Mkolo, M.N.S.; Shai, L.J. Repellent Properties of Nicotiana tabacum and Eucalyptus globoidea Against Adults of Hyalomma marginatum rufipes. Afr. J. Microbiol. Res. 2011, 5, 4508–4512. [Google Scholar]
- Soutar, O.; Cohen, F.; Wall, R. Essential Oils as Tick Repellents on Clothing. Exp. Appl. Acarol. 2019, 79, 209–219. [Google Scholar] [CrossRef]
- Iovinella, I.; Caputo, B.; Cobre, P.; Manica, M.; Mandoli, A.; Dani, F.R. Advances in mosquito repellents: Effectiveness of citronellal derivatives in laboratory and field trials. Pest Manag. Sci. 2022, 78, 5106–5112. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Tong, F.; Bloomquist, J.R. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 826–832. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, A.K.; Kumar, S.; Sankar, M.; Ghosh, S. Synergistic properties of essential oils of eucalyptus (Eucalyptus globulus) and lemon grass (Cymbopogon flexuosus) against cattle tick, Rhipicephalus microplus. Int. J. Acarol. 2022, 48, 338–343. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Khalil, N.S.; Azeem, M.; Taher, E.A.; Göransson, U.; Pålsson, K.; Borg-Karlson, A.-K. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae). J. Med. Entomol. 2014, 49, 1067–1075. [Google Scholar] [CrossRef]
- Alibeigi, Z.; Rakhshandehroo, E.; Saharkhiz, M.J.; Alavi, A.M. The acaricidal and repellent activity of the essential and nano essential oil of Thymus vulgaris against the brown dog tick, Rhipicephalus sanguineus (Acari: Ixodidae). Preprint 2023. [Google Scholar] [CrossRef]
- Madreseh-Ghahfarokhi, S.; Dehghani-Samani, A.; Pirali, Y.; Dehghani-Samani, A. Zingiber officinalis and Eucalyptus globulus, potent lethal/repellent agents against Rhipicephalus bursa, probable carrier for zoonosis. J. Arthropod-Borne Dis. 2019, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Mazuecos, L.; Contreras, M. Innovative approaches for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis. 2023, 14, 102227. [Google Scholar] [CrossRef] [PubMed]
- Siegel, E.L.; Xu, G.; Li, A.Y.; Pearson, P.; D’hers, S.; Elman, N.; Mather, T.N.; Rich, S.M. Ixodes scapularis is the most susceptible of the three canonical human-biting tick species of North America to repellent and acaricidal effects of the natural sesquiterpene, (+)-Nootkatone. Insects 2024, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Hogenbom, J.; Istanbouli, M.; Faraone, N. Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties. Molecules 2021, 26, 7391. [Google Scholar] [CrossRef]
- Adenubi, O.T.; Abolaji, A.O.; Salihu, T.; Akande, F.A.; Lawal, H. Chemical composition and acaricidal activity of Eucalyptus globulus essential oil against the vector of tropical bovine piroplasmosis, Rhipicephalus (Boophilus) annulatus. Exp. Appl. Acarol. 2021, 83, 301–312. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, J.; Wang, Y.; Battsetseg, B.; Battur, B.; Zhang, H.; Zhou, J. Repellent effects of Chinese cinnamon oil on nymphal ticks of Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Hyalomma asiaticum. Exp. Appl. Acarol. 2023, 91, 497–507. [Google Scholar] [CrossRef]
- Sharma, A. Efficacy of Nicotiana tabacum as a biocontrol agent against cattle ticks. J. Entomol. Zool. Stud. 2020, 8, 220–222. [Google Scholar]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and its topical applications: A review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
- Li Pomi, F.; Papa, V.; Borgia, F.; Vaccaro, M.; Allegra, A.; Cicero, N.; Gangemi, S. Rosmarinus officinalis and skin: Antioxidant activity and possible therapeutic role in cutaneous diseases. Antioxidants 2023, 12, 680. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Hillebrand, G.G.; Nunez, G. Rosmarinus officinalis L. (Rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics 2020, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Tadee, P.; Chansakaow, S.; Tipduangta, P.; Tadee, P.; Khaodang, P.; Chukiatsiri, K. Essential oil pharmaceuticals for killing ectoparasites on dogs. J. Vet. Sci. 2024, 25, e5. [Google Scholar] [CrossRef]
- Peixoto, M.G.; Costa-Júnior, L.M.; Blank, A.F.; Lima, A.D.S.; Menezes, T.S.A.; Santos, D.D.A.; Alves, P.B.; Cavalcanti, S.C.D.H.; Bacci, L.; Arrigoni-Blank, M.D.F. Acaricidal activity of essential oils from Lippia alba genotypes and its major components carvone, limonene, and citral against Rhipicephalus microplus. Vet. Parasitol. 2015, 210, 118–122. [Google Scholar] [CrossRef]
- Tabanca, N.; Wang, M.; Avonto, C.; Chittiboyina, A.; Parcher, J.; Carroll, J.; Kramer, M.; Khan, I. Bioactivity-Guided Investigation of Geranium Essential Oils as Natural Tick Repellents. J. Agric. Food Chem. 2013, 61, 4101–4107. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, L.; Fan, P.; Deng, Y.-J.; Ding, C.; Liao, M.; Su, X.; Cao, H. Application Method Affects Pesticide Efficiency and Effectiveness in Wheat Fields. Pest Manag. Sci. 2019, 76, 1256–1264. [Google Scholar] [CrossRef]
- Mitchell, C.; Dyer, M.; Lin, F.C.; Bowman, N.; Mather, T.; Meshnick, S. Protective Effectiveness of Long-Lasting Permethrin Impregnated Clothing Against Tick Bites in an Endemic Lyme Disease Setting: A Randomized Control Trial Among Outdoor Workers. J. Med. Entomol. 2020, 57, 1532–1538. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Poffley, A.; Funkhouser, S.; Driver, J.; Ross, J.; Ospina, M.; Calafat, A.M.; Beard, C.B.; White, A.; Balanay, J.A.; et al. Bioabsorption and Effectiveness of Long-Lasting Permethrin-Treated Uniforms Over Three Months Among North Carolina Outdoor Workers. Parasites Vectors 2019, 12, 52. [Google Scholar] [CrossRef]
- Katuri, R.N.; Das, G.; Singh, A.K.; Chalhotra, S.K.; Nath, S. Comparative Efficacy of Deltamethrin and Chlorpyriphos in Bovine Ticks in and Around Jabalpur. J. Parasitol. Dis. 2017, 41, 713–715. [Google Scholar] [CrossRef]
- Pfister, K.; Armstrong, R. Systemically and Cutaneously Distributed Ectoparasiticides: A Review of the Efficacy Against Ticks and Fleas on Dogs. Parasites Vectors 2016, 9, 436. [Google Scholar] [CrossRef] [PubMed]
- Marčić, D.; Mutavdzic, S.; Medjo, I.; Prijovic, M.; Peric, P. Field and Greenhouse Evaluation of Spirodiclofen Against Panonychus ulmi and Tetranychus urticae (Acari: Tetranychidae) in Serbia. Zoosymposia 2011, 6, 93–98. [Google Scholar] [CrossRef]
- Yadav, N.; Upadhyay, R.; Ravi, K.; Upadhyay, A. Acaricidal Potential of Various Plant Natural Products: A Review. Int. J. Green Pharm. 2022, 15, 353. [Google Scholar]
- Nyahangare, E.T.; Mvumi, B.M.; McGaw, L.J.; Eloff, J.N. Addition of a Surfactant to Water Increases the Acaricidal Activity of Extracts of Some Plant Species Used to Control Ticks by Zimbabwean Smallholder Farmers. BMC Vet. Res. 2019, 15, 404. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- De Rouck, S.; İnak, E.; Dermauw, W.; Van Leeuwen, T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochem. Mol. Biol. 2023, 159, 103981. [Google Scholar] [CrossRef]
- Jones, P.M.; George, A.M. The ABC transporter structure and mechanism: Perspectives on recent research. Cell. Mol. Life Sci. 2004, 61, 682–699. [Google Scholar] [CrossRef]
- Sabadin, G.A.; Salomon, T.B.; Leite, M.S.; Benfato, M.S.; Oliveira, P.L.; da Silva Vaz, I. An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitol. Int. 2021, 81, 102274. [Google Scholar] [CrossRef]
- Ruiz-May, E.; Álvarez-Sánchez, M.E.; Aguilar-Tipacamú, G.; Elizalde-Contreras, J.M.; Bojórquez-Velázquez, E.; Zamora-Briseño, J.A.; Vázquez-Carrillo, L.I.; López-Esparza, A. Comparative proteome analysis of the midgut of Rhipicephalus microplus (Acari: Ixodidae) strains with contrasting resistance to ivermectin reveals the activation of proteins involved in the detoxification metabolism. J. Proteom. 2022, 263, 104618. [Google Scholar] [CrossRef]
- Silatsa, B.A.; Kuiaté, J.R.; Njiokou, F.; Simo, G.; Feussom, J.M.K.; Tunrayo, A.; Amzati, G.; Bett, B.K.; Bishop, R.P.; Githaka, N.; et al. A Countrywide Molecular Survey Leads to a Seminal Identification of the Invasive Cattle Tick Rhipicephalus (Boophilus) microplus in Cameroon, a Decade After It Was Reported in Côte d’Ivoire. Ticks Tick-Borne Dis. 2019, 10, 585–593. [Google Scholar] [CrossRef]
- Silva, J.H.D.; Rebesquini, R.; Setim, D.H.; Scariot, C.A.; Vieira, M.I.B.; Zanella, R.; Motta, A.C.D.; Alves, L.P.; Bondan, C. Chemoprophylaxis for Babesiosis and Anaplasmosis in Cattle: Case Report. Rev. Bras. Parasitol. Vet. 2020, 29, e010520. [Google Scholar] [CrossRef] [PubMed]
- Luguru, S.M.; Chizyuka, H.G.B.; Musisi, F.L. A survey for resistance to acaricides in cattle ticks (Acari: Ixodidae) in three major traditional cattle areas in Zambia. Bull. Entomol. Res. 1987, 77, 569–574. [Google Scholar] [CrossRef]
- Baker, J.A.F.; Shaw, R.D. Toxaphene and Lindane resistance in Rhipicephalus appendiculatus, the brown ear tick of equatorial and Southern Africa. J. S. Afr. Vet. Assoc. 1965, 36, 321–330. [Google Scholar]
- Rosario-Cruz, R.; Miranda-Miranda, E.; Garcia-Vasquez, Z.; Ortiz-Estrada, M. Detection of esterase activity in susceptible and organophosphate-resistant strains of the cattle tick Boophilus microplus (Acari: Ixodidae). Bull. Entomol. Res. 1997, 87, 197–202. [Google Scholar] [CrossRef]
- Achi, L.Y.; Boka, M.; Biguezoton, A.S.; Yao, P.K.; Adakal, H.; Kande, S.; Alain, A.; Koffi, L.S.; Akoto, P.R.; Kone, M. Resistance of the Cattle Tick Rhipicephalus microplus to Alphacypermethrin, Deltamethrin, and Amitraz in Côte D’Ivoire. Int. J. Biol. Chem. Sci. 2022, 16, 910–922. [Google Scholar] [CrossRef]
- Vudriko, P.; Okwee-Acai, J.; Tayebwa, D.S.; Byaruhanga, J.; Kakooza, S.; Wampande, E.; Omara, R.; Muhindo, J.B.; Tweyongyere, R.; Owiny, D.O.; et al. Emergence of Multi-Acaricide Resistant Rhipicephalus Ticks and Its Implication on Chemical Tick Control in Uganda. Parasites Vectors 2016, 9, 4. [Google Scholar] [CrossRef]
- Villar, D.; Klafke, G.M.; Rodríguez-Durán, A.; Bossio, F.; Miller, R.J.; Adalberto, A.P.L.; Cortés-Vecino, J.A.; Chaparro-Gutiérrez, J.J. Resistance Profile and Molecular Characterization of Pyrethroid Resistance in a Rhipicephalus microplus Strain From Colombia. Med. Vet. Entomol. 2019, 34, 105–115. [Google Scholar] [CrossRef]
- Villar, D.; Schaeffer, D.J. Uso De Ivermectina en Ganado en Pastoreo en Colombia: Resistencia Parasitaria E Impacto en La Comunidad De Estiércol. Rev. Colomb. Cienc. Pecu. 2022, 36, 3–12. [Google Scholar]
- Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Patrick, K.Y.; Belem, A.M.G.; Farougou, S.; Oosthuizen, M.C.; Saegerman, C.; Lempereur, L. Efficacy of Two Commercial Synthetic Pyrethroids (Cypermethrin and Deltamethrin) on Amblyomma variegatum and Rhipicephalus microplus Strains of the South-Western Region of Burkina Faso. Trop. Anim. Health Prod. 2021, 53, 402. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, H.; Jyoti; Prerna, M.; Rath, S.S. First Report of Ivermectin Resistance in Field Populations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in Punjab Districts of India. Vet. Parasitol. 2015, 214, 192–194. [Google Scholar] [CrossRef]
- Sajid, M.S.; Iqbal, Z.; Khan, M.N.; Muhammad, G. In Vitro and In Vivo Efficacies of Ivermectin and Cypermethrin Against the Cattle Tick Hyalomma anatolicum anatolicum (Acari: Ixodidae). Parasitol. Res. 2009, 105, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Sungirai, M.; Baron, S.; Moyo, D.Z.; Clercq, P.D.; Maritz-Olivier, C.; Madder, M. Genotyping Acaricide Resistance Profiles of Rhipicephalus microplus Tick Populations From Communal Land Areas of Zimbabwe. Ticks Tick-Borne Dis. 2018, 9, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Sungirai, M.; Moyo, D.Z.; Clercq, P.D.; Madder, M. Communal Farmers’ Perceptions of Tick-Borne Diseases Affecting Cattle and Investigation of Tick Control Methods Practiced in Zimbabwe. Ticks Tick-Borne Dis. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Al-Deeb, M.A.; Muzaffar, S.B. Prevalence, Distribution on Host’s Body, and Chemical Control of Camel Ticks Hyalomma dromedarii in the United Arab Emirates. Vet. World 2020, 13, 114–120. [Google Scholar] [CrossRef]
- Habeeba, S. Acaricide Resistance in Ticks From Livestock Farms in Abu Dhabi, United Arab Emirates. Acarologia 2024, 64, 138–145. [Google Scholar] [CrossRef]
- Fazzio, L.E.; Yacachury, N.; Galvan, W.R.; Peruzzo, E.J.; Sánchez, R.O.; Gimeno, E.J. Impact of Ivermectin-Resistant Gastrointestinal Nematodes in Feedlot Cattle in Argentina. Pesq. Vet. Bras. 2012, 32, 419–423. [Google Scholar] [CrossRef]
- Harsimran Kaur, G.; Harsh, G. Pesticides: Environmental Impacts and Management Strategies. In Pesticides; Marcelo, L.L., Sonia, S., Eds.; IntechOpen: Rijeka, Croatia, 2014; Chapter 8. [Google Scholar]
- Ray, S.; Shaju, S.T. Bioaccumulation of Pesticides in Fish Resulting in Toxicities in Humans Through the Food Chain and Forensic Aspects. Environ. Anal. Health Toxicol. 2023, 38, e2023017-0. [Google Scholar] [CrossRef]
- Deshpande, G.; Beetch, J.E.; Heller, J.G.; Naqvi, O.H.; Kuhn, K.G. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023, 12, 50. [Google Scholar] [CrossRef]
- Tardy, O.; Acheson, E.S.; Bouchard, C.; Chamberland, É.; Fortin, A.; Ogden, N.H.; Leighton, P.A. Mechanistic Movement Models to Predict Geographic Range Expansions of Ticks and Tick-Borne Pathogens: Case Studies with Ixodes scapularis and Amblyomma americanum in Eastern North America. Ticks Tick-Borne Dis. 2023, 14, 102161. [Google Scholar] [CrossRef]
- Gilbert, L. The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annu. Rev. Entomol. 2021, 66, 373–388. [Google Scholar] [CrossRef]
- Bourdin, A.; Dokhelar, T.; Séverine, B.; Van Halder, I.; Stemmelen, A.; Scherer-Lorenzen, M.; Jactel, H. Forests Harbor More Ticks Than Other Habitats: A Meta-Analysis. For. Ecol. Manag. 2023, 541, 121081. [Google Scholar] [CrossRef]
- Eisen, L. Control of Ixodid Ticks and Prevention of Tick-Borne Diseases in the United States: The Prospect of a New Lyme Disease Vaccine and the Continuing Problem With Tick Exposure on Residential Properties. Ticks Tick-Borne Dis. 2021, 12, 101649. [Google Scholar] [CrossRef] [PubMed]
- Bellato, A.; Pintore, M.D.; Catelan, D.; Pautasso, A.; Torina, A.; Rizzo, F.; Mandola, M.L.; Mannelli, A.; Casalone, C.; Tomassone, L. Risk of Tick-Borne Zoonoses in Urban Green Areas: A Case Study from Turin, Northwestern Italy. Urban For. Urban Green. 2021, 64, 127297. [Google Scholar] [CrossRef]
- Janzén, T.; Choudhury, F.; Hammer, M.; Petersson, M.; Dinnétz, P. Ticks—Public Health Risks in Urban Green Spaces. BMC Public Health 2024, 24, 1031. [Google Scholar] [CrossRef] [PubMed]
- Farkhanda, M.; Mahnoor, P. Pesticide Impact on Honeybees Declines and Emerging Food Security Crisis. In Global Decline of Insects; Hamadttu Abdel Farag, E.-S., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 4. [Google Scholar]
- Vanbergen, A.J.; Initiative, T.I.P. Threats to an Ecosystem Service: Pressures on Pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides Impacts on Human Health and the Environment with Their Mechanisms of Action and Possible Countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Hertz-Picciotto, I.; Sass, J.B.; Engel, S.; Bennett, D.H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate Exposures During Pregnancy and Child Neurodevelopment: Recommendations for Essential Policy Reforms. PLoS Med. 2018, 15, e1002671. [Google Scholar] [CrossRef]
- de-Assis, M.P.; Barcella, R.C.; Padilha, J.C.; Pohl, H.H.; Krug, S.B.F. Health Problems in Agricultural Workers Occupationally Exposed to Pesticides. Rev. Bras. Med. Trab. 2021, 18, 352–363. [Google Scholar] [CrossRef]
- Peivasteh-roudsari, L.; Barzegar-bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, Dietary Exposure, and Toxicity of Endocrine-Disrupting Food Chemical Contaminants: A Comprehensive Review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Ercan, O.; Tarcin, G. Overview on Endocrine Disruptors in Food and Their Effects on Infant’s Health. Glob. Pediatr. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Houston, T.J.; Ghosh, R. Untangling the Association Between Environmental Endocrine Disruptive Chemicals and the Etiology of Male Genitourinary Cancers. Biochem. Pharmacol. 2020, 172, 113743. [Google Scholar] [CrossRef] [PubMed]
- Diaha-Kouame, C.A.; Kouassi, P.Y.; Djè, T.; Christian, K.; Alain, A.; Koffi, K.; Aimée, C. Evaluation of Acaricide Activity in the Leaves Extracts of Four Medicinal Local Plants on Rhipicephalus (Boophilus) microplus (Canestrini, 1888). Mortality 2017, 100, 3. [Google Scholar]
- Andreadis, S.S.; Athanassiou, C.G. A Review of Insect Cold Hardiness and Its Potential in Stored Product Insect Control. Crop Prot. 2017, 91, 93–99. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature Review: Impact of Climate Change on Pesticide Use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Buczek, A.; Bartosik, K.; Buczek, W.; Kuczyński, P. The Effect of Sublethal Concentrations of Deltamethrin and Alphacypermethrin on the Fecundity and Development of Ixodes ricinus (Acari: Ixodidae) Eggs and Larvae. Exp. Appl. Acarol. 2019, 78, 203–221. [Google Scholar] [CrossRef]
- Silva, A.F.d.; Oliveira, R.B.d.; Gandolfo, M.A. Mapping of the Time Available for Application of Pesticides in the State of Paraná, Brazil. Acta Sci. Agron. 2018, 40, 39421. [Google Scholar] [CrossRef]
- Stanislavski, W.M.; Antuniassi, U.R.; Chechetto, R.G. Air Flow Humidification for Air-Assisted Boom Sprayer. Eng. Agric. 2014, 34, 48–56. [Google Scholar] [CrossRef]
- Lamelas, M.T.; Moreno, C.; Ferrer, M.; Sanz, A.; Peribáñez, M.A.; Estrada, R. Field Efficacy of Acaricides Against Varroa destructor. PLoS ONE 2017, 12, e0171633. [Google Scholar]
- Nandanwar, S.K.; Yele, Y.; Dixit, A.; Goss-Souza, D.; Singh, R.; Shanware, A.; Kharbikar, L.L. Effects of Pesticides, Temperature, Light, and Chemical Constituents of Soil on Nitrogen Fixation. In Nitrogen Fixation; Rigobelo, E.C., Serra, A.P., Eds.; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/66973 (accessed on 29 January 2025).
- Edwards, C.A. Factors That Affect the Persistence of Pesticides in Plants and Soils. In Pesticide Chemistry–3; Varo, P., Ed.; Pure Appl. Chem. 1975, 42, 39–56. [Google Scholar] [CrossRef]
- Davie-Martin, C.L.; Hageman, K.J.; Chin, Y.-P.; Rougé, V.; Fujita, Y. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil–Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models. Environ. Sci. Technol. 2015, 49, 10431–10439. [Google Scholar] [CrossRef]
- Lurwanu, Y.; Wang, Y.; Wu, E.J.; He, D.-C.; Waheed, A.; Nkurikiyimfura, O.; Wang, Z.; Shang, L.P.; Yang, L.; Zhan, J. Increasing Temperature Elevates the Variation and Spatial Differentiation of Pesticide Tolerance in a Plant Pathogen. Evol. Appl. 2021, 14, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yang, M.; Xie, S.; Liu, J.; Zheng, S. Research on the Impact of Air Temperature and Wind Speed on Ventilation in University Dormitories Under Different Wind Directions (Northeast China). Buildings 2024, 14, 361. [Google Scholar] [CrossRef]
- Kar, S.; Sirin, D.; Akyildiz, G.; Sakaci, Z.; Talay, S.; Camlitepe, Y. Predation of Ant Species Lasius alienus on Tick Eggs: Impacts of Egg Wax Coating and Tick Species. Sci. Rep. 2022, 12, 14773. [Google Scholar] [CrossRef]
- Diplock, N.; Johnston, K.; Mellon, A.; Mitchell, L.; Moore, M.; Schneider, D.; Taylor, A.; Whitney, J.; Zegar, K.; Kioko, J.; et al. Large Mammal Declines and the Incipient Loss of Mammal-Bird Mutualisms in an African Savanna Ecosystem. PLoS ONE 2018, 13, e0202536. [Google Scholar] [CrossRef]
- Ramos, R.A.N.; de Macedo, L.O.; Bezerra-Santos, M.A.; de Carvalho, G.A.; Verocai, G.G.; Otranto, D. The Role of Parasitoid Wasps, Ixodiphagus spp. (Hymenoptera: Encyrtidae), in Tick Control. Pathogens 2023, 12, 676. [Google Scholar] [CrossRef]
- Alonso-Díaz, M.A.; Fernández-Salas, A. Entomopathogenic Fungi for Tick Control in Cattle Livestock From Mexico. Front. Fungal Biol. 2021, 2, 657694. [Google Scholar] [CrossRef]
- Kirby, C.S.; Sandra, A.A. Field Applications of Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae F52 (Hypocreales: Clavicipitaceae) for the Control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 1107–1115. [Google Scholar]
- Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key Role of Environmental Competence in Successful Use of Entomopathogenic Fungi in Microbial Pest Control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- Samish, M.; Ginsberg, H.; Glazer, I. Biological Control of Ticks. Parasitology 2004, 129, S389–S403. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling Ticks and Tick-Borne Zoonoses with Biological and Chemical Agents. BioScience 2006, 56, 383–394. [Google Scholar] [CrossRef]
- Wężyk, D.; Bajer, A.; Dwużnik-Szarek, D. How to Get Rid of Ticks—A Mini-Review on Tick Control Strategies in Parks, Gardens, and Other Human-Related Environments. Ann. Agric. Environ. Med. 2024. Available online: https://www.aaem.pl/How-to-get-rid-of-ticks-a-mini-review-on-tick-control-strategies-in-parks-gardens,189930,0,2.html (accessed on 29 January 2025). [CrossRef]
- Oundo, J.W.; Kalayou, S.; Gort, G.; Bron, G.M.; Koenraadt, C.J.M.; ten Bosch, Q.; Masiga, D. A Randomized Controlled Trial of Tickoff® (Metarhizium anisopliae ICIPE 7) for Control of Tick Infestations and Transmission of Tick-Borne Infections in Extensively Grazed Zebu Cattle in Coastal Kenya. Parasite Epidemiol. Control 2024, 27, e00384. [Google Scholar] [CrossRef] [PubMed]
- Polar, P.; Moore, D.; Kairo, M.T.K.; Ramsubhag, A. Topically Applied Myco-Acaricides for the Control of Cattle Ticks: Overcoming the Challenges. Exp. Appl. Acarol. 2008, 46, 119–148. [Google Scholar] [CrossRef] [PubMed]
- Nana, P.; Nchu, F.; Ekesi, S.; Boga, H.I.; Kamtchouing, P.; Maniania, N.K. Efficacy of Spot-Spray Application of Metarhizium anisopliae Formulated in Emulsifiable Extract of Calpurnia aurea in Attracting and Infecting Adult Rhipicephalus appendiculatus Ticks in Semi-Field Experiments. J. Pest Sci. 2015, 88, 613–619. [Google Scholar] [CrossRef]
- Gilbert, L.; Brülisauer, F.; Willoughby, K.; Cousens, C. Identifying Environmental Risk Factors for Louping Ill Virus Seroprevalence in Sheep and the Potential to Inform Wildlife Management Policy. Front. Vet. Sci. 2020, 7, 377. [Google Scholar] [CrossRef]
- Guo, E.; Agusto, F.B. Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 5300887. [Google Scholar] [CrossRef]
- Heylen, D.; Lasters, R.; Adriaensen, F.; Fonville, M.; Sprong, H.; Matthysen, E. Ticks and Tick-Borne Diseases in the City: Role of Landscape Connectivity and Green Space Characteristics in a Metropolitan Area. Sci. Total Environ. 2019, 670, 941–949. [Google Scholar] [CrossRef]
- Mariyappan, M.; Rajendran, M.; Velu, S.; Johnson, A.; Dinesh, G.K.; Solaimuthu, K.; Kaliyappan, M.; Sankar, M. Ecological Role and Ecosystem Services of Birds: A Review. Int. J. Environ. Clim. Change 2023, 13, 76–87. [Google Scholar] [CrossRef]
- Gallagher, M.R.; Kreye, J.K.; Machtinger, E.T.; Everland, A.; Schmidt, N.; Skowronski, N.S. Can Restoration of Fire-Dependent Ecosystems Reduce Ticks and Tick-Borne Disease Prevalence in the Eastern United States? Ecol. Appl. 2022, 32, e2637. [Google Scholar] [CrossRef]
- Coleman, N.; Coleman, S. Methods of Tick Removal: A Systematic Review of the Literature. Australas. Med. J. 2017, 10, 53. [Google Scholar] [CrossRef]
- Varloud, M.; Liebenberg, J.; Fourie, J.J. Early Babesia canis Transmission in Dogs Within 24 h and 8 h of Infestation With Infected Pre-Activated Male Dermacentor reticulatus Ticks. Parasites Vectors 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gherman, C.M.; Mihalca, A.D.; Dumitrache, M.O.; Györke, A.; Oroian, I.; Sandor, M.; Cozma, V. CO2 Flagging—An Improved Method for the Collection of Questing Ticks. Parasit Vectors 2012, 5, 125. [Google Scholar] [CrossRef] [PubMed]
- Tabor, A.E.; Ali, A.; Rehman, G.; Rocha Garcia, G.; Zangirolamo, A.F.; Malardo, T.; Jonsson, N.N. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front. Cell Infect. Microbiol. 2017, 7, 506. [Google Scholar] [CrossRef]
- Cruz-González, G.; Pinos-Rodríguez, J.M.; Alonso-Díaz, M.; Romero-Salas, D.; Vicente-Martínez, J.G.; Fernández-Salas, A.; Jarillo-Rodríguez, J.; Castillo-Gallegos, E. Rotational Grazing Modifies Rhipicephalus microplus Infestation in Cattle in the Humid Tropics. Animals 2023, 13, 915. [Google Scholar] [CrossRef]
- Nicaretta, J.E.; Dos Santos, J.B.; Couto, L.F.M.; Heller, L.M.; Cruvinel, L.B.; de Melo Júnior, R.D.; de Assis Cavalcante, A.S.; Zapa, D.M.B.; Ferreira, L.L.; de Oliveira Monteiro, C.M. Evaluation of Rotational Grazing as a Control Strategy for Rhipicephalus microplus in a Tropical Region. Res. Vet. Sci. 2020, 131, 92–97. [Google Scholar] [CrossRef]
- Fernandez-Ruvalcaba, M.; Preciado-De-La Torre, F.; Cruz-Vazquez, C.; Garcia-Vazquez, Z. Anti-Tick Effects of Melinis minutiflora and Andropogon gayanus Grasses on Plots Experimentally Infested with Boophilus microplus Larvae. Exp. Appl. Acarol. 2004, 32, 293–299. [Google Scholar] [CrossRef]
- Gortazar, C.; Diez-Delgado, I.; Barasona, J.A.; Vicente, J.; De La Fuente, J.; Boadella, M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front. Vet. Sci. 2014, 1, 27. [Google Scholar] [CrossRef]
- Aguilar-Díaz, H.; Quiroz-Castañeda, R.E.; Cobaxin-Cárdenas, M.; Salinas-Estrella, E.; Amaro-Estrada, I. Advances in the Study of the Tick Cattle Microbiota and the Influence on Vectorial Capacity. Front. Vet. Sci. 2021, 8, 710352. [Google Scholar] [CrossRef]
- Aguilar-Díaz, H.; Quiroz-Castañeda, R.E.; Salazar-Morales, K.; Cossío-Bayúgar, R.; Miranda-Miranda, E. Tick Immunobiology and Extracellular Traps: An Integrative Vision to Control of Vectors. Pathogens 2021, 10, 1511. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Salman, M. Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture 2013, 3, 221–235. [Google Scholar] [CrossRef]
- Quiroz Castañeda, R.E.; Amaro-Estrada, I.; Martínez-Ocampo, F.; Rodríguez-Camarillo, S.; Dantán González, E.; Cobaxin-Cárdenas, M.; Preciado-de la Torre Jesús, F. Draft Genome Sequence of Anaplasma marginale Strain Mex-01-001-01, a Mexican Strain That Causes Bovine Anaplasmosis. Microbiol. Resour. Announc. 2018, 7, e01101-18. [Google Scholar] [CrossRef] [PubMed]
- Klyachko, O.; Stein, B.; Grindle, N.; Clay, K.; Fuqua, C. Localization and Visualization of a Coxiella-Type Symbiont Within the Lone Star Tick, Amblyomma americanum. Appl. Environ. Microbiol. 2007, 73, 6584–6594. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.B.B.; Marrelli, M.T. Paratransgenesis: A Promising New Strategy for Mosquito Vector Control. Parasites Vectors 2015, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.B.; Cordon-Rosales, C.; Durvasula, R.V. Bacterial Symbionts of the Triatominae and Their Potential Use in Control of Chagas Disease Transmission. Annu. Rev. Entomol. 2002, 47, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.A.; Jacobs-Lorena, M. Using Bacteria to Express and Display Anti-Parasite Molecules in Mosquitoes: Current and Future Strategies. Insect Biochem. Mol. Biol. 2005, 35, 699–707. [Google Scholar] [CrossRef]
- Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Adamson, S.E.; Dowd, S.E.; Apanskevich, D.; Arijo, A.; et al. A Study of Ticks and Tick-Borne Livestock Pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [Google Scholar] [CrossRef]
- Duron, O.; Morel, O.; Noël, V.; Buysse, M.; Binetruy, F.; Lancelot, R.; Loire, E.; Ménard, C.; Bouchez, O.; Vavre, F.; et al. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Curr. Biol. 2018, 28, 1896–1902.e5. [Google Scholar] [CrossRef]
- Adegoke, A.; Kumar, D.; Bobo, C.; Rashid, M.I.; Durrani, A.Z.; Sajid, M.S.; Karim, S. Tick-Borne Pathogens Shape the Native Microbiome Within Tick Vectors. Microorganisms 2020, 8, 1299. [Google Scholar] [CrossRef]
- Mateos-Hernández, L.; Obregón, D.; Maye, J.; Borneres, J.; Versille, N.; de la Fuente, J.; Estrada-Peña, A.; Hodžić, A.; Šimo, L.; Cabezas-Cruz, A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance During Feeding. Vaccines 2020, 8, 702. [Google Scholar] [CrossRef]
- Ndawula, C.; Tabor, A.E. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches Toward Enhanced Efficacies. Vaccines 2020, 8, 457. [Google Scholar] [CrossRef]
- Rodríguez-Valle, M.; Taoufik, A.; Valdés, M.; Montero, C.; Ibrahin, H.; Hassan, S.M.; Jongejan, F.; de la Fuente, J. Efficacy of Rhipicephalus (Boophilus) microplus Bm86 Against Hyalomma dromedarii and Amblyomma cajennense Tick Infestations in Camels and Cattle. Vaccine 2012, 30, 3453–3458. [Google Scholar] [CrossRef] [PubMed]
- Torina, A.; Moreno-Cid, J.A.; Blanda, V.; Fernández de Mera, I.G.; Pérez de la Lastra, J.M.; Scimeca, S.; Blanda, M.; Scariano, M.E.; Briganò, S.; Disclafani, R.; et al. Control of Tick Infestations and Pathogen Prevalence in Cattle and Sheep Farms Vaccinated with the Recombinant Subolesin-Major Surface Protein 1a Chimeric Antigen. Parasites Vectors 2014, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Sajid, A.; Matias, J.; Arora, G.; Kurokawa, C.; DePonte, K.; Tang, X.-T.; Lynn, G.; Wu, M.-J.; Pal, U.; Strank, N.; et al. mRNA Vaccination Induces Tick Resistance and Prevents Transmission of the Lyme Disease Agent. Sci. Transl. Med. 2021, 13, eabj9827. [Google Scholar] [CrossRef] [PubMed]
- Anguita, J.; Ramamoorthi, N.; Hovius, J.W.R.; Das, S.; Thomas, V.; Persinski, R.; Conze, D.; Askenase, P.W.; Rincón, M.; Kantor, F.S.; et al. Salp15, an Ixodes scapularis Salivary Protein, Inhibits CD4+ T Cell Activation. Immunity 2002, 16, 849–859. [Google Scholar] [CrossRef] [PubMed]
- González-Cueto, E.; de la Fuente, J.; López-Camacho, C. Potential of mRNA-Based Vaccines for the Control of Tick-Borne Pathogens in One Health Perspective. Front. Immunol. 2024, 15, 1384442. [Google Scholar] [CrossRef]
- Abbas, M.N.; Jmel, M.A.; Mekki, I.; Dijkgraaf, I.; Kotsyfakis, M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int. J. Mol. Sci. 2023, 24, 4969. [Google Scholar] [CrossRef]
- Merino, O.; Antunes, S.; Mosqueda, J.; Moreno-Cid, J.A.; Pérez de la Lastra, J.M.; Rosario-Cruz, R.; Rodríguez, S.; Domingos, A.; de la Fuente, J. Vaccination with Proteins Involved in Tick-Pathogen Interactions Reduces Vector Infestations and Pathogen Infection. Vaccine 2013, 31, 5889–5896. [Google Scholar] [CrossRef]
- Merino, O.; Almazán, C.; Canales, M.; Villar, M.; Moreno-Cid, J.A.; Galindo, R.C.; de la Fuente, J. Targeting the Tick Protective Antigen Subolesin Reduces Vector Infestations and Pathogen Infection by Anaplasma marginale and Babesia bigemina. Vaccine 2011, 29, 8575–8579. [Google Scholar] [CrossRef]
- Fritz, R.; Orlinger, K.K.; Hofmeister, Y.; Janecki, K.; Traweger, A.; Perez-Burgos, L.; Barrett, P.N.; Kreil, T.R. Quantitative Comparison of the Cross-Protection Induced by Tick-Borne Encephalitis Virus Vaccines Based on European and Far Eastern Virus Subtypes. Vaccine 2012, 30, 1165–1169. [Google Scholar] [CrossRef]
- Rosario-Cruz, R.; Domínguez-García, D.I.; Almazán, C. Inclusion of Anti-Tick Vaccines into an Integrated Tick Management Program in Mexico: A Public Policy Challenge. Vaccines 2024, 12, 403. [Google Scholar] [CrossRef]
- de la Fuente, J.; Contreras, M.; Estrada-Peña, A.; Cabezas-Cruz, A. Targeting a Global Health Problem: Vaccine Design and Challenges for the Control of Tick-Borne Diseases. Vaccine 2017, 35, 5089–5094. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Ghosh, S. Evolution of Tick Vaccinology. Parasitology 2024, 151, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathi, B.C.; Kumar, B.; Ghosh, S. Current Status and Future Prospects of Multi-Antigen Tick Vaccine. J. Vector Borne Dis. 2021, 58, 183–192. [Google Scholar] [CrossRef]
- Matias, J.; Kurokawa, C.; Sajid, A.; Narasimhan, S.; Arora, G.; Diktas, H.; Lynn, G.E.; DePonte, K.; Pardi, N.; Valenzuela, J.G.; et al. Tick Immunity Using mRNA, DNA, and Protein-Based Salp14 Delivery Strategies. Vaccine 2021, 39, 7661–7668. [Google Scholar] [CrossRef]
- Flemming, A. Tick-Targeted mRNA Vaccine to Tackle Disease Transmission? Nat. Rev. Immunol. 2022, 22, 4–5. [Google Scholar] [CrossRef]
- Mazuecos, L.; Alberdi, P.; Hernández-Jarguín, A.; Contreras, M.; Villar, M.; Cabezas-Cruz, A.; Simo, L.; González-García, A.; Díaz-Sánchez, S.; Neelakanta, G.; et al. Frankenbacteriosis Targeting Interactions Between Pathogen and Symbiont to Control Infection in the Tick Vector. iScience 2023, 26, 106697. [Google Scholar] [CrossRef]
- Rodriguez-Valle, M.; McAlister, S.; Moolhuijzen, P.M.; Booth, M.; Agnew, K.; Ellenberger, C.; Knowles, A.G.; Vanhoff, K.; Bellgard, M.I.; Tabor, A.E. Immunomic Investigation of Holocyclotoxins to Produce the First Protective Anti-Venom Vaccine Against the Australian Paralysis Tick, Ixodes holocyclus. Front. Immunol. 2021, 12, 744795. [Google Scholar] [CrossRef]
- de la Fuente, J.; Almazán, C.; Naranjo, V.; Blouin, E.F.; Meyer, J.M.; Kocan, K.M. Autocidal Control of Ticks by Silencing of a Single Gene by RNA Interference. Biochem. Biophys. Res. Commun. 2006, 344, 332–338. [Google Scholar] [CrossRef]
- Sharma, A.; Pham, M.N.; Reyes, J.B.; Chana, R.; Yim, W.C.; Heu, C.C.; Kim, D.; Chaverra-Rodriguez, D.; Rasgon, J.L.; Harrell, R.A., II; et al. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 2022, 25, 103781. [Google Scholar] [CrossRef]
- Costa, R.; Martins, A.; Oliveira, M.; Sousa Alcantara, I.; Ferreira, F.; Santos, F.; Delmondes, G.D.; Cunha, F.; Coutinho, H.; de Menezes, I.R. Acaricide activity of the Ximenia americana L. (Olacaceae) stem bark hydroethanolic extract against Rhipicephalus (Boophilus) microplus. Biologia 2021, 77, 1667–1674. [Google Scholar] [CrossRef]
- Nuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 2022, 77, 1503–1512. [Google Scholar] [CrossRef]
- Graf, J.-F.; Gogolewski, R.; Leach-Bing, N.; Sabatini, G.; Molento, M.; Bordin, E.; Arantes, G. Tick control: An industry point of view. Parasitology 2004, 129, S427–S442. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Rubiera, R.; Penichet, M.; Montesinos, R.; Cremata, J.; Falcón, V.; Sánchez, G.; Bringas, R.; Cordovés, C.; Valdés, M.; et al. High level expression of the B. microplus Bm86 antigen in the yeast Pichia pastoris forming highly immunogenic particles for cattle. J. Biotechnol. 1994, 33, 135–146. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J. The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Exp. Appl. Acarol. 2003, 29, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P.; Bird, P.; Cobon, G.; Hungerford, J. Commercialisation of a recombinant vaccine against Boophilus microplus. Parasitology 1995, 110, S43–S50. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef]
- Muhammad, G.; Naureen, A.; Firyal, S.; Saqib, M. Tick control strategies in dairy production medicine. Pak. Vet. J. 2008, 28, 43. [Google Scholar]
- Valle, M.R.; Mèndez, L.; Valdez, M.; Redondo, M.; Espinosa, C.M.; Vargas, M.; Cruz, R.L.; Barrios, H.P.; Seoane, G.; Ramirez, E.S.; et al. Integrated control of Boophilus microplus ticks in Cuba based on vaccination with the anti-tick vaccine Gavac. Exp. Appl. Acarol. 2004, 34, 375–382. [Google Scholar] [CrossRef]
- Ndawula, C. From Bench to Field: A Guide to Formulating and Evaluating Anti-Tick Vaccines Delving beyond Efficacy to Effectiveness. Vaccines 2021, 9, 1185. [Google Scholar] [CrossRef]
- Willadsen, P.; Riding, G.; McKenna, R.; Kemp, D.; Tellam, R.; Nielsen, J.; Lahnstein, J.; Cobon, G.; Gough, J. Immunologic control of a parasitic arthropod: Identification of a protective antigen from Boophilus microplus. J. Immunol. 1989, 143, 1346–1351. [Google Scholar] [CrossRef]
- Pipano, E.; Alekceev, E.; Galker, F.; Fish, L.; Samish, M.; Shkap, V. Immunity against Boophilus annulatus induced by the Bm86 (Tick-GARD) vaccine. Exp. Appl. Acarol. 2003, 29, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Lagunes-Quintanilla, R.; Gómez-Romero, N.; Mendoza-Martínez, N.; Castro-Saines, E.; Galván-Arellano, D.; Basurto-Alcantara, F.J. Perspectives on using integrated tick management to control Rhipicephalus microplus in a tropical region of Mexico. Front. Vet. Sci. 2024, 11, 1497840. [Google Scholar] [CrossRef] [PubMed]
- Hajdusek, O.; Almazán, C.; Loosova, G.; Villar, M.; Canales, M.; Grubhoffer, L.; Kopacek, P.; de la Fuente, J. Characterization of ferritin 2 for the control of tick infestations. Vaccine 2010, 28, 2993–2998. [Google Scholar] [CrossRef]
- Giles, J.R.; Peterson, A.T.; Busch, J.D.; Olafson, P.U.; Scoles, G.A.; Davey, R.B.; Pound, J.M.; Kammlah, D.M.; Lohmeyer, K.H.; Wagner, D.M. Invasive potential of cattle fever ticks in the southern United States. Parasites Vectors 2014, 7, 189. [Google Scholar] [CrossRef]
- Stafford, K.C., III; Williams, S.C.; Molaei, G. Integrated pest management in controlling ticks and tick-associated diseases. J. Integr. Pest Manag. 2017, 8, 28. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.; Ojeda-Chi, M.; Trinidad-Martinez, I.; de León, A.P. First documentation of ivermectin resistance in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). Vet. Parasitol. 2017, 233, 9–13. [Google Scholar] [CrossRef]
- Ghosh, S.; Azhahianambi, P.; Yadav, M. Upcoming and future strategies of tick control: A review. J. Vector Borne Dis. 2007, 44, 79. [Google Scholar]
- Piesman, J.; Eisen, L. Prevention of tick-borne diseases. Annu. Rev. Entomol. 2008, 53, 323–343. [Google Scholar] [CrossRef]
- Iqbal, A.; Sajid, M.S.; Khan, M.N.; Khan, M.K. Frequency distribution of hard ticks (Acari: Ixodidae) infesting bubaline population of district Toba Tek Singh, Punjab, Pakistan. Parasitol. Res. 2013, 112, 535–541. [Google Scholar] [CrossRef]
- Mac, S.; da Silva, S.R.; Sander, B. The economic burden of Lyme disease and the cost-effectiveness of Lyme disease interventions: A scoping review. PLoS ONE 2019, 14, e0210280. [Google Scholar] [CrossRef]
- Minjauw, B.; McLeod, A. Tick-Borne Diseases and Poverty: The Impact of Ticks and Tick-Borne Diseases on the Livelihoods of Small-Scale and Marginal Livestock Owners in India and Eastern and Southern Africa; FAO Animal Production and Health Division: Rome, Italy, 2003. [Google Scholar]
- van den Heever, M.J.J.; Lombard, W.A.; Bahta, Y.T.; Maré, F.A. The economic impact of heartwater on the South African livestock industry and the need for a new vaccine. Prev. Vet. Med. 2022, 203, 105634. [Google Scholar] [CrossRef] [PubMed]
- Mukhebi, A.W.; Morzaria, S.P.; Perry, B.D.; Dolan, T.T.; Norval, R.A.I. Cost analysis of immunization for East Coast fever by the infection and treatment method. Prev. Vet. Med. 1990, 9, 207–219. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez de León, A.A.; Villela, H.S.; Torres-Acosta, J.F.J.; Fragoso Sánchez, H.; Romero Salas, D.; Rosario Cruz, R.; Saldierna, F.; García Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. Cienc. Pecuarias 2017, 8, 61–74. [Google Scholar] [CrossRef]
- Senbill, H.; Hazarika, L.K.; Baruah, A.; Borah, D.K.; Bhattacharyya, B.; Rahman, S. Life cycle of the southern cattle tick, Rhipicephalus (Boophilus) microplus Canestrini 1888 (Acari: Ixodidae) under laboratory conditions. Syst. Appl. Acarol. 2018, 23, 1169–1179. [Google Scholar] [CrossRef]
Aspect | Details | References |
---|---|---|
Disease transmission | Ticks are significant vectors of pathogens (bacteria, viruses, protozoa) causing diseases such as Lyme disease, anaplasmosis, babesiosis, and tick-borne encephalitis. | [9,10] |
Human health impact | Range expansion increases zoonotic disease risks in non-endemic areas. | [11] |
Livestock health impact | In livestock, ticks cause anemia, weight loss, reduced milk production, and mortality. | [12,13,14] |
Companion animal health | In pets, ticks cause dermatitis and transmit diseases like ehrlichiosis, increasing the risk of disease transmission to humans. | [14] |
Economic impacts | Tick infestations result in economic losses from reduced productivity, veterinary costs, and acaricide use. | [15,16] |
Climate-driven risks | Climate change exacerbates tick abundance, geographic spread, and disease prevalence in humans and animals. | [3] |
Tick Species | Preferred Hosts | References |
---|---|---|
Amblyomma hebraeum | Cattle, sheep, goats, large wild ruminants (e.g., giraffes, buffalo, eland), warthogs, and rhinoceroses | [87] |
Amblyomma variegatum | Cattle, sheep, goats, and birds | [87] |
Hyalomma rufipes | Cattle, sheep, goats, horses, large herbivores, birds, and scrub hares | [87] |
Rhipicephalus decoloratus | Cattle, impalas, eland, nyalas, bushbuck, kudu, horses, and zebras | [87] |
R. microplus | Domestic cattle, goats, grey rhebok, and eland | [87] |
Rhipicephalus appendiculatus | Cattle, goats, African buffalo, eland, greater kudu, and sable antelope | [87] |
Haemaphysalis elliptica | Dogs, cats, and rodents | [87] |
Rhipicephalus sanguineus | Dogs, humans, and other mammals | [87] |
Class of Acaricide | Examples | Mode of Action | References |
---|---|---|---|
Organophosphates | Diazinon and chlorpyrifos | Inhibits acetylcholinesterase, leading to acetylcholine accumulation, paralysis, and death. | [23,155,156,157] |
Carbamates | Carbaryl | Inhibits acetylcholinesterase similar to organophosphates but with shorter residual effects. | [23,155,156,157] |
Pyrethroids | Permethrin, cypermethrin, and deltamethrin | Acts on sodium channels, causing hyperexcitation, paralysis, and death. | [23,155,156,157] |
Macrocyclic lactones | Ivermectin and moxidectin | Targets glutamate-gated chloride channels, leading to paralysis and death. | [23,155,156,157] |
Insect Growth Regulators (IGRs) | Methoprene and diflubenzuron | Disrupts molting and reproduction by mimicking hormones. | [23,155,156,157] |
Phenylpyrazoles | Fipronil | Blocks GABA receptors, causing uncontrolled neural activity and death. | [23,155,156,157] |
Chitin synthesis inhibitors | Etoxazole and novaluron | Prevents exoskeleton formation, disrupting growth and molting. | [158,159] |
Biological acaricides | Neem extract and clove extract | Multiple mechanisms including neurotoxic and metabolic disruption. | [160] |
Natural Repellent | Source | Active Compounds | Efficacy | References |
---|---|---|---|---|
Catnip oil | Nepeta cataria | Nepetalactone | 84% repellent effect after 2 h | [198] |
Eucalyptus oil | Eucalyptus globulus | Eucalyptol | 97% acaricidal mortality at 10% concentration | [199] |
Garlic extract | Allium sativum | Allicin | Significant repellent activity: 87% (males) and 87.5% (females); 4% avoidance | [187] |
Cinnamon oil | Cinnamomum verum | Cinnamaldehyde | 68–97% (Hae. longicornis), 69–94% (R. haemaphysaloides), and 69–93% (H. asiaticum) | [200] |
Tobacco extract | N. tabacum | Nicotine and anatabine | 100% mortality at 36 h (60% concentration) and 100% mortality at 48 h (all concentrations) in R. microplus | [201] |
Rosemary oil | Rosmarinus officinalis | Carnosic acid | Effective against I. ricinus | [202,203,204,205,206] |
Clove oil | Syzygium aromaticum | Eugenol | Proved to be effective against R. microplus larvae and adult ticks | [207] |
Lippia alba oil | Lippia alba | Citral | Effective against R. microplus | [208] |
Geranium oil | Pelargonium spp. | Geraniol | Effective against I. ricinus | [209] |
Nootkatone | Alaskan cedar tree | Nootkatone | Effective against I. scapularis | [197] |
Country | Tick Species | Chemical Class Resistance | References |
---|---|---|---|
Cameroon | R. microplus | Organophosphates, synthetic pyrethroids, amidines, and macrocyclic lactones | [223,224] |
Zambia | R. decoloratus, Rhipicephalus spp., and Am. variegatum | Organophosphates and synthetic pyrethroids | [225] |
Brazil | R. microplus | Organophosphates, synthetic pyrethroids, formamidines, and macrocyclic lactones | |
South Africa | R. microplus | Organophosphates | [226] |
Mexico | R. microplus | Organophosphates and synthetic pyrethroids | [227] |
Côte d’Ivoire | R. microplus | Alpha-cypermethrin, deltamethrin, and amitraz | [228] |
Uganda | R. decoloratus and Rhipicephalus spp. | Organophosphates and synthetic pyrethroids | [229] |
Colombia | R. microplus | Pyrethroids and organophosphates | [230,231] |
Burkina Faso | R. microplus and A. variegatum | Cypermethrin and deltamethrin | [232] |
India | R. microplus | Organophosphates and synthetic pyrethroids | [233] |
Pakistan | Hy. anatolicum | Organophosphates and synthetic pyrethroids | [234] |
United Arab Emirates | H. dromedarii | Organophosphates and synthetic pyrethroids | [235,236] |
Argentina | R. microplus | Ivermectin and organophosphates | [237,238] |
Cameroon | R. microplus | Organophosphates, synthetic pyrethroids, amidines, and macrocyclic lactones | [239] |
Country | Estimated Annual Cost (USD) | References |
---|---|---|
United States | USD 345–968 million | [46] |
Holland | USD 20 million | [346] |
India | USD 498.7 million | |
Brazil | USD 32.4 million | [347] |
South Africa | USD 68.6 million | [348] |
Germany | USD 40 million | [346] |
Kenya | USD 7.0 million | [349] |
Mexico | USD 573.16 million | [350] |
Colombia | USD 168.0 million | [350] |
Australia | USD 250.0 million | [53] |
Tanzania | USD 364.0 million | [53] |
Puerto Rico | USD 6.7 million | [351] |
Zambia | USD 5.0 million | [351] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makwarela, T.G.; Seoraj-Pillai, N.; Nangammbi, T.C. Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Vet. Sci. 2025, 12, 114. https://doi.org/10.3390/vetsci12020114
Makwarela TG, Seoraj-Pillai N, Nangammbi TC. Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Veterinary Sciences. 2025; 12(2):114. https://doi.org/10.3390/vetsci12020114
Chicago/Turabian StyleMakwarela, Tsireledzo Goodwill, Nimmi Seoraj-Pillai, and Tshifhiwa Constance Nangammbi. 2025. "Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management" Veterinary Sciences 12, no. 2: 114. https://doi.org/10.3390/vetsci12020114
APA StyleMakwarela, T. G., Seoraj-Pillai, N., & Nangammbi, T. C. (2025). Tick Control Strategies: Critical Insights into Chemical, Biological, Physical, and Integrated Approaches for Effective Hard Tick Management. Veterinary Sciences, 12(2), 114. https://doi.org/10.3390/vetsci12020114