Pharmacokinetics of Tylvalosin Following Intravenous or Oral Administration at Different Doses in Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Broiler Chickens
2.3. Drugs Administration and Study Design
2.4. Sample Preparation
2.5. UPLC-MS/MS Conditions
2.6. Preparation of Standards
2.7. Method Validation
2.8. Data Analysis
3. Results
3.1. After Intravenous Injection
3.2. After Oral Injection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feberwee, A.; de Wit, S.; Dijkman, R. Clinical expression, epidemiology, and monitoring of Mycoplasma gallisepticum and Mycoplasma synoviae: An update. Avian Pathol. 2022, 51, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Feberwee, A.; Morrow, C.J.; Ghorashi, S.A.; Noormohammadi, A.H.; Landman, W.J. Effect of a live Mycoplasma synoviae vaccine on the production of eggshell apex abnormalities induced by a M. synoviae infection preceded by an infection with infectious bronchitis virus D1466. Avian Pathol. 2009, 38, 333–340. [Google Scholar] [CrossRef]
- Landman, W.J. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum? A viewpoint from the Netherlands. Avian Pathol. 2014, 43, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Kreizinger, Z.; Grózner, D.; Sulyok, K.M.; Nilsson, K.; Hrivnák, V.; Benčina, D.; Gyuranecz, M. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe. BMC Vet. Res. 2017, 13, 342. [Google Scholar] [CrossRef]
- Fiorentin, L.; Soncini, R.A.; da Costa, J.L.; Mores, M.A.; Trevisol, I.M.; Toda, M.; Vieira, N.D. Apparent eradication of Mycoplasma synoviae in broiler breeders subjected to intensive antibiotic treatment directed to control Escherichia coli. Avian Pathol. 2003, 32, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.H.; Kwon, J.S.; Lee, H.J.; Song, C.S.; Lee, S.W. Eradication of Mycoplasma synoviae from a multi-age broiler breeder farm using antibiotics therapy. Poult. Sci. 2015, 94, 2364–2368. [Google Scholar] [CrossRef] [PubMed]
- Razin, S.; Hayflick, L. Highlights of mycoplasma research--an historical perspective. Biologicals 2010, 38, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kursa, O.; Tomczyk, G.; Sieczkowska, A.; Kostka, S.; Sawicka-Durkalec, A. Mycoplasma gallisepticum and Mycoplasma synoviae in Turkeys in Poland. Pathogens 2024, 13, 78. [Google Scholar] [CrossRef]
- Landman, W.J.; Mevius, D.J.; Veldman, K.T.; Feberwee, A. In vitro antibiotic susceptibility of Dutch Mycoplasma synoviae field isolates originating from joint lesions and the respiratory tract of commercial poultry. Avian Pathol. 2008, 37, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Forrester, C.A.; Bradbury, J.M.; Dare, C.M.; Domangue, R.J.; Windsor, H.; Tasker, J.B.; Mockett, A.P. Mycoplasma gallisepticum in pheasants and the efficacy of tylvalosin to treat the disease. Avian Pathol. 2011, 40, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Limpavithayakul, K.; Sasipreeyajan, J.; Pakpinyo, S. Molecular characterization and antimicrobial susceptibility profiles of Thai Mycoplasma synoviae isolates. Sci. Rep. 2023, 13, 2002. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hamid, M.I.; Awad, N.F.S.; Hashem, Y.M.; Abdel-Rahman, M.A.; Abdelaziz, A.M.; Mohammed, I.A.A.; Abo-Shama, U.H. In vitro evaluation of various antimicrobials against field mycoplasma gallisepticum and mycoplasma synoviae isolates in Egypt. Poult. Sci. 2019, 98, 6281–6288. [Google Scholar] [CrossRef] [PubMed]
- Elbadawy, M.; Aboubakr, M.; Abugomaa, A. Pharmacokinetics of Tylvalosin in Broiler Turkeys (Meleagris Gallopavo) After Single Intravenous and Oral Administration. Front. Vet. Sci. 2019, 6, 355. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Okabe, M.; Kahar, P.; Tsunekawa, H.; Park, Y. Optimization of tylosin feeding rate profile in production of acetyl-isovaleryl tylosin (AIV) from tylosin by Streptomyces thermotolerans YN554. J. Biosci. Bioeng. 2001, 91, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.M. Pharmacokinetics and bioavailability of tylvalosin after oral, intramuscular and intravenous administration in turkeys. Int. J. Pharm. Pharm. Sci. 2016, 8, 140–144. [Google Scholar]
- Zhao, Z.; Tang, X.; Zhao, X.; Zhang, M.; Zhang, W.; Hou, S.; Yuan, W.; Zhang, H.; Shi, L.; Jia, H.; et al. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation. Biochem. Pharmacol. 2014, 90, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.M.; França, S.A.; Machado, G.S.; Blumer, M.A.; da Costa Cruz, E.C., Jr. Use of tylvalosin-medicated feed to control porcine proliferative enteropathy. Vet. Rec. 2009, 165, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Hernandis, V.; Escudero, E.; Galecio, J.S.; Marín, P. Quantification and Determination of Stability of Tylvalosin in Pig Plasma by Ultra-High Liquid Chromatography with Ultraviolet Detection. Animals 2022, 12, 1385. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzi, G.; Gherpelli, Y.; Luppi, A.; Pupillo, G.; Bassi, P.; Dottori, M.; Di Donato, A.; Merialdi, G.; Bonilauri, P. In vitro susceptibility of Brachyspira hyodysenteriae strains isolated in pigs in northern Italy between 2005 and 2022. Res Vet Sci 2024, 168, 105152. [Google Scholar] [CrossRef] [PubMed]
- Abu-Basha, E.A.; Bani Ismail, Z.; Idkaidek, N.M.; Hamzeh, E. Comparison of pharmacokinetics of two tylvalosin oral formulations in broiler chickens. J. Vet. Pharmacol. Ther. 2023, 46, 165–169. [Google Scholar] [CrossRef]
- Cerdá, R.O.; Giacoboni, G.I.; Xavier, J.A.; Sansalone, P.L.; Landoni, M.F. In vitro antibiotic susceptibility of field isolates of Mycoplasma synoviae in Argentina. Avian Dis. 2002, 46, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Baggot, J.D.; Gingerich, D.A. Pharmacokinetic interpretation of erythromycin and tylosin activity in serum after intravenous administration of a single dose to cows. Res. Vet. Sci. 1976, 21, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, C.; Roliński, Z.; Zań, R.; Wawron, W. Pharmacokinetics of tylosin in broiler chickens. Pol. J. Vet. Sci. 2002, 5, 127–130. [Google Scholar] [PubMed]
- Lina, L. Pharmacokinetics of Acetylisovaleryltylosin Tartrate in Laying Hens. Master’s Thesis, Huazhong Agricultural University, Wuhan, Chian, 2008. [Google Scholar]
- Salman, A.H.; Youssef, S.; Ramadan, A.; Soliman, A.M. Pharmacokinetics of tylvalosin in healthy and experimentally Mycoplasma gallisepticum infected broiler chickens. Int. J. PharmTech Res. 2016, 9, 72–80. [Google Scholar]
- Ji, L.W.; Dong, L.L.; Ji, H.; Feng, X.W.; Li, D.; Ding, R.L.; Jiang, S.X. Comparative pharmacokinetics and bioavailability of tylosin tartrate and tylosin phosphate after a single oral and i.v. administration in chickens. J. Vet. Pharmacol. Ther. 2014, 37, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.A.; Clark, C.R.; Boison, J.O.; Chirino-Trejo, M.; Inglis, T.E.; Dowling, P.M. Pharmacokinetics and tissue depletion of tilmicosin in turkeys. J. Vet. Pharmacol. Ther. 2008, 31, 591–594. [Google Scholar] [CrossRef]
- Goudah, A.; Abo El Sooud, K.; Abd El-Aty, A.M. Pharmacokinetics and tissue residue profiles of erythromycin in broiler chickens after different routes of administration. Dtsch. Tierarztl. Wochenschr. 2004, 111, 162–165. [Google Scholar]
- Stuart, A.D.; Brown, T.D.K.; Imrie, G.; Tasker, J.B.; Mockett, A.P.A. Intra-cellular accumulation and trans-epithelial transport of Aivlosin, Tylosin and Tilmicosin. Pig J. 2007, 60, 26–35. [Google Scholar]
- Ludden, T.M. Nonlinear pharmacokinetics: Clinical Implications. Clin. Pharmacokinet. 1991, 20, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Montesissa, C.; Capolongo, F.; Santi, A.; Biancotto, G.; Dacasto, M. Metabolism of tilmicosin by rabbit liver microsomes and hepatocytes. Vet. J. 2004, 167, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, R.O.; Petruccelli, M.; Piscopo, M.; Origlia, J.; Landoni, M. Impact of the type of catheter on the absorption of tylvalosin (acetylvaleryltylosin) administered orally to broiler chickens. J. Vet. Pharmacol. Ther. 2010, 33, 202–203. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.A.; Dutta, G.N. Effects of erythromycin-inactivating Lactobacillus crop flora on blood levels of erythromycin given orally to chicks. J. Vet. Pharmacol. Ther. 1984, 7, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.A.; Salem, H.M.; Alhotan, R.A.; Hussein, E.O.; Galik, B.; Saleh, A.A.; Kaoud, H.A. Unraveling Antimicrobial Resistance Dynamics in Mycoplasma gallisepticum: Insights Into Antibiotic and Disinfectant Interactions. Vet. Med. Sci. 2025, 11, e70181. [Google Scholar] [CrossRef]
- Gharaibeh, S.; Al-Rashdan, M. Change in antimicrobial susceptibility of Mycoplasma gallisepticum field isolates. Vet. Microbiol. 2011, 150, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Lall, A.; Kamdem Tamo, A.; Doench, I.; David, L.; Nunes de Oliveira, P.; Gorzelanny, C.; Osorio-Madrazo, A. Nanoparticles and Colloidal Hydrogels of Chitosan-Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications. Int. J. Mol. Sci. 2020, 21, 5602. [Google Scholar] [CrossRef] [PubMed]
- Pangeni, R.; Panthi, V.K.; Yoon, I.S.; Park, J.W. Preparation, Characterization, and In Vivo Evaluation of an Oral Multiple Nanoemulsive System for Co-Delivery of Pemetrexed and Quercetin. Pharmaceutics 2018, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Han, S.; Yang, X.; Xu, L.; Qi, H.; Hao, G.; Cao, J.; Liang, Y.; Ma, Q.; Zhang, G.; et al. Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. Int. J. Nanomed. 2020, 15, 4877–4898. [Google Scholar] [CrossRef] [PubMed]
- Ukai, H.; Imanishi, A.; Kaneda, A.; Kimura, E.; Koyama, M.; Morishita, M.; Katsumi, H.; Yamamoto, A. Absorption-Enhancing Mechanisms of Capryol 90, a Novel Absorption Enhancer, for Improving the Intestinal Absorption of Poorly Absorbed Drugs: Contributions to Trans- or Para-Cellular Pathways. Pharm. Res. 2020, 37, 248. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Ding, F.; Lian, X.; Cui, W.; Li, Z.; Xing, Y. The efficiency and mechanism of a new absorption enhancer, malic acid, for enhancing the oral bioavailability of docetaxel. Pharm. Dev. Technol. 2021, 26, 592–598. [Google Scholar] [CrossRef]
- Lewis, A.L.; McEntee, N.; Holland, J.; Patel, A. Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Drug Deliv. Transl. Res. 2022, 12, 1–6. [Google Scholar] [CrossRef]
Parameter | Units | 5 mg/kg | 10 mg/kg | 25 mg/kg |
---|---|---|---|---|
T1/2λz | h | 5.98 ± 3.88 | 5.90 ± 1.89 | 6.78 ± 2.52 |
λz | 1/h | 0.15 ± 0.06 | 0.13 ± 0.04 | 0.11 ± 0.04 |
Cmax | ug/mL | 2.05 ± 0.88 | 5.21 ± 1.71 | 25.44 ± 7.43 |
AUCINF_obs | h∗ug/mL | 1.11 ± 0.40 | 3.26 ± 0.86 | 16.29 ± 2.67 |
AUClast | h∗ug/mL | 1.09 ± 0.38 | 3.18 ± 0.86 | 16.25 ± 2.67 |
MRTlast | h | 1.56 ± 0.23 | 2.04 ± 0.38 | 0.82 ± 0.06 |
CL | L/h/kg | 5.16 ± 2.34 | 3.42 ± 1.60 | 1.57 ± 0.27 |
Vd | L/kg | 41.21 ± 23.56 | 29.54 ± 16.20 | 15.85 ± 7.82 |
Parameter | Units | 5 mg/kg | 10 mg/kg | 25 mg/kg |
---|---|---|---|---|
A | ng/ml | 3875.92 ± 2108.61 | 7463.25 ± 2975.44 | 34,392.08 ± 20,485.44 |
α | 1/h | 9.47 ± 5.16 | 7.35 ± 3.75 | 6.74 ± 2.91 |
t1/2α | h | 0.13 ± 0.14 | 0.12 ± 0.06 | 0.12 ± 0.06 |
B | ng/ml | 525.33 ± 393.52 | 1447.15 ± 824.28 | 8003.27 ± 3916.61 |
β | 1/h | 1.07 ± 0.67 | 0.91 ± 0.37 | 1.22 ± 0.44 |
t1/2β | h | 1.83 ± 2.35 | 0.86 ± 0.30 | 0.63 ± 0.21 |
Ke | 1/h | 4.68 ± 2.25 | 3.40 ± 1.21 | 3.64 ± 1.54 |
K12 | 1/h | 3.61 ± 2.28 | 2.92 ± 2.10 | 1.96 ± 1.18 |
K21 | 1/h | 2.25 ± 1.49 | 1.94 ± 0.94 | 2.35 ± 1.07 |
CL | L/h/kg | 6.03 ± 3.26 | 4.28 ± 2.04 | 2.24 ± 0.37 |
Vc | L/kg | 1.73 ± 1.37 | 1.42 ± 0.93 | 0.72 ± 0.30 |
V2 | L/kg | 3.24 ± 2.55 | 1.93 ± 1.14 | 0.51 ± 0.15 |
Vss | L/kg | 4.97 ± 3.60 | 3.35 ± 1.99 | 1.23 ± 0.32 |
Parameter | Units | 5 mg/kg | 10 mg/kg | 25 mg/kg |
---|---|---|---|---|
T1/2λz | h | 5.06 ± 3.13 | 4.19 ± 3.5 | 1.86 ± 0.83 |
λz | 1/h | 0.22 ± 0.17 | 0.24 ± 0.12 | 0.43 ± 0.15 |
Cmax | ng/mL | 23.45 ± 23.31 | 31.36 ± 18.72 | 287.12 ± 253.07 |
AUCINF_obs | h*ng/mL | 85.77 ± 73.15 | 136.7 ± 58.17 | 503.21 ± 341.91 |
AUClast | h*ng/mL | 64.32 ± 61.52 | 113.28 ± 69.57 | 493.83 ± 337.16 |
Vd/F | mL/kg | 1163.69 ± 1040.83 | 584.53 ± 618.78 | 177.12 ± 99.24 |
CL/F | mL/h/kg | 172.93 ± 91.44 | 89.63 ± 49.72 | 67.39 ± 33.03 |
Tmax | h | 2.17 ± 1.97 | 2.64 ± 0.95 | 1.88 ± 0.69 |
MRTlast | h | 3.51 ± 1.46 | 4.80 ± 2.23 | 2.67 ± 0.73 |
Parameter | Units | 5 mg/kg | 10 mg/kg | 25 mg/kg |
---|---|---|---|---|
Ka | 1/h | 1.80 ± 1.77 | 0.42 ± 0.22 | 0.73 ± 0.23 |
t1/2ka | h | 1.03 ± 1.14 | 1.99 ± 0.92 | 1.05 ± 0.38 |
Ke | 1/h | 0.63 ± 0.39 | 0.41 ± 0.21 | 0.72 ± 0.21 |
t1/2e | h | 2.40 ± 2.87 | 2.04 ± 0.93 | 1.06 ± 0.38 |
V/F | L/kg | 313.61 ± 281.03 | 325.33 ± 250.29 | 87.73 ± 42.80 |
CL/F | L/h/kg | 122.67 ± 108.67 | 115.83 ± 84.01 | 59.39 ± 30.46 |
Model | Slope Estimate | F-Stat | p-Value | Lower CI (95%) | Upper CI (95%) |
---|---|---|---|---|---|
Power model | 1.72 | 1.51 | 1.93 | ||
One-way ANOVA | 143.52 | <0.001 |
Models | Slope Estimate | F-Stat | p-Value | Lower CI (95%) | Upper CI (95%) |
---|---|---|---|---|---|
Power model | 1.38 | 0.87 | 1.89 | ||
One-way ANOVA | 16.23 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Chen, S.; Meng, J.; Wu, Q.; Yu, R.; Xu, N.; Kong, J.; Zhang, L.; Cao, X. Pharmacokinetics of Tylvalosin Following Intravenous or Oral Administration at Different Doses in Broiler Chickens. Vet. Sci. 2025, 12, 118. https://doi.org/10.3390/vetsci12020118
Wen Z, Chen S, Meng J, Wu Q, Yu R, Xu N, Kong J, Zhang L, Cao X. Pharmacokinetics of Tylvalosin Following Intravenous or Oral Administration at Different Doses in Broiler Chickens. Veterinary Sciences. 2025; 12(2):118. https://doi.org/10.3390/vetsci12020118
Chicago/Turabian StyleWen, Zeyu, Sumeng Chen, Jinyan Meng, Qinyao Wu, Runlin Yu, Nuoyu Xu, Jingyuan Kong, Lu Zhang, and Xingyuan Cao. 2025. "Pharmacokinetics of Tylvalosin Following Intravenous or Oral Administration at Different Doses in Broiler Chickens" Veterinary Sciences 12, no. 2: 118. https://doi.org/10.3390/vetsci12020118
APA StyleWen, Z., Chen, S., Meng, J., Wu, Q., Yu, R., Xu, N., Kong, J., Zhang, L., & Cao, X. (2025). Pharmacokinetics of Tylvalosin Following Intravenous or Oral Administration at Different Doses in Broiler Chickens. Veterinary Sciences, 12(2), 118. https://doi.org/10.3390/vetsci12020118