Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Sample Collection
2.2. Experimental Methods
2.2.1. RNA Extraction, Library Construction, and Transcriptome Sequencing
2.2.2. Data Quality Control and Reference Genome Alignment
2.2.3. Identification of Differentially Expressed Genes
2.2.4. Functional Enrichment and Protein-Protein Interaction Network Analysis of Differentially Expressed Genes
2.2.5. Quantitative Reverse Transcription Polymerase Chain Reaction Analysis
3. Results
3.1. RNA-Sequencing Reads and Mapping to the Reference Genome
3.2. Analysis of Gene Expression Levels
3.3. Gene Differential Expression Analysis
3.4. GO Function and KEGG Signaling Pathway Enrichment Analysis Results of Differentially Expressed Genes
3.5. Protein–Protein Interaction Network of Differentially Expressed Genes
3.6. RT-qPCR Validation of Differentially Expressed Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sazmand, A.; Joachim, A.; Otranto, D. Zoonotic parasites of dromedary camels: So important, so ignored. Parasites Vectors 2019, 12, 610. [Google Scholar] [CrossRef] [PubMed]
- Al Abri, M.A.; Faye, B. Genetic Improvement in Dromedary Camels: Challenges and Opportunities. Front. Genet. 2019, 10, 167. [Google Scholar] [CrossRef]
- He, J.; Xiao, Y.; Orgoldol, K.; Ming, L.; Yi, L.; Ji, R. Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Animals 2019, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Masebo, N.T.; Zappaterra, M.; Felici, M.; Benedetti, B.; Padalino, B. Dromedary camel’s welfare: Literature from 1980 to 2023 with a text mining and topic analysis approach. Front. Veter. Sci. 2023, 10, 1277512. [Google Scholar] [CrossRef]
- El-Sayed, M.I.; Awad, S.; Abou-Soliman, N.H.I. Improving the Antioxidant Properties of Fermented Camel Milk Using Some Strains of Lactobacillus. Food Nutr. Sci. 2021, 12, 352–371. [Google Scholar] [CrossRef]
- Ho, T.M.; Zou, Z.; Bansal, N. Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Res. Int. 2022, 153, 110870. [Google Scholar] [CrossRef]
- Badawy, A.A.; El-Magd, M.A.; AlSadrah, S.A. Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro and In Vivo. Integr. Cancer Ther. 2018, 17, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Yirda, A.; Eshetu, M.; Babege, K. Current Status of Camel Dairy Processing and Technologies: A Review. Open J. Anim. Sci. 2020, 10, 362–377. [Google Scholar] [CrossRef]
- Ismael, A.B.; El Hafez, S.M.A.; Mahmoud, M.B.; Elaraby, A.-K.A.; Hassan, H.M. Development of New Strategy for Non-Antibiotic Therapy: Dromedary Camel Lactoferrin Has a Potent Antimicrobial and Immunomodulator Effects. Adv. Infect. Dis. 2013, 3, 231–237. [Google Scholar] [CrossRef]
- Behrouz, S.; Saadat, S.; Memarzia, A.; Sarir, H.; Folkerts, G.; Boskabady, M.H. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front. Immunol. 2022, 13, 855342. [Google Scholar] [CrossRef]
- Seligsohn, D.; Nyman, A.-K.; Younan, M.; Sake, W.; Persson, Y.; Bornstein, S.; Maichomo, M.; de Verdier, K.; Morrell, J.; Chenais, E. Subclinical mastitis in pastoralist dairy camel herds in Isiolo, Kenya: Prevalence, risk factors, and antimicrobial susceptibility. J. Dairy Sci. 2020, 103, 4717–4731. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Avais, M.; Ijaz, M.; Chaudhary, M.; Hussain, R.; Aqib, A.I.; Khan, N.U.; Sohail, M.L.; Khan, M.; Khan, M.A.; et al. Epidemiology of Subclinical Mastitis in Dromedary Camels (Camelus dromedarius) of Two Distinct Agro-Ecological Zones of Pakistan. Pak. J. Zool. 2019, 51, 527–532. [Google Scholar] [CrossRef]
- Maichomo, M.; Gachogo, R.; Masila, E.; Ogali, I.; Otieno, L.; Langat, N.; Onywera, R.; Malonza, V.; Inguyesi, C.; Onyambu, F.; et al. Draft Genome Sequences of Enterococcus faecium, Enterococcus gallinarum, and Lactococcus lactis Strains Isolated from a Mastitis-Infected Camel in Isiolo County, Kenya. Genome Announc. 2023, 12, e0108322. [Google Scholar] [CrossRef] [PubMed]
- Fayez, M.M.; Swelum, A.A.; Alharbi, N.K.; AlRokban, A.H.; Almubarak, A.; Almubarak, A.H.; Alaql, F.; Ahmed, A.E. Multilocus Sequence Typing and Antifungal Susceptibility of Candida albicans Isolates from Milk and Genital Tract of Dromedary Camel. Front. Vet. Sci. 2022, 9, 905962. [Google Scholar] [CrossRef] [PubMed]
- Aqib, A.I.; Ijaz, M.; Durrani, A.Z.; Anjum, A.A.; Hussain, R.; Sana, S.; Farooqi, S.H.; Hussain, K.; Ahmad, S.S. Prevalence and Antibiogram of Staphylococcus aureus, a Camel Mastitogen from Pakistan. Pak. J. Zool. 2017, 49, 861–867. [Google Scholar] [CrossRef]
- Al-Dughaym, A.; Fadlelmula, A. Prevalence, Etiology and its Seasonal Prevalence of Clinical and Subclinical Camel Mastitis in Saudi Arabia. Br. J. Appl. Sci. Technol. 2015, 9, 441–449. [Google Scholar] [CrossRef]
- Aljumaah, R.S.; Almutairi, F.F.; Ayadi, M.; Alshaikh, M.A.; Aljumaah, A.M.; Hussein, M.F. Factors influencing the prevalence of subclinical mastitis in lactating dromedary camels in Riyadh Region, Saudi Arabia. Trop. Anim. Health Prod. 2011, 43, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.H.; Mustafa, A.B.; Atti, K.A. Milk composition of the udder quarters of she-camel (Camelus dromedaries) raised under intensive farming system. Int. J. Sci. Knowl. 2016, 5, 9–12. [Google Scholar]
- Rahmeh, R.; Akbar, A.; Alomirah, H.; Kishk, M.; Al-Ateeqi, A.; Shajan, A.; Alonaizi, T.; Esposito, A. Assessment of mastitis in camel using high-throughput sequencing. PLoS ONE 2022, 17, e0278456. [Google Scholar] [CrossRef]
- Li, B.; Ma, W.; Pei, W.; Zhen, Y.; Duan, Q.; Lu, Y.; Li, J.; Su, Z. Analysis of Microbial Diversity and Identification of Main Pathogenic Bacteria in Camel Masitis Milk-Samples from Some Areas of Altay, Xinjiang. Chin. J. Vet. Sci. 2023, 43, 1935–1940. [Google Scholar] [CrossRef]
- Hadef, L.; Hamad, B.; Aggad, H. Risk factors associated with subclinical mastitis and its effect on physico-mineral features of camel milk. Trop. Anim. Health Prod. 2022, 54, 224. [Google Scholar] [CrossRef]
- Aqib, A.I.; Muzammil, I.; Naseer, M.A.; Shoaib, M.; Bakht, P.; Zaheer, T.; Khan, Y.R.; Khan, R.L.; Usman, M.; Shafeeq, M.; et al. Pathological insights into camel mastitis. Acta Trop. 2022, 231, 106415. [Google Scholar] [CrossRef] [PubMed]
- Alhafiz, G.A.; Alghatam, F.H.; Almohammed, H.; Hussen, J. Milk Immune Cell Composition in Dromedary Camels with Subclinical Mastitis. Front. Veter. Sci. 2022, 9, 885523. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashqar, R.A.; Salem, K.M.A.-M.; Al Herz, A.K.M.; Al-Haroon, A.I.; Alluwaimi, A.M. The CD markers of camel (Camelus dromedarius) milk cells during mastitis: The LPAM-1 expression is an indication of possible mucosal nature of the cellular trafficking. Res. Veter. Sci. 2015, 99, 77–81. [Google Scholar] [CrossRef]
- Al-Ramadan, S.; Salem, K.; Alshubaith, I.; Alluwaimi, A. CD Markers of Camel (Camelus Dromedarius) Intestine Naturally Infected withMycobacterium Avium Subsp. Paratuberculosis: Distinct Expression of Madcam-1 andCX3CR1. Turk. J. Vet. Anim. Sci. 2020, 44, 1010–1023. [Google Scholar] [CrossRef]
- Qi, S.; Zheng, H. Effect of oral administration of Lactobacillus acidophilus on the intestinal mucosal immune cells in young bactrian camels (Camelus bactrianus). J. Camel Pract. Res. 2014, 21, 57–63. [Google Scholar] [CrossRef]
- Toroitich, K.C.; Gitau, G.K.; Kitala, P.M.; Gitao, G.C. The prevalence and causes of mastitis in lactating traditionally managed one-humped camels (Camelus dromedarius) in West Pokot County, Kenya. Livest. Res. Rural Dev. 2017, 29, 62. [Google Scholar] [CrossRef]
- Aitken, S.L.; Corl, C.M.; Sordillo, L.M. Immunopathology of Mastitis: Insights into Disease Recognition and Resolution. J. Mammary Gland. Biol. Neoplasia 2011, 16, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Geresu, M.A.; Leliso, S.A.; Liben, G.W. Camel Mastitis: Prevalence, Risk Factors, and Isolation of Major Bacterial Pathogens in Gomole District of Borena Zone, Southern Ethiopia. Veter. Med. Int. 2021, 2021, 9993571. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, Q.-C.; Wang, J.-P.; Ren, Q.-Q.; Wang, X.-P.; Luoreng, Z.-M.; Wei, D.-W.; Ma, Y. RNA-Seq Reveals the Role of miR-29c in Regulating Inflammation and Oxidative Stress of Bovine Mammary Epithelial Cells. Front. Veter. Sci. 2022, 9, 865415. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Hou, Y.; An, J.; Li, B.; Song, M.; Wang, X.; Sørensen, P.; Dong, Y.; Liu, C.; Wang, Y.; et al. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2016, 6, 193. [Google Scholar] [CrossRef]
- Yao, H.; Dou, Z.; Zhao, Z.; Liang, X.; Yue, H.; Ma, W.; Su, Z.; Wang, Y.; Hao, Z.; Yan, H.; et al. Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits. BMC Genom. 2023, 24, 660. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velázquez-Ordoñez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Veter. Anim. Sci. 2023, 21, 100306. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Bonestroo, J.; Fall, N.; Hogeveen, H.; Emanuelson, U.; Klaas, I.C.; van der Voort, M. The costs of chronic mastitis: A simulation study of an automatic milking system farm. Prev. Veter. Med. 2022, 210, 105799. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, M.R.; Hazel, A.R.; Hansen, L.B.; Heins, B.J. Health Treatment Cost of Holsteins in Eight High-Performance Herds. Animals 2023, 13, 2061. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; de Campos, J.L.; Steinberger, A.J.; Safdar, N.; Kates, A.; Sethi, A.; Shutske, J.; Suen, G.; Goldberg, T.; Cue, R.I.; et al. Incidence and Treatments of Bovine Mastitis and Other Diseases on 37 Dairy Farms in Wisconsin. Pathogens 2022, 11, 1282. [Google Scholar] [CrossRef] [PubMed]
- Hiitiö, H.; Vakkamäki, J.; Simojoki, H.; Autio, T.; Junnila, J.; Pelkonen, S.; Pyörälä, S. Prevalence of subclinical mastitis in Finnish dairy cows: Changes during recent decades and impact of cow and herd factors. Acta Veter. Scand. 2017, 59, 22. [Google Scholar] [CrossRef] [PubMed]
- Manoj, J.; Chhabra, R.; Singh, M.; Singh, M.K. A Temporal Study on Incidence of Bovine Mastitis in Haryana, India. Microbiol. Res. J. Int. 2024, 34, 1–12. [Google Scholar] [CrossRef]
- Gao, J.; Barkema, H.W.; Zhang, L.; Liu, G.; Deng, Z.; Cai, L.; Shan, R.; Zhang, S.; Zou, J.; Kastelic, J.P.; et al. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 2017, 100, 4797–4806. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A. Clinicopathological study on camel mastitis at Matrouh Governorate. J. Adv. Veter. Anim. Res. 2023, 10, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Hoter, A.; Rizk, S.; Naim, H.Y. Cellular and Molecular Adaptation of Arabian Camel to Heat Stress. Front. Genet. 2019, 10, 588. [Google Scholar] [CrossRef]
- Hussen, J.; Schuberth, H.-J. Recent Advances in Camel Immunology. Front. Immunol. 2020, 11, 614150. [Google Scholar] [CrossRef]
- Ciccarese, S.; Burger, P.A.; Ciani, E.; Castelli, V.; Linguiti, G.; Plasil, M.; Massari, S.; Horin, P.; Antonacci, R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front. Genet. 2019, 10, 997. [Google Scholar] [CrossRef]
- Plasil, M.; Wijkmark, S.; Elbers, J.P.; Oppelt, J.; Burger, P.A.; Horin, P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA 2019, 93, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Al Ramadan, S.Y.; Salem, K.T.A.-M.; Alshubaith, I.H.; Al-Ali, A.M.; Abohelaika, S.; Moqbel, M.S.; Alluwaimi, A.M. Selected Aspects of Camel Immune System and Immune Responses. Open J. Veter. Med. 2021, 11, 177–211. [Google Scholar] [CrossRef]
- Mitterhuemer, S.; Petzl, W.; Krebs, S.; Mehne, D.; Klanner, A.; Wolf, E.; Zerbe, H.; Blum, H. Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland. BMC Genom. 2010, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Mestecky, J. The Mammary Gland as an Integral Component of the Common Mucosal Immune System. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 27–37. [Google Scholar] [CrossRef]
- Zhu, Q.M.; MacDonald, B.T.; Mizoguchi, T.; Chaffin, M.; Leed, A.; Arduini, A.; Malolepsza, E.; Lage, K.; Kaushik, V.K.; Kathiresan, S.; et al. Endothelial ARHGEF26 is an angiogenic factor promoting VEGF signalling. Cardiovasc. Res. 2021, 118, 2833–2846. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Fang, K.; Li, C.; Chang, X. ARHGEF10L Promotes Cervical Tumorigenesis via RhoA-Mediated Signaling. Evid.-Based Complement. Altern. Med. 2021, 2021, 6683264. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Ohta, K.; Yamashita, K.; Mizuno, K.; Ohashi, K. PLEKHG4B enables actin cytoskeletal remodeling during epithelial cell–cell junction formation. J. Cell Sci. 2021, 134, jcs249078. [Google Scholar] [CrossRef]
- Lee, K.; Liu, Y.; Mo, J.Q.; Zhang, J.; Dong, Z.; Lu, S. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer. BMC Cancer 2008, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Milioli, H.H.; Tishchenko, I.; Riveros, C.; Berretta, R.; Moscato, P. Basal-like breast cancer: Molecular profiles, clinical features and survival outcomes. BMC Med. Genom. 2017, 10, 19. [Google Scholar] [CrossRef]
- Zhu, Q.-Y.; He, Z.-M.; Cao, W.-M.; Li, B. The role of TSC2 in breast cancer: A literature review. Front. Oncol. 2023, 13, 1188371. [Google Scholar] [CrossRef]
- Zuo, Y.; Berdeaux, R.; Frost, J.A. The RhoGEF Net1 Is Required for Normal Mammary Gland Development. Mol. Endocrinol. 2014, 28, 1948–1960. [Google Scholar] [CrossRef]
- Wang, X.; Su, F.; Yu, X.; Geng, N.; Li, L.; Wang, R.; Zhang, M.; Liu, J.; Liu, Y.; Han, B. RNA-Seq Whole Transcriptome Analysis of Bovine Mammary Epithelial Cells in Response to Intracellular Staphylococcus aureus. Front. Veter. Sci. 2020, 7, 642. [Google Scholar] [CrossRef]
- Hussen, J.; Alkuwayti, M.A.; Falemban, B.; Al-Sukruwah, M.A.; Alhojaily, S.M.; Al Humam, N.A.; Al Adwani, S. Immunomodulatory Effects of Bacterial Toll-like Receptor Ligands on the Phenotype and Function of Milk Immune Cells in Dromedary Camel. Biology 2023, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Takagi, M.; Fukuyama, K.; Komatsu, R.; Albarracin, L.; Nochi, T.; Suda, Y.; Ikeda-Ohtsubo, W.; Rutten, V.; van Eden, W.; et al. Transcriptome Analysis of The Inflammatory Responses of Bovine Mammary Epithelial Cells: Exploring Immunomodulatory Target Genes for Bovine Mastitis. Pathogens 2020, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Katsafadou, A.I.; Politis, A.P.; Mavrogianni, V.S.; Barbagianni, M.S.; Vasileiou, N.G.C.; Fthenakis, G.C.; Fragkou, I.A. Mammary Defences and Immunity against Mastitis in Sheep. Animals 2019, 9, 726. [Google Scholar] [CrossRef] [PubMed]
- Hussen, J.; Al-Sukruwah, M.A. The Impact of the Animal Housing System on Immune Cell Composition and Function in the Blood of Dromedary Camels. Animals 2022, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Edelman, G.M.; Crossin, K.L. Cell adhesion molecules: Implications for a Molecular Histology. Annu. Rev. Biochem. 1991, 60, 155–190. [Google Scholar] [CrossRef] [PubMed]
- Cebron, N.; Maman, S.; Walachowski, S.; Gausserès, B.; Cunha, P.; Rainard, P.; Foucras, G. Th17-related mammary immunity, but not a high systemic Th1 immune response is associated with protection against E. coli mastitis. npj Vaccines 2020, 5, 108. [Google Scholar] [CrossRef]
- Martínez-López, M.; Iborra, S.; Conde-Garrosa, R.; Mastrangelo, A.; Danne, C.; Mann, E.R.; Reid, D.M.; Gaboriau-Routhiau, V.; Chaparro, M.; Lorenzo, M.P.; et al. Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity 2019, 50, 446–461.e9. [Google Scholar] [CrossRef]
- Hussen, J.; Shawaf, T.; Jashan, M.; Schuberth, H.-J. Whole blood stimulation with lipopolysaccharide modulates phenotype and function of dromedary camel neutrophils. J. Camel Pract. Res. 2019, 26, 105–110. [Google Scholar] [CrossRef]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.-W. The bovine neutrophil: Structure and function in blood and milk. Veter. Res. 2003, 34, 597–627. [Google Scholar] [CrossRef]
- Choudhary, R.K.; Olszanski, L.; McFadden, T.B.; Lalonde, C.; Spitzer, A.; Shangraw, E.M.; Rodrigues, R.O.; Zhao, F.-Q. Systemic and local responses of cytokines and tissue histology following intramammary lipopolysaccharide challenge in dairy cows. J. Dairy Sci. 2024, 107, 1299–1310. [Google Scholar] [CrossRef]
- Lira, S.A.; Furtado, G.C. The biology of chemokines and their receptors. Immunol. Res. 2012, 54, 111–120. [Google Scholar] [CrossRef]
- Ziarek, J.J.; Kleist, A.B.; London, N.; Raveh, B.; Montpas, N.; Bonneterre, J.; St-Onge, G.; DiCosmo-Ponticello, C.J.; Koplinski, C.A.; Roy, I.; et al. Structural basis for chemokine recognition by a G protein–coupled receptor and implications for receptor activation. Sci. Signal. 2017, 10, eaah5756. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, O.; Dong, X.; Roca, A.L.; Caroli, A.M.; Loor, J.J. Innate immune responses induced by lipopolysaccharide and lipoteichoic acid in primary goat mammary epithelial cells. J. Anim. Sci. Biotechnol. 2017, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Sipka, A.; Pomeroy, B.; Klaessig, S.; Schukken, Y. Bovine natural killer cells are present in Escherichia coli infected mammary gland tissue and show antimicrobial activity in vitro. Comp. Immunol. Microbiol. Infect. Dis. 2016, 48, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Herry, V.; Gitton, C.; Tabouret, G.; Répérant, M.; Forge, L.; Tasca, C.; Gilbert, F.B.; Guitton, E.; Barc, C.; Staub, C.; et al. Local immunization impacts the response of dairy cows to Escherichia coli mastitis. Sci. Rep. 2017, 7, 3441. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Li, L.; Li, D.; Dong, Z.; Jiang, P. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat. Cell Biol. 2021, 23, 75–86. [Google Scholar] [CrossRef]
- Park, J.-E.; Brand, D.D.; Rosloniec, E.F.; Yi, A.-K.; Stuart, J.M.; Kang, A.H.; Myers, L.K. Leukocyte-associated immunoglobulin-like receptor 1 inhibits T-cell signaling by decreasing protein phosphorylation in the T-cell signaling pathway. J. Biol. Chem. 2020, 295, 2239–2247. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Kiku, Y.; Sugawara, K.; Yabusaki, T.; Oono, K.; Fujii, K.; Suzuki, T.; Maehana, K.; Hayashi, T. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. J. Veter. Med Sci. 2019, 81, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Riollet, C.; Rainard, P.; Poutrel, B. Differential Induction of Complement Fragment C5a and Inflammatory Cytokines during Intramammary Infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol. 2000, 7, 161–167. [Google Scholar] [CrossRef]
- Alluwaimi, A.M. The Camel’s (Camelus Dromedarius) Mammary Gland Immune System in Health and Disease. J. Adv. Dairy Res. 2017, 5, 171. [Google Scholar] [CrossRef]
- Sharma, P.; Dube, D.; Singh, A.; Mishra, B.; Singh, N.; Sinha, M.; Dey, S.; Kaur, P.; Mitra, D.K.; Sharma, S.; et al. Structural Basis of Recognition of Pathogen-associated Molecular Patterns and Inhibition of Proinflammatory Cytokines by Camel Peptidoglycan Recognition Protein. J. Biol. Chem. 2011, 286, 16208–16217. [Google Scholar] [CrossRef]
- Tanhaeian, A.; Ahmadi, F.S.; Sekhavati, M.H.; Mamarabadi, M. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens. Probiotics Antimicrob. Proteins 2018, 10, 787–793. [Google Scholar] [CrossRef]
- Ming, L.; Wang, Z.; Yi, L.; Batmunkh, M.; Liu, T.; Siren, D.; He, J.; Juramt, N.; Jambl, T.; Li, Y.; et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 2020, 20, 770–780. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence (5′−3′) | Amplification Length (bp) |
---|---|---|
IL10-F | GCTGTCATCGATTTCTCCCCT | 101 |
IL10-R | CATGGCTTTGTAGACCCCCTT | |
CCL5-F | GGCAGCAGTCGTCTTTATCAC | 82 |
CCL5-R | GTTGATGTACTCCCGCACCC | |
IL1B-F | CCTCGCACAGGATATGAGCC | 73 |
IL1B-R | CTTGCTGTTGCTTTCGTCCC | |
TNFRSF1B-F | AAGTTCCCCAGTTGAAGGGC | 75 |
TNFRSF1B-R | AAGGCTGTCACACCCACAAT | |
IL12RB1-F | TCCCCCAAGGTTACCCTGAA | 193 |
IL12RB1-R | CCTGATGTCCACAGTCACCC | |
IFNG-F | AATGGCAGCTCCGAGAAACT | 86 |
IFNG-R | CTTATGGCTTTGCGCTGGAC | |
ACTIN-F | GATGACGATATTGCTGCGCTC | 102 |
ACTIN-R | CACGATGGAGGGGAAGACAG |
Sample | RNA Integrity Number | raw_reads | clean_reads | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|
mastitis1 | 9.20 | 46,632,576 | 45,553,012 | 97.81 | 93.81 |
mastitis2 | 9.50 | 47,743,048 | 46,569,744 | 97.78 | 93.73 |
mastitis3 | 9.30 | 46,637,194 | 45,592,936 | 97.81 | 93.86 |
mastitis4 | 9.30 | 46,442,192 | 45,334,444 | 97.78 | 93.77 |
health1 | 9.90 | 45,762,114 | 44,741,880 | 97.69 | 93.44 |
health2 | 9.60 | 41,270,850 | 40,432,584 | 97.92 | 94.07 |
health3 | 8.90 | 45,376,950 | 44,287,024 | 97.87 | 93.96 |
Sample | total_reads | total_map | unique_map | multi_map |
---|---|---|---|---|
mastitis1 | 45,553,012 | 41,127,866(90.29%) | 39,694,536(87.14%) | 1,433,330(3.15%) |
mastitis2 | 46,569,744 | 41,899,829(89.97%) | 39,955,160(85.8%) | 1,944,669(4.18%) |
mastitis3 | 4,5334,444 | 40,986,165(90.41%) | 39,281,294(86.65%) | 1,704,871(3.76%) |
mastitis4 | 45,592,936 | 40,544,094(88.93%) | 39,485,372(86.6%) | 1,058,722(2.32%) |
health1 | 44,741,880 | 40,717,538(91.01%) | 39,921,667(89.23%) | 795,871(1.78%) |
health2 | 40,432,584 | 36,237,372(89.62%) | 35,283,865(87.27%) | 953,507(2.36%) |
health3 | 44,287,024 | 39,502,065(89.2%) | 37,693,504(85.11%) | 1,808,561(4.08%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Yao, H.; Zhang, L.; Zhang, Y.; Wang, Y.; Wang, W.; Liu, Y.; Zhao, X.; Tong, P.; Su, Z. Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels. Vet. Sci. 2025, 12, 121. https://doi.org/10.3390/vetsci12020121
Ma W, Yao H, Zhang L, Zhang Y, Wang Y, Wang W, Liu Y, Zhao X, Tong P, Su Z. Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels. Veterinary Sciences. 2025; 12(2):121. https://doi.org/10.3390/vetsci12020121
Chicago/Turabian StyleMa, Wanpeng, Huaibin Yao, Lin Zhang, Yi Zhang, Yan Wang, Wei Wang, Yifan Liu, Xueting Zhao, Panpan Tong, and Zhanqiang Su. 2025. "Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels" Veterinary Sciences 12, no. 2: 121. https://doi.org/10.3390/vetsci12020121
APA StyleMa, W., Yao, H., Zhang, L., Zhang, Y., Wang, Y., Wang, W., Liu, Y., Zhao, X., Tong, P., & Su, Z. (2025). Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels. Veterinary Sciences, 12(2), 121. https://doi.org/10.3390/vetsci12020121