Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Blood Sampling and Measurements
2.3. Total RNA Extraction, Reverse Transcription and Quantitative Real-Time PCR
2.4. DNA Sequencing and Polymorphism Detection
2.5. Biochemical Analysis
2.6. Statistical Analysis
- −
- GraphPad Prism version 5 was used to estimate the cut-off points, sensitivity, specificity and likelihood ratio (LR) for the measured cytokines and APPs between the two groups.
- −
- The following equations were used to compute the positive predictive value (PPV), negative predictive value (NPV), accuracy rate (AR) and percentages of increase for these variables:
3. Results
3.1. Clinical Examination
3.2. Patterns for Transcript Levels of Immune and Antioxidant Indicators
3.3. Genetic Polymorphisms of Immune and Antioxidant Genes
3.4. Biochemical Profile
3.5. Correlation Between Gene Expression Patterns and Serum Profiles of Immunological, APP and Antioxidant Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jesse, F.F.A.; Bıtrus, A.; Abba, Y.; Mahadzar, M.; Hambalı, I.; Peter, I.; Haron, A.; Lıla, M.; Saharee, A. Clinical management of septic arthritis in a sheep: A case report. Adv. Anim. Vet. Sci. 2017, 5, 267–270. [Google Scholar]
- Kamiloğlu, A. Çiftlik Hayvanlarında ayak Hastalıkları; Medipress Yayıncılık: Lisans, Türkiye, 2014. [Google Scholar]
- Desrochers, A.; St Jean, G. Surgical management of digit disorders in cattle. Vet. Clin. N. Am. Food Anim. Pract. 1996, 12, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Desrochers, A.; Francoz, D. Clinical management of septic arthritis in cattle. Vet. Clin. Food Anim. Pract. 2014, 30, 177–203. [Google Scholar] [CrossRef]
- Mulon, P.-Y.; Desrochers, A.; Francoz, D. Surgical management of septic arthritis. Vet. Clin. Food Anim. Pract. 2016, 32, 777–795. [Google Scholar] [CrossRef]
- Yurdakul, İ. Evaluation of clinical, radiological, ultrasonographic and microbiological findings of septic arthritis in 50 calves. Rev. Mex. De Cienc. Pecu. 2019, 10, 254–266. [Google Scholar] [CrossRef]
- Khalid, A.; Na, Y.; Jinyou, Z.; Khudhair, N.; Guixue, Z. Responses of Chicken Sertoli Cells and Fibroblasts after Transfection with Plasmids pEGFP-N3-HNP-1. Pak. Vet. J. 2015, 35, 504. [Google Scholar]
- Iliev, P.; Georgieva, T. Acute phase biomarkers of diseases in small ruminants: An overview. Bulg. J. Vet. Med. 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.; Eckersall, P.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Miglio, A.; Moscati, L.; Scoccia, E.; Maresca, C.; Antognoni, M.T.; Felici, A. Reference values for serum amyloid A, haptoglobin, lysozyme, zinc and iron in healthy lactating Lacaune sheep. Acta Vet. Scand. 2018, 60, 1–4. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.; Singh, O.; Pandey, V.; Verma, P. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas. J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K. Antioxidant defences and redox homeostasis in animals. Antioxidants 2022, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.H.; Khalphallah, A.; Nakada, K.; Elmeligy, E.; Hassan, D.; Ebissy, E.A.; Ghandour, R.A.; Mousa, S.A.; Hassaneen, A.S. Clinical and correlated responses among steroid hormones and oxidant/antioxidant biomarkers in pregnant, non-pregnant and lactating CIDR-pre-synchronized dromedaries (Camelus dromedarius). Vet. Sci. 2021, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Flare-up of cytokines in rheumatoid arthritis and their role in triggering depression: Shared common function and their possible applications in treatment. Biomed. Rep. 2021, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef]
- Pugh, D. Sheep and Goat Medicine, 2nd ed.; Pugh, D.G., Baird, A.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Available online: https://www.elsevier.com (accessed on 24 December 2024).
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Darwish, A.; Ebissy, E.; Hafez, A.; Ateya, A.; El-Sayed, A. Nucleotide sequence variants, gene expression and serum profile of immune and antioxidant markers associated with bacterial diarrhea susceptibility in Barki lambs. BMC Vet. Res. 2024, 20, 462. [Google Scholar] [CrossRef]
- Boesenberg-Smith, K.A.; Pessarakli, M.M.; Wolk, D.M. Assessment of DNA yield and purity: An overlooked detail of PCR troubleshooting. Clin. Microbiol. Newsl. 2012, 34, 1–6. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Yu, K.-H.; Lin, W.-T.; Wang, W.-T.; Chen, D.-P. Finding the Common Single-Nucleotide Polymorphisms in Three Autoimmune Diseases and Exploring Their Bio-Function by Using a Reporter Assay. Biomedicines 2023, 11, 2426. [Google Scholar] [CrossRef]
- Essa, B.; Al-Sharif, M.; Abdo, M.; Fericean, L.; Ateya, A. New insights on nucleotide sequence variants and mRNA levels of candidate genes assessing resistance/susceptibility to mastitis in Holstein and Montbéliarde dairy cows. Vet. Sci. 2023, 10, 35. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Assirelli, E.; Pulsatelli, L.; Dolzani, P.; Mariani, E.; Lisignoli, G.; Addimanda, O.; Meliconi, R. Complement expression and activation in osteoarthritis joint compartments. Front. Immunol. 2020, 11, 535010. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.; Moore, C.; Shearer, P.; Jelocnik, M.; Bommana, S.; Timms, P.; Polkinghorne, A. Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks. BMC Vet. Res. 2016, 12, 193. [Google Scholar] [CrossRef]
- Ballanti, E.; Perricone, C.; di Muzio, G.; Kroegler, B.; Chimenti, M.S.; Graceffa, D.; Perricone, R. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: Relationship with anti-TNF inhibitors. Autoimmun. Rev. 2011, 10, 617–623. [Google Scholar] [CrossRef]
- Sturfelt, G.; Truedsson, L. Complement in the immunopathogenesis of rheumatic disease. Nat. Rev. Rheumatol. 2012, 8, 458–468. [Google Scholar] [CrossRef]
- Adhya, S.; CHAKRABORTY, G.; Hajra, B.; Bhattacharya, S.; Sikdar, P.; Sinha, S.; Banerjee, P.; GHOSH, E.; Chakraborty, P. Serology and immunoglobulin profile in rheumatoid arthritis. Indian J. Pathol. Microbiol. 1998, 41, 43–47. [Google Scholar]
- Kim, S.-H.; Jeong, H.-J.; Kim, J.-M.; Jun, J.-B.; Son, C.-N. Clinical significance of elevated serum immunoglobulin G4 levels in patients with rheumatoid arthritis. J. Rheum. Dis. 2020, 27, 96–99. [Google Scholar] [CrossRef]
- Straub, R.H. Interaction of the endocrine system with inflammation: A function of energy and volume regulation. Arthritis Res. Ther. 2014, 16, 1–15. [Google Scholar] [CrossRef]
- Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: Anti-and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2014, 22, 20–32. [Google Scholar] [CrossRef]
- Yang, C.; Gao, J.; Du, J.; Yang, X.; Jiang, J. Altered neuroendocrine immune responses, a two-sword weapon against traumatic inflammation. Int. J. Biol. Sci. 2017, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Aguilar, M.C.; Rondón-Mercado, R. Neuroimmunoendocrine system in health and disease. EC Microbiol. 2018, 14, 02–06. [Google Scholar]
- Sato, H.; Takai, C.; Kazama, J.J.; Wakamatsu, A.; Hasegawa, E.; Kobayashi, D.; Kondo, N.; Nakatsue, T.; Abe, A.; Ito, S. Serum hepcidin level, iron metabolism and osteoporosis in patients with rheumatoid arthritis. Sci. Rep. 2020, 10, 9882. [Google Scholar] [CrossRef] [PubMed]
- Tański, W.; Chabowski, M.; Jankowska-Polańska, B.; Jankowska, E.A. Iron metabolism in patients with rheumatoid arthritis. Res. Sq. 2020, 25, 4325–4335. [Google Scholar] [CrossRef]
- Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef]
- Glasauer, A.; Chandel, N.S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101. [Google Scholar] [CrossRef]
- Bourens, M.; Barrientos, A. Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module. J. Biol. Chem. 2017, 292, 7774–7783. [Google Scholar] [CrossRef]
- Al-Sharif, M.; Ateya, A. New insights on coding mutations and mRNA levels of candidate genes associated with diarrhea susceptibility in baladi goat. Agriculture 2023, 13, 143. [Google Scholar] [CrossRef]
- Krishna Priya, E.; Srinivas, L.; Rajesh, S.; Sasikala, K.; Banerjee, M. Pro-inflammatory cytokine response pre-dominates immuno-genetic pathway in development of rheumatoid arthritis. Mol. Biol. Rep. 2020, 47, 8669–8677. [Google Scholar] [CrossRef]
- Hernandez, G.; Mills, T.S.; Rabe, J.L.; Chavez, J.S.; Kuldanek, S.; Kirkpatrick, G.; Noetzli, L.; Jubair, W.K.; Zanche, M.; Myers, J.R. Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica 2020, 105, 585. [Google Scholar] [CrossRef]
- Tothova, C.; Nagy, O.; Kovac, G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: A review. Veterinární Medicína 2014, 59, 163–180. [Google Scholar] [CrossRef]
- Iliev, P.; Georgieva, T. Acute phase proteins in sheep and goats-function, reference ranges and assessment methods: An overview. Bulg. J. Vet. Med. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Acute phase protein levels as an auxiliary tool in diagnosing viral diseases in ruminants—A review. Viruses 2018, 10, 502. [Google Scholar] [CrossRef]
- Kay, J.; Morgacheva, O.; Messing, S.P.; Kremer, J.M.; Greenberg, J.D.; Reed, G.W.; Gravallese, E.M.; Furst, D.E. Clinical disease activity and acute phase reactant levels are discordant among patients with active rheumatoid arthritis: Acute phase reactant levels contribute separately to predicting outcome at one year. Arthritis Res. Ther. 2014, 16, 1–10. [Google Scholar] [CrossRef]
- Darwish, A. Monitoring of antioxidant vitamins concentrations in some ovine diseases. Vet. Sci. Res. Rev. 2020, 6, 58–63. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.; Lauridsen, C.; Dunshea, F.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Triggianese, P.; Conigliaro, P.; De Martino, E.; Monosi, B.; Chimenti, M.S. Overview on the Link Between the Complement System and Auto-Immune Articular and Pulmonary Disease. Open Access Rheumatol. Res. Rev. 2023, 15, 65–79. [Google Scholar] [CrossRef]
Investigated Marker | Primer | Product Size (bp) | Annealing Temperature (°C) | GenBank Isolate | Origin |
---|---|---|---|---|---|
IL-1α | F5′-AGAAGTCCTTCTATGATGCAAG-3′ R5′-GAGATTCTTAGAGTCACAGGA-3′ | 466 | 60 | NM_001009808.1 | Present Research |
IL-1β | F5′-CAGCCATGGCAACCGTACCTG-3′ R5′-ACTGACTGCACGGCTGCATCAC-3′ | 361 | 60 | NM_001009465.2 | |
IL-6 | F5′-GTAGTTCCTGGGCATTCCCTC-3′ R5′-CAGCCTAAACATATAAATACA-3′ | 370 | 58 | NM_001009392.1 | |
TNFα | F5′-CCTGCCGGAATACCTGGACTAT-3′ R5′-CTCAAGGAACGTTGCGAAGTAT-3′ | 386 | 60 | NM_001024860.1 | |
IL10 | F5′-CTGAAGACCCTCCGGCTGCGGC-3′ R5′-TCACAGAGAAGCTCAGTAAATA-3′ | 387 | 58 | NM_001009327.1 | |
NFKB | F5′-ATCCACCTGCACGCACACAGC-3′ R5′-GCTGTCATAGATGGCGTCCGAC-3′ | 411 | 60 | XM_060416845.1 | |
NCF4 | F5′-AGAGGCAGCTCCTGGGGACTC-3′ R5′-GAAGCGCTCCTCCAGCTTGCT-3′ | 345 | 60 | XM_042247241.2 | |
TMED1 | F5′-AGCACTGGCTGGCTTGCAGGT-3′ R5′-GTGACTGTTCTGGCAAGAACAC-3′ | 408 | 58 | XM_060415483.1 | |
FCAMR | F5′-GAGGCTTGTTCGTGGTGAGGCT-3′ R5′-CGGAGCCCTCTGCCTGGCTGC-3′ | 378 | 58 | XM_042257020.1 | |
iNOS | F5′-CAGGAACCTACCAGCTGACGG-3′ R5′-GGTCGCGGCCGTCAGCCTGCA-3′ | 480 | 60 | AF223942.1 | |
SOD | F5′-ATCCGCGACATGCACGCCAAG-3′ R5′-CCAGACCTGGCCATCTCGCAC-3′ | 381 | 60 | XM_027970902.2 | |
CAT | F5′-CTGATGTCCTGACCACTGGCGC-3′ R5′-CATGTCCGGATCCTTCAGGTG-3′ | 473 | 58 | XM_060400055.1 | |
GPX | F5′-AGCTCACTGCTCTCAACTTGG-3′ R5′-AGAGCGGATGCGCCTTCTCGC-3′ | 416 | 58 | XM_004018462.5 | |
ATOX1 | F5′-CGTTGCTGTCGGAGGCGTAGTC-3′ R5′-CGGCTTGACTTTATTGCAGGGA-3′ | 430 | 58 | NM_001009429.1 | |
COX18 | F5′-ATGCGCGTAGAGGCCTCGGCG 3′ R5′-GATGTAGTGCTGGTAGGCAGC-3′ | 415 | 60 | XM_027971062.3 | |
ß. actin | F5′-AATTCCATCATGAAGTGTGAC-3′ R5′-GATCTTGATCTTCATCGTGCT-3′ | 150 | 58 | KU365062.1 |
Gene | SNPs | Healthy n = 30 | Arthritic n = 30 | Total n = 60 | Kind of Inherited Change | Amino Acid Order and Sorting |
---|---|---|---|---|---|---|
IL-1α | C185T | -/30 | 18/30 | 31/60 | Non-synonymous | 62 P to L |
T191C | 21/30 | -/30 | 21/60 | Non-synonymous | 64 M to T | |
A363C | 13/30 | -/30 | 13/60 | Synonymous | 121 T | |
IL-1β | C29T | 19/30 | -/30 | 19/60 | Non-synonymous | 10 S to L |
C46A | -/30 | 23/30 | 23/60 | Non-synonymous | 16 A to T | |
A58C | 11/30 | -/30 | 11/60 | Synonymous | 20 R | |
T89C | 14/30 | -/30 | 14/60 | Non-synonymous | 30 L to P | |
IL-6 | C341T | 17/30 | -/30 | 17/60 | Non-synonymous | 114 T to I |
TNFα | C242T | -/30 | 24/30 | 24/60 | Non-synonymous | 81 T to M |
IL10 | T39C | -/30 | 14/30 | 14/60 | Synonymous | 13 R |
G219C | -/30 | 19/30 | 19/60 | Non-synonymous | 73 R to S | |
NFKB | C66T | 13/30 | -/30 | 13/60 | Synonymous | 22 A |
A264G | 22/30 | -/30 | 22/60 | Synonymous | 88 K | |
NCF4 | G36T | -/30 | 15/30 | 15/60 | Synonymous | 12 P |
G38A | 17/30 | -/30 | 17/60 | Non-synonymous | 13 R to K | |
C243T | -/30 | 19/30 | 19/60 | Synonymous | 81 F | |
G261A | -/30 | 24/30 | 24/60 | Synonymous | 87 V | |
A267G | 15/30 | -/30 | 15/60 | Synonymous | 89 T | |
TMED1 | G125C | 12/30 | -/30 | 12/60 | Non-synonymous | 42 G to A |
G147A | 14/30 | -/30 | 14/60 | Synonymous | 49 V | |
T337C | 22/30 | -/30 | 22/60 | Non-synonymous | 113 W to L | |
FCAMR | C268T | -/30 | 14/30 | 14/60 | Synonymous | 90 L |
iNOS | C38T | 19/30 | -/30 | 19/60 | Non-synonymous | 13 S to L |
C77T | 18/30 | -/30 | 18/60 | Non-synonymous | 26 S to L | |
T410C | -/30 | 15/30 | 15/60 | Non-synonymous | 137 M to T | |
SOD | C147G | -/30 | 22/30 | 22/60 | Non-synonymous | 49 S to R |
CAT | C155T | 19/30 | -/30 | 19/60 | Non-synonymous | 52 T to M |
GPX | C193A | 10/30 | -/30 | 10/60 | Non-synonymous | 65 H to N |
C298T | 23/30 | -/30 | 23/60 | Non-synonymous | 100 R to C | |
ATOX1 | G383C | -/30 | 17/30 | 17/60 | Non-synonymous | 128 R to P |
COX18 | T110C | 21/30 | -/30 | 21/60 | Non-synonymous | 37 V to A |
Parameters | CG | AG |
---|---|---|
IL-1α (Pg/mL) | 24.05 ± 3.34 | 95.73 ± 1.78 * |
IL-1β (Pg/mL) | 25.99 ± 2.96 | 99.14 ± 0.64 * |
IL-6 (Pg/mL) | 24.63 ± 2.92 | 86.38 ± 0.08 * |
TNF-α (Pg/mL) | 24.91 ± 2.98 | 87.24 ± 1.70 * |
IL-10 (Pg/mL) | 103.70 ± 3.31 | 90.69 ± 2.26 * |
IgG (mg/dL) | 229.02 ± 19.74 | 350.26 ± 36.38 * |
IgM (mg/dL) | 13.79 ± 1.43 | 41.43 ± 5.95 * |
IgA (mg/dL) | 4.49 ± 0.83 | 8.62 ± 0.66 * |
C3 (mg/dL) | 151.17 ± 5.29 | 110.68 ± 1.74 * |
C4 (mg/dL) | 12.07 ± 0.60 | 7.14 ± 0.83 * |
Fb (mg/dL) | 122.01 ± 8.49 | 225.01 ± 3.70 * |
Cp (mg/dL) | 2.30 ± 1.15 | 6.24 ± 0.03 * |
Hp (g/dL) | 0.15 ± 0.02 | 2.59 ± 0.49 * |
SAA (mg/L) | 2.32 ± 0.15 | 6.94 ± 0.16 * |
MDA (nmol/mL) | 12.95 ± 1.14 | 23.70 ± 1.52 * |
NO (μmol/L) | 26.80 ± 1.20 | 32.91 ± 1.78 * |
GSH (ng/mL) | 8.15 ± 0.62 | 5.06 ± 0.51 * |
CAT (U/L) | 412.25 ± 14.64 | 289.20 ± 6.16 * |
GPx (mU/L) | 1015.45 ± 2.95 | 745.01 ± 15.65 * |
Cortisol (μg/dL) | 1.79 ± 0.16 | 6.44 ± 0.06 * |
Insulin (μIU/mL) | 8.41 ± 0.15 | 7.09 ± 0.17 * |
T3(ng/mL) | 1.74 ± 0.15 | 1.02 ± 0.01 * |
T4 (µg/mL) | 0.85 ± 0.08 | 0.64 ± 0.02 * |
TSH (µIU/mL) | 0.010 ± 0.002 | 0.022 ± 0.012 * |
GH (ng/dL) | 12.39 ± 1.47 | 16.80 ± 0.06 * |
SI (μg/dL) | 106.89 ± 2.46 | 89.36 ± 1.57 * |
TIBC (μg/dL) | 327.39 ± 2.16 | 341.06 ± 3.20 * |
UIBC (μg/dL) | 220.50 ± 2.24 | 251.69 ± 2.74 * |
Transferrin(mg/dL) | 124.65 ± 2.74 | 86.54 ± 0.24 * |
Tf sat.% | 32.65 ± 0.66 | 26.20 ± 0.39 * |
Ferritin (ng/mL) | 13.60 ± 1.05 | 19.54 ± 0.53 * |
Parameter | IL-1α (Pg/mL) | IL-1β (Pg/mL) | IL-6 (Pg/mL) | TNF-α (Pg/mL) | IL-10 (Pg/mL) | Fb (mg/dL) | SAA (mg/L) | Hp (g/dL) | Cp (mg/dL) |
---|---|---|---|---|---|---|---|---|---|
Cut-off | 29.50 | 28.5 | 28.5 | 28.5 | 100.80 | 132.5 | 2.45 | 0.185 | 3.60 |
Sensitivity | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Specificity | 90% | 85% | 90% | 90% | 80% | 85% | 80% | 90% | 80% |
LR | 10 | 6.67 | 10 | 10 | 5 | 6.67 | 5 | 10 | 5 |
PPV | 90.91% | 86.96% | 90.91% | 90.91% | 83.33% | 86.96% | 83.33% | 90.91% | 83.33% |
NPV | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Accuracy rate | 95% | 92.5% | 95% | 95% | 90% | 92.5% | 90% | 95% | 90% |
% increase or decrease | 298.05% | 281.45% | 226.35% | 250.22% | −12.57% | 84.41% | 199.14% | 1626.67% | 171.30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, A.; Ateya, A.; Alghamdi, M.A.; El-Sayed, A. Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis. Vet. Sci. 2025, 12, 122. https://doi.org/10.3390/vetsci12020122
Darwish A, Ateya A, Alghamdi MA, El-Sayed A. Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis. Veterinary Sciences. 2025; 12(2):122. https://doi.org/10.3390/vetsci12020122
Chicago/Turabian StyleDarwish, Asmaa, Ahmed Ateya, Mansour A. Alghamdi, and Ahmed El-Sayed. 2025. "Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis" Veterinary Sciences 12, no. 2: 122. https://doi.org/10.3390/vetsci12020122
APA StyleDarwish, A., Ateya, A., Alghamdi, M. A., & El-Sayed, A. (2025). Individual Genomic Loci, Transcript Level and Serum Profile of Immune, Antioxidant and Hormonal Markers Associated with Sheep Arthritis. Veterinary Sciences, 12(2), 122. https://doi.org/10.3390/vetsci12020122