Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review
Simple Summary
Abstract
1. Introduction
2. Methodology
3. Protective Role of the Intestinal Barrier and Gut Dysfunctioning in Cryptosporidiosis
3.1. Key Components of the Intestinal Barrier and Their Roles
3.2. Enteric Histopathophysiology in Cryptosporidiosis
3.3. Cryptosporidium and Gut Barrier Dysfunction
3.4. Inflammatory Cascades: Immunological Reactions Against Cryptosporidiosis
3.4.1. Role of Caspase-1 in Cryptosporidiosis
3.4.2. Interactions Between Capsae-1 and NLRP6 in Cryptosporidiosis
4. Gut Microbiota Alterations in Cryptosporidiosis: Impact and Implications
4.1. Interrelations Between Crypsyposridiosis, Gut Microbiota-Derived Metabolites, and Immune Responses
4.2. Mechanisms Linking Microbiota to Gut Barrier Integrity in Cryptosporidiosis
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leitch, G.J.; He, Q. Cryptosporidiosis—An Overview. J. Biomed. Res. 2012, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gerace, E.; Presti, V.D.M.L.; Biondo, C. Cryptosporidium Infection: Epidemiology, Pathogenesis, and Differential Diagnosis. Eur. J. Microbiol. Immunol. 2019, 9, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ryan, U.; Feng, Y.; Xiao, L. Emergence of Zoonotic Cryptosporidium parvum in China. Trends Parasitol. 2022, 38, 335–343. [Google Scholar] [CrossRef]
- Checkley, W.; White, A.C.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.-M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L.; et al. A Review of the Global Burden, Novel Diagnostics, Therapeutics, and Vaccine Targets for Cryptosporidium. Lancet Infect. Dis. 2015, 15, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and Aetiology of Diarrhoeal Disease in Infants and Young Children in Developing Countries (the Global Enteric Multicenter Study, GEMS): A Prospective, Case-Control Study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Moore, S.R.; Lima, N.L.; Soares, A.M.; Oriá, R.B.; Pinkerton, R.C.; Barrett, L.J.; Guerrant, R.L.; Lima, A.A.M. Prolonged Episodes of Acute Diarrhea Reduce Growth and Increase Risk of Persistent Diarrhea in Children. Gastroenterology 2010, 139, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Guarino, A.; Canani, R.B.; Casola, A.; Pozio, E.; Russo, R.; Bruzzese, E.; Fontana, M.; Rubino, A. Human Intestinal Cryptosporidiosis: Secretory Diarrhea and Enterotoxic Activity in Caco-2 Cells. J. Infect. Dis. 1995, 171, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Javed, K.; Alkheraije, K.A. Cryptosporidiosis: A Foodborne Zoonotic Disease of Farm Animals and Humans. Pak. Vet. J. 2023, 43, 213–223. [Google Scholar] [CrossRef]
- Ali, M.; Ji, Y.; Xu, C.; Hina, Q.; Javed, U.; Li, K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals 2024, 14, 3287. [Google Scholar] [CrossRef]
- Ayan, A.; Celik, B.A.; Celik, O.Y.; Akyildiz, G.; Kilinc, O.O.; Ayan, O.O.; Oguz, F.E.; Goz, Y.; Yuksek, N.; Yilmaz, A.B.; et al. First Report of Zoonotic Cryptosporidium parvum Subtype IIaA15G2R1 in Dogs in Türkiye. Pak. Vet. J. 2024, 44, 1263–1268. [Google Scholar] [CrossRef]
- Feng, Y.; Ryan, U.M.; Xiao, L. Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011. [Google Scholar] [CrossRef]
- Golomazou, E.; Mamedova, S.; Eslahi, A.V.; Karanis, P. Cryptosporidium and Agriculture: A Review. Sci. Total Environ. 2024, 916, 170057. [Google Scholar] [CrossRef]
- Puleston, R.L.; Mallaghan, C.M.; Modha, D.E.; Hunter, P.R.; Nguyen-Van-Tam, J.S.; Regan, C.M.; Nichols, G.L.; Chalmers, R.M. The First Recorded Outbreak of Cryptosporidiosis Due to Cryptosporidium cuniculus (Formerly Rabbit Genotype), Following a Water Quality Incident. J. Water Health 2014, 12, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Wells, B.; Shaw, H.; Hotchkiss, E.; Gilray, J.; Ayton, R.; Green, J.; Katzer, F.; Wells, A.; Innes, E. Prevalence, Species Identification and Genotyping Cryptosporidium from Livestock and Deer in a Catchment in the Cairngorms with a History of a Contaminated Public Water Supply. Parasites Vectors 2015, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Monis, P.; Gofton, A.W.; Oskam, C.L.; Ball, A.; Bath, A.; Bartkow, M.; Robertson, I.; Ryan, U. Cryptosporidium species and Subtypes in Animals Inhabiting Drinking Water Catchments in Three States across Australia. Water Res. 2018, 134, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Certad, G.; Follet, J.; Gantois, N.; Hammouma-Ghelboun, O.; Guyot, K.; Benamrouz-Vanneste, S.; Fréalle, E.; Seesao, Y.; Delaire, B.; Creusy, C.; et al. Prevalence, Molecular Identification, and Risk Factors for Cryptosporidium Infection in Edible Marine Fish: A Survey Across Sea Areas Surrounding France. Front. Microbiol. 2019, 10, 1037. [Google Scholar] [CrossRef]
- Alarcon-Zapata, M.A.; Romero-Salas, D.; Chaparro-Gutierrez, J.J.; Gonzalez-Hernandez, M.; Ojeda-Chi, M.M.; Arturo, S.-S. Frequency of Giardia spp. and Cryptosporidium spp. in Domestic and Captive Wild Animals in the North of Veracruz, Mexico. Pak. Vet. J. 2023, 43, 814–818. [Google Scholar] [CrossRef]
- Dărăbuș, G.; Lupu, M.A.; Mederle, N.; Dărăbuș, R.G.; Imre, K.; Mederle, O.; Imre, M.; Paduraru, A.A.; Morariu, S.; Olariu, T.R. Epidemiology of Cryptosporidium Infection in Romania: A Review. Microorganisms 2023, 11, 1793. [Google Scholar] [CrossRef]
- Cidan, Y.; Lu, S.; Wang, H.; Wang, J.; Ali, M.; Fouad, D.; Ataya, F.S.; Zhu, Y.; Basang, W.; Li, K. Comparative Analysis of Microbiota in Jiani Yaks with Different Rib Structures. Life 2024, 11, 1458. [Google Scholar] [CrossRef]
- Peng, S.; Xu, C.; Saleem, M.U.; Babar, W.; Idrees, A.; Li, K. Epidemiological Investigation of Cryptosporidium Infection in Yaks in Chamdo, China. Pak. Vet. J. 2024, 44, 526–529. [Google Scholar] [CrossRef]
- Qi, M.; Cai, J.; Wang, R.; Li, J.; Jian, F.; Huang, J.; Zhou, H.; Zhang, L. Molecular Characterization of Cryptosporidium spp. and Giardia duodenalis from Yaks in the Central Western Region of China. BMC Microbiol. 2015, 15, 108. [Google Scholar] [CrossRef]
- Cho, Y.-I.; Han, J.-I.; Wang, C.; Cooper, V.; Schwartz, K.; Engelken, T.; Yoon, K.-J. Case–Control Study of Microbiological Etiology Associated with Calf Diarrhea. Vet. Microbiol. 2013, 166, 375–385. [Google Scholar] [CrossRef]
- Nydam, D.V.; Wade, S.E.; Schaaf, S.L.; Mohammed, H.O. Number of Cryptosporidium parvum Oocysts or Giardia spp. Cysts Shed by Dairy Calves after Natural Infection. Am. J. Vet. Res. 2001, 62, 1612–1615. [Google Scholar] [CrossRef]
- Olson, M.E.; O’Handley, R.M.; Ralston, B.J.; McAllister, T.A.; Thompson, R.C.A. Update on Cryptosporidium and Giardia Infections in Cattle. Trends Parasitol. 2004, 20, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Morgan, U.M.; Monis, P.T.; Xiao, L.; Limor, J.R.; Sulaiman, I.M.; Raidal, S.; Donoghue, P.O.; Gasser, R.B.; Murray, A.; Fayer, R.; et al. Molecular Characterization and Phylogenetic Analysis of 18S RRNA, Gp60 and HSP70 Genes of Cryptosporidium parvum Isolated from Cattle Owners and Cattle Using Nested PCR. Pak. Vet. J. 2024, 31, 289–296. [Google Scholar] [CrossRef]
- Vermeulen, L.C.; Benders, J.; Medema, G.; Hofstra, N. Global Cryptosporidium Loads from Livestock Manure. Environ. Sci. Technol. 2017, 51, 8663–8671. [Google Scholar] [CrossRef]
- Xiao, L.; Fayer, R.; Ryan, U.; Upton, S.J. Cryptosporidium Taxonomy: Recent Advances and Implications for Public Health. Clin. Microbiol. Rev. 2004, 17, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Ryan, U. Cryptosporidium—An Update with an Emphasis on Foodborne and Waterborne Transmission. Res. Vet. Sci. 2020, 132, 500–512. [Google Scholar] [CrossRef]
- Guo, Y.; Li, N.; Ryan, U.; Feng, Y.; Xiao, L. Small Ruminants and Zoonotic Cryptosporidiosis. Parasitol. Res. 2021, 120, 4189–4198. [Google Scholar] [CrossRef] [PubMed]
- Santin, M. Cryptosporidium and Giardia in Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ren, J.; Yuan, Z.; Liu, A.; Zhao, H.; Liu, H.; Chu, L.; Pan, W.; Cao, J.; Lin, Y. Cryptosporidium andersoni as a Novel Predominant Cryptosporidium Species in Outpatients with Diarrhea in Jiangsu Province, China. BMC Infect. Dis. 2014, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.S.Y.; Eastwood, K.; Walker, B.; Durrheim, D.N.; Massey, P.D.; Porigneaux, P.; Kemp, R.; McKinnon, B.; Laurie, K.; Miller, D. Evidence of Cryptosporidium Transmission Between Cattle and Humans in Northern New South Wales. Exp. Parasitol. 2012, 130, 437–441. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Krücken, J.; Nöckler, K.; von Samson-Himmelstjerna, G.; Zessin, K.-H. Molecular Epidemiology of Cryptosporidium in Livestock Animals and Humans in the Ismailia Province of Egypt. Vet. Parasitol. 2013, 193, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.A.; El-Emam, M.M.A.; Gouda, H.; El-Said, B.M.; Salman, M.B.; Abd-Elfatah, E.B. Molecular Characterization of Cryptosporidium Infection and Analysis of Hematological and Biochemical Changes in Diarrheic Pre-Weaned Calves in Egypt. Pak. Vet. J. 2024, 44, 135–140. [Google Scholar] [CrossRef]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and Molecular Epidemiology of Cryptosporidium and Giardia—A 50 Year Perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Castellanos-Gonzalez, A.; White, A.C., Jr. Novel Drug Targets for Treatment of Cryptosporidiosis. Expert Opin. Ther. Targets 2020, 24, 915–922. [Google Scholar] [CrossRef]
- Ali, M.; Xu, C.; Wang, J.; Kulyar, M.F.-E.; Li, K. Emerging Therapeutic Avenues Against Cryptosporidium: A Comprehensive Review. Vet. Parasitol. 2024, 331, 110279. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Xu, C.; Nawaz, S.; Ahmed, A.E.; Hina, Q.; Li, K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A “One-Health” Concern. Life 2024, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Ventura, G.; Cauda, R.; Larocca, L.M.; Riccioni, M.E.; Tumbarello, M.; Lucia, M.B. Gastric Cryptosporidiosis Complicating HIV Infection: Case Report and Review of the Literature. Eur. J. Gastroenterol. Hepatol. 1997, 9, 307–310. [Google Scholar] [CrossRef]
- Amadi, B.; Mwiya, M.; Sianongo, S.; Payne, L.; Watuka, A.; Katubulushi, M.; Kelly, P. High Dose Prolonged Treatment with Nitazoxanide Is Not Effective for Cryptosporidiosis in HIV Positive Zambian Children: A Randomised Controlled Trial. BMC Infect. Dis. 2009, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Hussien, S.M.M.; Abdella, O.H.; Abuhashim, A.H.; Aboshiesha, G.A.; Taha, M.A.A.; El-Shemy, A.S.; El-Bader, M.M. Comparative Study Between the Effect of Nitazoxanide and Paromomycine in Treatment of Cryptosporidiosis in Hospitalized Children. J. Egypt. Soc. Parasitol. 2013, 43, 463–470. [Google Scholar]
- Sparks, H.; Nair, G.; Castellanos-Gonzalez, A.; White, A.C. Treatment of Cryptosporidium: What We Know, Gaps, and the Way Forward. Curr. Trop. Med. Rep. 2015, 2, 181–187. [Google Scholar] [CrossRef]
- Gormley, F.J.; Little, C.L.; Chalmers, R.M.; Rawal, N.; Adak, G.K. Zoonotic Cryptosporidiosis from Petting Farms, England and Wales, 1992–2009. Emerg. Infect. Dis. 2011, 17, 151. [Google Scholar] [CrossRef]
- Lee, S.; Alkathiri, B.; Kim, A.-Y.; Do, K.-H.; Seo, K.; Kim, S.; Lee, W.-K.; Kwak, D.; Lee, S.-H. Alteration of Goat Kids’ Gut Microbiota by Cryptosporidium parvum Infection. J. Biomed. Transl. Res. 2024, 25, 41–52. [Google Scholar] [CrossRef]
- Sherwood, D.; Angus, K.W.; Snodgrass, D.R.; Tzipori, S. Experimental Cryptosporidiosis in Laboratory Mice. Infect. Immun. 1982, 38, 471–475. [Google Scholar] [CrossRef] [PubMed]
- VanDussen, K.L.; Funkhouser-Jones, L.J.; Akey, M.E.; Schaefer, D.A.; Ackman, K.; Riggs, M.W.; Stappenbeck, T.S.; Sibley, L.D. Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. MBio 2020, 11, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Zhang, Y.H.; Zhang, W. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. Biomed Res. Int. 2018, 2018, 2819154. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Ramanan, D.; Cadwell, K. Intrinsic Defense Mechanisms of the Intestinal Epithelium. Cell Host Microbe 2016, 19, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chatterjee, I.; Anbazhagan, A.N.; Jayawardena, D.; Priyamvada, S.; Alrefai, W.A.; Sun, J.; Borthakur, A.; Dudeja, P.K. Cryptosporidium parvum Disrupts Intestinal Epithelial Barrier Function via Altering Expression of Key Tight Junction and Adherens Junction Proteins. Cell. Microbiol. 2018, 20, e12830. [Google Scholar] [CrossRef]
- Luo, C.; Xu, Y.; Zhang, J.; Tian, Q.; Guo, Y.; Li, N.; Feng, Y.; Xu, R.; Xiao, L. Cryptosporidium parvum Disrupts Intestinal Epithelial Barrier in Neonatal Mice Through Downregulation of Cell Junction Molecules. PLoS Neglected Trop. Dis. 2024, 18, e0012212. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.L.; Bukhari, Z.; Hargy, T.M.; Bolton, J.R.; Dussert, B.W.; Marshall, M.M. Using UV to Inactivate Cryptosporidium. J.-Am. Water Work. Assoc. 2000, 92, 97–104. [Google Scholar] [CrossRef]
- Chi, J.; Sun, L.; Cai, L.; Fan, L.; Shao, C.; Shang, L.; Zhao, Y. Chinese Herb Microneedle Patch for Wound Healing. Bioact. Mater. 2021, 6, 3507–3514. [Google Scholar] [CrossRef] [PubMed]
- Hurle, G.R.; Brainard, J.; Tyler, K.M. Microbiome Diversity Is a Modifiable Virulence Factor for Cryptosporidiosis. Virulence 2023, 14, 2273004. [Google Scholar] [CrossRef]
- Belizário, J.E.; Faintuch, J.; Garay-Malpartida, M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediat. Inflamm. 2018, 2018, 2037838. [Google Scholar] [CrossRef] [PubMed]
- Grigor’eva, I.N. Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. J. Pers. Med. 2020, 11, 13. [Google Scholar] [CrossRef]
- Wieërs, G.; Verbelen, V.; Van Den Driessche, M.; Melnik, E.; Vanheule, G.; Marot, J.-C.; Cani, P.D. Do Probiotics During In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota with Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing Saccharomyces to a Mixture of Lactobacillus, Bifidobacterium, and Saccharomyce. Front. Public Health 2021, 8, 578089. [Google Scholar] [CrossRef] [PubMed]
- Laurent, F.; Lacroix-Lamandé, S. Innate Immune Responses Play a Key Role in Controlling Infection of the Intestinal Epithelium by Cryptosporidium. Int. J. Parasitol. 2017, 47, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.K.; Johansson, M.E.V. The Role of Goblet Cells and Mucus in Intestinal Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Tan, H.; Kaiko, G.E. Role of the Intestinal Epithelium and Its Interaction with the Microbiota in Food Allergy. Front. Immunol. 2020, 11, 604054. [Google Scholar] [CrossRef]
- Régnier, M.; Van Hul, M.; Knauf, C.; Cani, P.D. Gut Microbiome, Endocrine Control of Gut Barrier Function and Metabolic Diseases. J. Endocrinol. 2021, 248, R67–R82. [Google Scholar] [CrossRef]
- Suzuki, T. Regulation of the Intestinal Barrier by Nutrients: The Role of Tight Junctions. Anim. Sci. J. 2020, 91, e13357. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.W.; Al-Sadi, R.; Ma, T.Y. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front. Immunol. 2021, 12, 767456. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, G.M.; Pereira, J.N.B.; da Silva, E.B.; Dos Santos, A.A.C.; Rodrigues, T.M.; de Oliveira Santana, G.; Scervino, M.V.M.; Pithon-Curi, T.C.; Hirabara, S.M.; Gorjão, R. Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus. Cells 2024, 13, 1626. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
- Horowitz, A.; Chanez-Paredes, S.D.; Haest, X.; Turner, J.R. Paracellular Permeability and Tight Junction Regulation in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Brainard, J.; Hammer, C.C.; Hunter, P.R.; Katzer, F.; Hurle, G.; Tyler, K. Efficacy of Halofuginone Products to Prevent or Treat Cryptosporidiosis in Bovine Calves: A Systematic Review and Meta-Analyses. Parasitology 2021, 148, 408–419. [Google Scholar] [CrossRef]
- Chen, X.-M. Human Intestinal and Biliary Cryptosporidiosis. World J. Gastroenterol. 1999, 5, 424. [Google Scholar] [CrossRef]
- Dengler, F.; Hammon, H.M.; Liermann, W.; Görs, S.; Bachmann, L.; Helm, C.; Ulrich, R.; Delling, C. Cryptosporidium parvum Competes with the Intestinal Epithelial Cells for Glucose and Impairs Systemic Glucose Supply in Neonatal Calves. Vet. Res. 2023, 54, 40. [Google Scholar] [CrossRef]
- Wallbank, B.A.; Pardy, R.D.; Brodsky, I.E.; Hunter, C.A.; Striepen, B. Cryptosporidium Impacts Epithelial Turnover and Is Resistant to Induced Death of the Host Cell. MBio 2024, 15, e01720-24. [Google Scholar] [CrossRef]
- Abo-Mandil, M.; Alshahat, S.; El-Badry, A.; El-Sheety, A.; El-Faramawy, M.; Ismael, N. Genotypic Prevalence of Cryptosporidium in Egyptian Patients with Liver Cirrhosis. Al-Azhar Int. Med. J. 2020, 1, 225–231. [Google Scholar] [CrossRef]
- Schlingmann, B.; Overgaard, C.E.; Molina, S.A.; Lynn, K.S.; Mitchell, L.A.; Dorsainvil White, S.; Mattheyses, A.L.; Guidot, D.M.; Capaldo, C.T.; Koval, M. Regulation of Claudin/Zonula Occludens-1 Complexes by Hetero-Claudin Interactions. Nat. Commun. 2016, 7, 12276. [Google Scholar] [CrossRef] [PubMed]
- Esmat, M.; Abdel-Aal, A.A.; Shalaby, M.A.; Badawi, M.; Elaskary, H.; Yousif, A.B.; Fahmy, M.-E.A. Efficacy of Clofazimine and Nitazoxanide Combination in Treating Intestinal Cryptosporidiosis and Enhancing Intestinal Cellular Regeneration in Immunocompromised Mice. Food Waterborne Parasitol. 2022, 27, e00161. [Google Scholar] [CrossRef]
- Lamisere, H.; Bhalchandra, S.; Kane, A.V.; Zeng, X.-L.; Mo, D.; Adams, W.; Estes, M.K.; Ward, H.D. Differential Response to the Course of Cryptosporidium parvum Infection and Its Impact on Epithelial Integrity in Differentiated Versus Undifferentiated Human Intestinal Enteroids. Infect. Immun. 2022, 90, e00397-22. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Z.; Li, N.; Liang, G.; Zhang, X.; Wang, Y.; Li, D.; Li, X.; Zhang, S.; Zhang, L. Comparative Proteomics Reveals Cryptosporidium parvum Infection Disrupts Cellular Barriers. J. Proteom. 2023, 287, 104969. [Google Scholar] [CrossRef] [PubMed]
- DiGuilio, K.M.; Rybakovsky, E.; Abdavies, R.; Chamoun, R.; Flounders, C.A.; Shepley-McTaggart, A.; Harty, R.N.; Mullin, J.M. Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int. J. Mol. Sci. 2022, 23, 2995. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, A.; Gullicksrud, J.A.; Engiles, J.B.; McLeod, B.I.; Kugler, E.M.; Henao-Mejia, J.; Zhou, T.; Ring, A.M.; Brodsky, I.E.; Hunter, C.A. The Intestinal Parasite Cryptosporidium Is Controlled by an Enterocyte Intrinsic Inflammasome That Depends on NLRP6. Proc. Natl. Acad. Sci. USA 2021, 118, e2007807118. [Google Scholar] [CrossRef]
- Raupach, B.; Peuschel, S.-K.; Monack, D.M.; Zychlinsky, A. Caspase-1-Mediated Activation of Interleukin-1β (IL-1β) and IL-18 Contributes to Innate Immune Defenses Against Salmonella enterica Serovar Typhimurium Infection. Infect. Immun. 2006, 74, 4922–4926. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nanayakkara, G.; Sun, Y.; Li, X.; Wang, L.; Cueto, R.; Shao, Y.; Fu, H.; Johnson, C.; Cheng, J.; et al. Analyses of Caspase-1-Regulated Transcriptomes in Various Tissues Lead to Identification of Novel IL-1β-, IL-18- and Sirtuin-1-Independent Pathways. J. Hematol. Oncol. 2017, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhu, N.; Wang, D.; Zhou, Y.; Liu, Y. Comprehensive Analysis of Prognostic Value and Immune Infiltration of NLRC4 and CASP1 in Colorectal Cancer. Int. J. Gen. Med. 2022, 15, 5425–5440. [Google Scholar] [CrossRef]
- Deng, S.; He, W.; Gong, A.-Y.; Li, M.; Wang, Y.; Xia, Z.; Zhang, X.-T.; Huang Pacheco, A.S.; Naqib, A.; Jenkins, M.; et al. Cryptosporidium Uses CSpV1 to Activate Host Type I Interferon and Attenuate Antiparasitic Defenses. Nat. Commun. 2023, 14, 1456. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Xu, C.; Ji, Y.; Li, K. Host Immune Response to Cryptosporidium spp.: Insights and Perspectives for Vaccine Development. Anim. Zoonoses. 2025. [Google Scholar]
- Mead, J.R. Early Immune and Host Cell Responses to Cryptosporidium Infection. Front. Parasitol. 2023, 2, 1113950. [Google Scholar] [CrossRef]
- Cohn, I.S.; Henrickson, S.E.; Striepen, B.; Hunter, C.A. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. J. Immunol. 2022, 209, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Veshkini, A.; Kühn, C.; Dengler, F.; Bachmann, L.; Liermann, W.; Helm, C.; Ulrich, R.; Delling, C.; Hammon, H.M. Cryptosporidium parvum Infection Alters the Intestinal Mucosa Transcriptome in Neonatal Calves: Impacts on Epithelial Barriers and Transcellular Transport Systems. Front. Cell. Infect. Microbiol. 2024, 14, 1495309. [Google Scholar] [CrossRef] [PubMed]
- Greigert, V.; Saraav, I.; Son, J.; Zhu, Y.; Dayao, D.; Antia, A.; Tzipori, S.; Witola, W.H.; Stappenbeck, T.S.; Ding, S. Cryptosporidium Infection of Human Small Intestinal Epithelial Cells Induces Type III Interferon and Impairs Infectivity of Rotavirus. Gut Microbes 2024, 16, 2297897. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, L.; Chang, Y.; Fu, Y.; Wang, Y.; Zhang, K.; Zhang, S.; Zhang, L. Microbiome-Metabolomics Analysis of the Impacts of Cryptosporidium muris Infection in BALB/C Mice. Microbiol. Spectr. 2023, 11, e02175-22. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, A.; Wang, Y.; Chen, X.; Lim, S.S.; Dolata, C.E.; Chen, X. Cryptosporidium parvum Infection Attenuates the Ex Vivo Propagation of Murine Intestinal Enteroids. Physiol. Rep. 2016, 4, e13060. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gonzalez, A.; Cabada, M.M.; Nichols, J.; Gomez, G.; White, A.C., Jr. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection. Infect. Immun. 2013, 81, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Priyamvada, S.; Jayawardena, D.; Bhalala, J.; Kumar, A.; Anbazhagan, A.N.; Alrefai, W.A.; Borthakur, A.; Dudeja, P.K. Cryptosporidium parvum Infection Induces Autophagy in Intestinal Epithelial Cells. Cell. Microbiol. 2021, 23, e13298. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, X.; Huang, S.; Yao, Q.; Chen, X.; Song, J.; Fan, Y.; Zhao, G. C3a/C3aR Affects the Propagation of Cryptosporidium parvum in the Ileum Tissues of Mice by Regulating the Gut Barrier, Cell Proliferation, and CD4+ T Cell Main Effectors. Animals 2023, 13, 837. [Google Scholar] [CrossRef]
- Liu, J.; Enomoto, S.; Lancto, C.A.; Abrahamsen, M.S.; Rutherford, M.S. Inhibition of Apoptosis in Cryptosporidium parvum-Infected Intestinal Epithelial Cells Is Dependent on Survivin. Infect. Immun. 2008, 76, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Buret, A.G.; Chin, A.C.; Scott, K.G.E. Infection of Human and Bovine Epithelial Cells with Cryptosporidium andersoni Induces Apoptosis and Disrupts Tight Junctional ZO-1: Effects of Epidermal Growth Factor. Int. J. Parasitol. 2003, 33, 1363–1371. [Google Scholar] [CrossRef]
- Cui, Z.; Dong, H.; Wang, R.; Jian, F.; Zhang, S.; Ning, C.; Zhang, L. A Canine Model of Experimental Infection with Cryptosporidium canis. Exp. Parasitol. 2018, 195, 19–23. [Google Scholar] [CrossRef]
- de Sablet, T.; Potiron, L.; Marquis, M.; Bussière, F.I.; Lacroix-Lamandé, S.; Laurent, F. Cryptosporidium parvum Increases Intestinal Permeability through Interaction with Epithelial Cells and IL-1β and TNFα Released by Inflammatory Monocytes. Cell. Microbiol. 2016, 18, 1871–1880. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Yang, Z.; Song, S.; Yang, J.; Gong, P.; Zhang, W.; Liu, K.; Li, J.; Zhang, G. Infection of Cattle with Cryptosporidium parvum: Mast Cell Accumulation in Small Intestine Mucosa. Vet. Pathol. 2013, 50, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Kleinová, T.; Volek, Z.; Šimůnek, J. Effect of Cryptosporidium parvum Infection on the Absorptive Capacity and Paracellular Permeability of the Small Intestine in Neonatal Calves. Vet. Parasitol. 2008, 152, 53–59. [Google Scholar] [CrossRef]
- Sayed, F.G.; Hamza, A.I.; Galal, L.A.; Sayed, D.M.; Gaber, M. Virulence of Geographically Different Cryptosporidium parvum Isolates in Experimental Animal Model. Ann. Parasitol. 2016, 62, 221–232. [Google Scholar]
- Moore, R.; Tzipori, S.; Griffiths, J.K.; Johnson, K.; de Montigny, L.; Lomakina, I. Temporal Changes in Permeability and Structure of Piglet Ileum after Site-Specific Infection by Cryptosporidium parvum. Gastroenterology 1995, 108, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Karpe, A.V.; Hutton, M.L.; Mileto, S.J.; James, M.L.; Evans, C.; Shah, R.M.; Ghodke, A.B.; Hillyer, K.E.; Metcalfe, S.S.; Liu, J.-W.; et al. Cryptosporidiosis Modulates the Gut Microbiome and Metabolism in a Murine Infection Model. Metabolites 2021, 11, 380. [Google Scholar] [CrossRef]
- McKenney, E.A.; Greene, L.K.; Drea, C.M.; Yoder, A.D. Down for the Count: Cryptosporidium Infection Depletes the Gut Microbiome in Coquerel’s Sifakas. Microb. Ecol. Health Dis. 2017, 28, 1335165. [Google Scholar] [CrossRef] [PubMed]
- Bourriaud, C.; Robins, R.J.; Martin, L.; Kozlowski, F.; Tenailleau, E.; Cherbut, C.; Michel, C. Lactate Is Mainly Fermented to Butyrate by Human Intestinal Microfloras but Inter-Individual Variation Is Evident. J. Appl. Microbiol. 2005, 99, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-Producing Human Gut Symbiont, Clostridium Butyricum, and Its Role in Health and Disease. Gut Microbes 2021, 13, 1907272. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa-Seki, M.; Motooka, D.; Kinami, A.; Murakoshi, F.; Takahashi, Y.; Aita, J.; Hayashi, K.; Tashibu, A.; Nakamura, S.; Iida, T.; et al. Specific Increase of Fusobacterium in the Faecal Microbiota of Neonatal Calves Infected with Cryptosporidium parvum. Sci. Rep. 2019, 9, 12517. [Google Scholar] [CrossRef]
- Kim, E.-T.; Lee, S.-J.; Kim, T.-Y.; Lee, H.-G.; Atikur, R.M.; Gu, B.-H.; Kim, D.-H.; Park, B.-Y.; Son, J.-K.; Kim, M.-H. Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea. Animals 2021, 11, 1113. [Google Scholar] [CrossRef]
- Jandhyala, S.M. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Wang, X.; Yu, X.; Hu, C.; Zhang, X. The Family Coriobacteriaceae Is a Potential Contributor to the Beneficial Effects of Roux-En-Y Gastric Bypass on Type 2 Diabetes. Surg. Obes. Relat. Dis. 2018, 14, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
- Chappell, C.L.; Darkoh, C.; Shimmin, L.; Farhana, N.; Kim, D.-K.; Okhuysen, P.C.; Hixson, J. Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection. Infect. Immun. 2016, 84, 2299–2306. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Quinn, R.A.; Debelius, J.; Xu, Z.Z.; Morton, J.; Garg, N.; Jansson, J.K.; Dorrestein, P.C.; Knight, R. Microbiome-Wide Association Studies Link Dynamic Microbial Consortia to Disease. Nature 2016, 535, 94–103. [Google Scholar] [CrossRef]
- Alak, J.I.B.; Wolf, B.W.; Mdurvwa, E.G.; Pimentel-Smith, G.E.; Adeyemo, O. Effect of Lactobacillus Reuteri on Intestinal Resistance to Cryptosporidium parvum Infection in a Murine Model of Acquired Immunodeficiency Syndrome. J. Infect. Dis. 1997, 175, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Pickerd, N.; Tuthill, D. Resolution of Cryptosporidiosis with Probiotic Treatment. Postgrad. Med. J. 2004, 80, 112–113. [Google Scholar] [CrossRef]
- Oliveira, B.C.M.; Bresciani, K.D.S.; Widmer, G. Deprivation of Dietary Fiber Enhances Susceptibility of Mice to Cryptosporidiosis. PLoS Neglected Trop. Dis. 2019, 13, e0007411. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.C.M.; Widmer, G. Probiotic Product Enhances Susceptibility of Mice to Cryptosporidiosis. Appl. Environ. Microbiol. 2018, 84, 1408-18. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.; Pontefract, B.; Mishcon, H.; Black, C.; Sutton, S.; Theberge, C. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Munoz-Munoz, J.; van Sinderen, D. Plant Glycan Metabolism by Bifidobacteria. Front. Microbiol. 2021, 12, 609418. [Google Scholar] [CrossRef]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutr. Diet. 2022, 2, 3–18. [Google Scholar]
- Dang, H.T.; Tran, D.M.; Phung, T.T.B.; Bui, A.T.P.; Vu, Y.H.; Luong, M.T.; Nguyen, H.M.; Trinh, H.T.; Nguyen, T.T.; Nguyen, A.H.; et al. Promising Clinical and Immunological Efficacy of Bacillus clausii Spore Probiotics for Supportive Treatment of Persistent Diarrhea in Children. Sci. Rep. 2024, 14, 6422. [Google Scholar] [CrossRef]
- Del Coco, V.F. Los Microorganismos Desde Una Perspectiva de Los Beneficios Para La Salud. Rev. Argent. Microbiol. 2015, 47, 171–173. [Google Scholar] [CrossRef]
- Adams, C.A. The Probiotic Paradox: Live and Dead Cells Are Biological Response Modifiers. Nutr. Res. Rev. 2010, 23, 37–46. [Google Scholar] [CrossRef]
- Guitard, J.; Menotti, J.; Desveaux, A.; Alimardani, P.; Porcher, R.; Derouin, F.; Kapel, N. Experimental Study of the Effects of Probiotics on Cryptosporidium parvum Infection in Neonatal Rats. Parasitol. Res. 2006, 99, 522–527. [Google Scholar] [CrossRef]
- Charania, R.; Wade, B.E.; McNair, N.N.; Mead, J.R. Changes in the Microbiome of Cryptosporidium-Infected Mice Correlate to Differences in Susceptibility and Infection Levels. Microorganisms 2020, 8, 879. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.C.; Glass, M.D.; Courtney, P.D.; Ward, L.A. Effect of Lactobacillus and Bifidobacterium on Cryptosporidium parvum Oocyst Viability. Food Microbiol. 2003, 20, 351–357. [Google Scholar] [CrossRef]
- Mammeri, M.; Obregón, D.A.; Chevillot, A.; Polack, B.; Julien, C.; Pollet, T.; Cabezas-Cruz, A.; Adjou, K.T. Cryptosporidium parvum Infection Depletes Butyrate Producer Bacteria in Goat Kid Microbiome. Front. Microbiol. 2020, 11, 548737. [Google Scholar] [CrossRef]
- Lee, J.; d’Aigle, J.; Atadja, L.; Quaicoe, V.; Honarpisheh, P.; Ganesh, B.P.; Hassan, A.; Graf, J.; Petrosino, J.; Putluri, N. Gut Microbiota–Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ. Res. 2020, 127, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Chen, X.; Zhao, X.; Zhao, C.; Mehmood, K.; Kulyar, M.F.-A.; Bhutta, Z.A.; Zeng, J.; Nawaz, S.; Wu, Q.; et al. Intestine Microbiota and SCFAs Response in Naturally Cryptosporidium-Infected Plateau Yaks. Front. Cell. Infect. Microbiol. 2023, 13, 1105126. [Google Scholar] [CrossRef] [PubMed]
- Keelaghan, A.P.; Charania, R.; Mead, J.R. The Effect of Short-Chain Fatty Acids on Growth of Cryptosporidium parvum In Vitro. Microorganisms 2022, 10, 1822. [Google Scholar] [CrossRef]
- He, Z.; Dong, H. The Roles of Short-Chain Fatty Acids Derived from Colonic Bacteria Fermentation of Non-Digestible Carbohydrates and Exogenous Forms in Ameliorating Intestinal Mucosal Immunity of Young Ruminants. Front. Immunol. 2023, 14, 1291846. [Google Scholar] [CrossRef]
- Kim, C.H. Complex Regulatory Effects of Gut Microbial Short-Chain Fatty Acids on Immune Tolerance and Autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef] [PubMed]
- McDonald, V.; Korbel, D.S.; Barakat, F.M.; Choudhry, N.; Petry, F. Innate Immune Responses Against Cryptosporidium parvum Infection. Parasite Immunol. 2013, 35, 55–64. [Google Scholar] [CrossRef]
- Lacroix-Lamandé, S.; Mancassola, R.; Naciri, M.; Laurent, F. Role of Gamma Interferon in Chemokine Expression in the Ileum of Mice and in a Murine Intestinal Epithelial Cell Line After Cryptosporidium parvum Infection. Infect. Immun. 2002, 70, 2090–2099. [Google Scholar] [CrossRef]
- Hayward, A.R.; Chmura, K.; Cosyns, M. Interferon-γ Is Required for Innate Immunity to Cryptosporidium parvum in Mice. J. Infect. Dis. 2000, 182, 1001–1004. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.H.; Foster, D.M.; Sherry, B.; Magness, S.T.; Nielsen, D.M.; Gookin, J.L. Interferon-Λ3 Promotes Epithelial Defense and Barrier Function Against Cryptosporidium parvum Infection. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 1–20. [Google Scholar] [CrossRef]
- Odendall, C.; Voak, A.A.; Kagan, J.C. Type III IFNs Are Commonly Induced by Bacteria-Sensing TLRs and Reinforce Epithelial Barriers During Infection. J. Immunol. 2017, 199, 3270–3279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, K.; Chen, H.; Su, Y.; Zhu, W. Caecal Infusion of the Short-Chain Fatty Acid Propionate Affects the Microbiota and Expression of Inflammatory Cytokines in the Colon in a Fistula Pig Model. Microb. Biotechnol. 2018, 11, 859–868. [Google Scholar] [CrossRef]
- Mathew, O.P.; Ranganna, K.; Yatsu, F.M. Butyrate, an HDAC Inhibitor, Stimulates Interplay Between Different Posttranslational Modifications of Histone H3 and Differently Alters G1-Specific Cell Cycle Proteins in Vascular Smooth Muscle Cells. Biomed. Pharmacother. 2010, 64, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar]
- Rowin, J.; Xia, Y.; Jung, B.; Sun, J. Gut Inflammation and Dysbiosis in Human Motor Neuron Disease. Physiol. Rep. 2017, 5, e13443. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, M.; Sonzogni-Desautels, K.; Ndao, M. Lessons Learned from Protective Immune Responses to Optimize Vaccines Against Cryptosporidiosis. Pathogens 2017, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Xiao, L. Cryptosporidium and Cryptosporidiosis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 1420052276. [Google Scholar] [CrossRef]
- Murphy, K.; Travers, P.; Walport, M. Janeway’s Immunobiology; Garland Science: New York, NY, USA, 2012; Available online: https://archive.org/details/janewaysimmunobi0000murp (accessed on 5 June 2024).
- Zhao, G.H.; Fang, Y.Q.; Ryan, U.; Guo, Y.X.; Wu, F.; Du, S.Z.; Chen, D.K.; Lin, Q. Dynamics of Th17 Associating Cytokines in Cryptosporidium parvum-Infected Mice. Parasitol. Res. 2016, 115, 879–887. [Google Scholar] [CrossRef]
- Horie, M.; Ohmiya, Y.; Ohmori, T. Analysis of D-Amino Acid in Japanese Post-Fermented Tea, Ishizuchi-Kurocha. Biosci. Microbiota Food Health 2023, 42, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.Y.; Bai, X.; Tong, M.W.; Zhang, Y.Y.; Liu, X.L.; Zhou, Y.H.; Li, C.; Cai, W.; Gao, X.; Liu, M. Changes to the Gut Microbiota in Mice Induced by Infection with Toxoplasma Gondii. Acta Trop. 2020, 203, 105301. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kunisawa, A.; Hattori, T.; Kawana, S.; Kitada, Y.; Tamada, H.; Kawano, S.; Hayakawa, Y.; Iida, J.; Fukusaki, E. Free D-Amino Acids Produced by Commensal Bacteria in the Colonic Lumen. Sci. Rep. 2018, 8, 17915. [Google Scholar] [CrossRef]
- Sasabe, J.; Miyoshi, Y.; Rakoff-Nahoum, S.; Zhang, T.; Mita, M.; Davis, B.M.; Hamase, K.; Waldor, M.K. Interplay Between Microbial D-Amino Acids and Host d-Amino Acid Oxidase Modifies Murine Mucosal Defence and Gut Microbiota. Nat. Microbiol. 2016, 1, 16125. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Y.; Roellig, D.M.; Feng, Y.; Xiao, L. Comparative Analysis Reveals Conservation in Genome Organization Among Intestinal Cryptosporidium Species and Sequence Divergence in Potential Secreted Pathogenesis Determinants Among Major Human-Infecting Species. BMC Genom. 2019, 20, 406. [Google Scholar] [CrossRef]
- Rosa, L.T.; Bianconi, M.E.; Thomas, G.H.; Kelly, D.J. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front. Cell. Infect. Microbiol. 2018, 8, 33. [Google Scholar] [CrossRef]
- Chalmers, R.M. Cryptosporidium. In Microbiology of Waterborne Diseases; Singleton Hospital: Swansea, UK, 2014; pp. 263–276. [Google Scholar] [CrossRef]
- Shanmugasundram, A.; Gonzalez-Galarza, F.F.; Wastling, J.M.; Vasieva, O.; Jones, A.R. Library of Apicomplexan Metabolic Pathways: A Manually Curated Database for Metabolic Pathways of Apicomplexan Parasites. Nucleic Acids Res. 2013, 41, D706–D713. [Google Scholar] [CrossRef]
- Wang, R.; Wang, T.; Tait, S. Metabolic Regulation of Immunity. In Kelley and Firestein’s Textbook of Rheumatology, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1–2, pp. 318–326. [Google Scholar] [CrossRef]
- Rasmussen, K.R.; Arrowood, M.J.; Healey, M.C. Effectiveness of Dehydroepiandrosterone in Reduction of Cryptosporidial Activity in Immunosuppressed Rats. Antimicrob. Agents Chemother. 1992, 36, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, H.H.; Srivastava, P.N.; Singh, S.; Kumar, K.A.; Mishra, S. The Shikimate Pathway Enzyme That Generates Chorismate Is Not Required for the Development of Plasmodium Berghei in the Mammalian Host nor the Mosquito Vector. Int. J. Parasitol. 2018, 48, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Kombo Mpindou, G.O.M.; Escuder Bueno, I.; Chorda Ramon, E. Review on Emerging Waterborne Pathogens in Africa: The Case of Cryptosporidium. Water 2021, 13, 2966. [Google Scholar] [CrossRef]
- Chakraborty, S.; Roy, S.; Mistry, H.U.; Murthy, S.; George, N.; Bhandari, V.; Sharma, P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front. Immunol. 2017, 8, 1261. [Google Scholar] [CrossRef]
- Yu, X.; Guo, F.; Mouneimne, R.B.; Zhu, G. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion. J. Infect. Dis. 2020, 221, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Minkoff, N.Z.; Aslam, S.; Medina, M.; Tanner-Smith, E.E.; Zackular, J.P.; Acra, S.; Nicholson, M.R.; Imdad, A. Fecal Microbiota Transplantation for the Treatment of Recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst. Rev. 2023, 4, CD013871. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal Barrier and Gut Microbiota: Shaping Our Immune Responses Throughout Life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef]
- Piazzesi, A.; Pane, S.; Russo, A.; Del Chierico, F.; Francalanci, P.; Cotugno, N.; Rossi, P.; Locatelli, F.; Palma, P.; Putignani, L. Case Report: The Impact of Severe Cryptosporidiosis on the Gut Microbiota of a Pediatric Patient with CD40L Immunodeficiency. Front. Cell. Infect. Microbiol. 2023, 13, 1281440. [Google Scholar] [CrossRef]
- Widmer, G.; Creasey, H.N. Fecal Microbiota Impacts Development of Cryptosporidium parvum in the Mouse. Sci. Rep. 2024, 14, 5498. [Google Scholar] [CrossRef]
- Prabakaran, M.; Weible, L.; Champlain, J.; Jiang, R.; Biondi, K.; Weil, A.; Van Voorhis, W.; Ojo, K. The Gut-Wrenching Effects of Cryptosporidiosis and Giardiasis in Children. Microorganisms 2023, 11, 2323. [Google Scholar] [CrossRef] [PubMed]
- CDC. 2024 Symptoms of Cryptosporidiosis. Available online: https://www.cdc.gov/cryptosporidium/signs-symptoms/index.html#:~:text=Key%20points%201%20Symptoms%20of%20cryptosporidiosis%20generally%20begin,of%20cryptosporidiosis%20is%20diarrhea%20lasting%20days%20to%20weeks (accessed on 5 June 2024).
Animal Model | Cryptosporidium spp. | Effect of Cryptosporidium spp. Infection on TJs’ Integrity | Other Pathophysiological Alterations | References |
---|---|---|---|---|
Neonatal mice | C. parvum | Cell junction and adherens junction genes were downregulated at peak infection time, e.g., at 11 and 30 dpi, there was a decreased expression of E-cadherin | The V:C * was significantly reduced. An exaggerated inflammatory response and increased intestinal permeability resulted in diarrhea. Cell adhesion molecules were found to be involved in modulating apoptosis | [51] |
Calves | C. parvum | Hindered cell junctions, such as AJs *, TJs *, GJs *, hemidesmosomes, and desmosomes | Increased inflammation, apoptosis, villus atrophy, and lowered V:C resulted in an increased intestinal permeability leading to diarrhea | [85] |
Human small intestinal epithelial cells | C. hominis | Disruption of TJs and AJs, altered barrier function, or distribution of junctional proteins were detected | Many inflammatory genes were upregulated and intrinsic and extrinsic apoptotic pathways were activated, resulting in a disrupted intestinal barrier and diarrhea | [86] |
Mice | C. muris | Infection altered epithelial AJs, which were mediated by E-cadherin | Reduced V:C and increased mucosal inflammation, mucosal thickness and villi diameter, alterations in gut bacteria composition, and production of metabolites (SCFAs) were observed | [87] |
Mice | C. parvum | Infection downregulated TJ proteins occludin and claudin, which altered TJs between intestinal epithelial cells | Infection upregulated the expression of inflammatory genes, e.g., Nos2, Mip2, and Icam1, hence boosting immune responses inducing villus atrophy and inhibiting intestinal enteroids via increased apoptosis. The release of stress signals that can inhibit intestinal stem cell function in the crypt was also detected | [88] |
PEC (Human Primary Intestinal Epithelial Cells) culture media | C. parvum | Affected the intestinal barrier by disrupting the assembly of TJs | Modulated inflammatory response, damaged microvilli, and increased epithelial permeability | [89] |
Human Intestinal Enteroids (HIE) | C. parvum | Modified protein or RNA expression related to TJs and AJs | Host cell nuclei were constricted or collapsed, indicating apoptosis. Polarized apical brush border microvilli displayed disrupted TJs with an increased basolateral expression of NA+/K+ ATPase | [74] |
Mice | C. parvum | Intestinal epithelial barrier dysfunctioning due to the disruption of epithelial junctional complexes was found | Increased mucosal infiltration with neutrophils and a marker of inflammation in the ileum, epithelial cell apoptosis, shortening of ileal and jejunal villi, increased permeability, and diarrhea were observed | [50] |
Caco-2 cell monolayers as in vitro model of IECs * | C. parvum | Disruption of intestinal epithelial barrier function as a result of significant downregulation of critical epithelial TJ and AJ proteins was observed | Polymorphisms in autophagy genes, impaired immune responses, and epithelial cell function led to enteritis. Autophagy in absorptive cells, e.g., Paneth and goblet cells, was observed | [90] |
Mice | C. parvum | Downregulated the mRNA expression levels of ZO-1 *, claudin 3, and occludin and compromised the integrity of the intestinal barrier by downregulating TJs | Pathological damage led to necrotic enteric epithelial cells, shorter villi, a lower V:C, and an increased villi diameter. Suppression of C3aR * worsened the damage, further reducing intestinal permeability | [91] |
Human ileal adenoma cell model HCT-8 | C. parvum | Absence of adherence to neighboring cells and disrupted expression of proteins such as integrins and cadherins were detected | Modulated inflammatory response, cell proliferation, differentiation, apoptosis, altered gene expression, and shortened villi with an increased mitochondrial membrane permeability, causing potential anomalies and releasing apoptogenic substances like cytochrome C, were detected | [92] |
Human and bovine epithelial cells | C. andersoni | Disruptions of ZO-1 that serves as a connection between TJ occludin and cytoskeletal F-actin were detected | Parasite invasion triggered enteritis and apoptosis. These disturbances lead to cytotoxic effects on enterocytes, resulting in increased intestinal permeability and loss of the barrier function | [93] |
Neonatal mice and dogs | C. canis | The integrity of the epithelial cells of BF * was somewhat damaged | Inflamed and disordered epithelial surfaces led to cell death. Additionally, the compromised microvillus border resulted in the loss of cilia and atrophied mucosa in the duodenum and jejunum, and hence, increased intestinal permeability | [94] |
Mice | C. parvum | Disrupted the AJ complex between intestinal epithelial cells | Ly6C+ * inflammatory monocytes induced the production of TNF-α and IL-1β. The infection triggered apoptosis, leading to epithelial cell loss, villi blunting, and shortening | [95] |
Cattle | C. parvum | Disrupted epithelial microvilli and TJs between epithelial cells | Dysregulated chemokine and cytokine production exacerbated inflammation. Infection triggered apoptosis and increased mast cells in jejunal villi, leading to villi damage and increased enteric epithelial permeability | [96] |
Neonatal calves | C. parvum | Weakened TJs between epithelial cells | Enteritis, especially with concurrent bacterial or viral infections, damaged villi and microvilli led to leaky gut syndrome | [97] |
Mice | C. parvum | Negatively affected epithelial cell junctions disrupted ZO-1 in Caco-2 cells | T cell-mediated inflammation caused epithelial cell damage through parasite invasion, proliferation, and extrusion, resulting in villus atrophy, crypt hyperplasia, epithelial cell loss, and villi blunting and shortening, with increased inflammatory cell infiltration in the crypts and weakened local mucosal immunity | [98] |
Piglets | C. parvum | Infected enterocytes retained their capacity to regulate TJs | Infected tissue mucosa showed increased inflammatory cells, particularly in the lamina propria, leading to epithelial cell damage through apoptosis and resulting in shortened villi and altered epithelial macromolecular permeability | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Xu, C.; Wang, M.; Hina, Q.; Ji, Y.; Anwar, S.; Lu, S.; He, Q.; Qiu, Y.; Li, K. Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review. Vet. Sci. 2025, 12, 85. https://doi.org/10.3390/vetsci12020085
Ali M, Xu C, Wang M, Hina Q, Ji Y, Anwar S, Lu S, He Q, Qiu Y, Li K. Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review. Veterinary Sciences. 2025; 12(2):85. https://doi.org/10.3390/vetsci12020085
Chicago/Turabian StyleAli, Munwar, Chang Xu, Mingyue Wang, Qazal Hina, Yaru Ji, Subiha Anwar, Sijia Lu, Qing He, Yawei Qiu, and Kun Li. 2025. "Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review" Veterinary Sciences 12, no. 2: 85. https://doi.org/10.3390/vetsci12020085
APA StyleAli, M., Xu, C., Wang, M., Hina, Q., Ji, Y., Anwar, S., Lu, S., He, Q., Qiu, Y., & Li, K. (2025). Gut Barrier Dysfunction and Microbiota Variations in Cryptosporidiosis: A Comprehensive Review. Veterinary Sciences, 12(2), 85. https://doi.org/10.3390/vetsci12020085