Integrated Transcriptome Analysis Reveals the Lung miRNA–mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Broth Preparation
2.2. Animals and APEC Infection
2.3. Cytokine Quantification in Lungs
2.4. Histologic Observation in Lungs
2.5. RNA Isolation and cDNA Library Construction for miRNA and mRNA Sequencing
2.6. Analysis of miRNA and mRNA Sequencing Data
2.7. Vector Construction and Cell Transfection
2.8. Dual-Luciferase Reporter Analysis
2.9. Quantitative Real-Time PCR (qRT-PCR) Assay
2.10. Statistical Analyses
3. Results
3.1. APEC-Induced Lung Inflammation and Damage in Chicken
3.2. Overview of the High-Throughput Sequencing Data for Chicken Lung Tissues with APEC Infection
3.3. Known and Novel miRNA Analysis
3.4. Identification of Differentially Expressed (DE) miRNAs and mRNAs
3.5. Construction of the miRNA–mRNA Regulation Pairs
3.6. Identification of the miRNA–mRNA Interactions Under APEC Infection
3.7. qRT-PCR Validation for the High-Throughput Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dziva, F.; Stevens, M.P. Colibacillosis in Poultry: Unravelling the Molecular Basis of Virulence of Avian Pathogenic Escherichia coli in Their Natural Hosts. Avian Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic Escherichia coli Isolated from Different Sources: Recent Reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.Z. Host Specificity of Septicemic Escherichia coli: Human and Avian Pathogens. Curr. Opin. Microbiol. 2006, 9, 28–32. [Google Scholar] [CrossRef]
- Guabiraba, R.; Schouler, C. Avian Colibacillosis: Still Many Black Holes. FEMS Microbiol. Lett. 2015, 362, fnv118. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; Kathayat, D.; Deblais, L.; Srivastava, V.; Closs Jr, G.; Tokarski, R.J.; Ayinde, O.; Fuchs, J.R.; Rajashekara, G. Evaluation of Novel Quorum Sensing Inhibitors Targeting Auto-Inducer 2 (AI-2) for the Control of Avian Pathogenic Escherichia coli Infections in Chickens. Microbiol. Spectr. 2022, 10, e00286-22. [Google Scholar] [CrossRef]
- Mellata, M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Ghunaim, H.; Abu-Madi, M.A.; Kariyawasam, S. Advances in Vaccination against Avian Pathogenic Escherichia coli Respiratory Disease: Potentials and Limitations. Vet. Microbiol. 2014, 172, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ronco, T.; Stegger, M.; Olsen, R.H.; Sekse, C.; Nordstoga, A.B.; Pohjanvirta, T.; Lilje, B.; Lyhs, U.; Andersen, P.S.; Pedersen, K. Spread of Avian Pathogenic Escherichia coli ST117 O78: H4 in Nordic Broiler Production. BMC Genom. 2017, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R. Avian Pathogenic Escherichia coli. Poult. Health A Guide Prof. 2021, 116, 95–99. [Google Scholar]
- Agunos, A.; Léger, D.; Carson, C. Review of Antimicrobial Therapy of Selected Bacterial Diseases in Broiler Chickens in Canada. Can. Vet. J. 2012, 53, 1289. [Google Scholar]
- Johnson, J.R.; Kuskowski, M.A.; Smith, K.; O’Bryan, T.T.; Tatini, S. Antimicrobial-Resistant and Extraintestinal Pathogenic Escherichia coli in Retail Foods. J. Infect. Dis. 2005, 191, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, S.; White, D.G.; Zhao, S.; McDermott, P.; Walker, R.; Meng, J. Characterization of Multiple-Antimicrobial-Resistant Escherichia Coli Isolates from Diseased Chickens and Swine in China. J. Clin. Microbiol. 2004, 42, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Lang, H.P.; Lang, D.; Wüthrich, D.; Hinić, V.; Gerber, C.; Egli, A.; Meyer, E. Rapid and Ultrasensitive Detection of Mutations and Genes Relevant to Antimicrobial Resistance in Bacteria. Glob. Chall. 2021, 5, 2000066. [Google Scholar] [CrossRef] [PubMed]
- Geurtsen, J.; de Been, M.; Weerdenburg, E.; Zomer, A.; McNally, A.; Poolman, J. Genomics and Pathotypes of the Many Faces of Escherichia coli. FEMS Microbiol. Rev. 2022, 46, fuac031. [Google Scholar] [CrossRef]
- Johnson, T.J.; Miller, E.A.; Flores-Figueroa, C.; Munoz-Aguayo, J.; Cardona, C.; Fransen, K.; Lighty, M.; Gonder, E.; Nezworski, J.; Haag, A. Refining the Definition of the Avian Pathogenic Escherichia Coli (APEC) Pathotype through Inclusion of High-Risk Clonal Groups. Poult. Sci. 2022, 101, 102009. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, Q.; Han, J.; Wen, J.; Wu, Y.; Man, C. Stress-Induced Immunosuppression Affecting Avian Influenza Virus Vaccine Immune Response through MiR-20a-5p/NR4A3 Pathway in Chicken. Vet. Microbiol. 2022, 273, 109546. [Google Scholar] [CrossRef]
- Miao, X.; Liu, L.; Liu, L.; Hu, G.; Wu, G.; Wang, Y.; Zhao, Y.; Yang, J.; Li, X. Regulation of MRNA and MiRNA in the Response to Salmonella Enterica Serovar Enteritidis Infection in Chicken Cecum. BMC Vet. Res. 2022, 18, 437. [Google Scholar] [CrossRef]
- Pham, T.T.; Ban, J.; Hong, Y.; Lee, J.; Vu, T.H.; Truong, A.D.; Lillehoj, H.S.; Hong, Y.H. MicroRNA Gga-MiR-200a-3p Modulates Immune Response via MAPK Signaling Pathway in Chicken Afflicted with Necrotic Enteritis. Vet. Res. 2020, 51, 8. [Google Scholar] [CrossRef] [PubMed]
- Peighambari, S.M.; Julian, R.J.; Gyles, C.L. Experimental Escherichia coli Respiratory Infection in Broilers. Avian Dis. 2000, 44, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Assaf, G.; Hannon, G.J. FASTX-Toolkit. FASTQ/A Short-Reads Preprocessing Tools (Unpublished). 2010. Available online: https://evomics.org/resources/software/genome-analysis-tools/fastx-toolkit/ (accessed on 16 July 2024).
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. MiRDeep2 Accurately Identifies Known and Hundreds of Novel MicroRNA Genes in Seven Animal Clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics Enrichment Tools: Paths toward the Comprehensive Functional Analysis of Large Gene Lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Y.; Cao, Y.; Li, H.; Qu, L.; Lamont, S.J. Gene Expression Profiling of RIP2-Knockdown in HD11 Macrophages—Elucidation of Potential Pathways (Gene Network) When Challenged with Avian Pathogenic E. Coli (APEC). BMC Genom. 2022, 23, 341. [Google Scholar] [CrossRef] [PubMed]
- Bello, M.B.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.H.; Omar, A.R. Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. Biomed. Res. Int. 2018, 2018, 7278459. [Google Scholar] [CrossRef] [PubMed]
- Velkers, F.C.; Blokhuis, S.J.; Veldhuis Kroeze, E.J.B.; Burt, S.A. The Role of Rodents in Avian Influenza Outbreaks in Poultry Farms: A Review. Vet. Q. 2017, 37, 182–194. [Google Scholar] [CrossRef]
- Peng, L.Y.; Shi, H.T.; Tan, Y.R.; Shen, S.Y.; Yi, P.F.; Shen, H.Q.; Fu, B.D. Baicalin Inhibits APEC-Induced Lung Injury by Regulating Gut Microbiota and SCFA Production. Food Funct. 2021, 12, 12621–12633. [Google Scholar] [CrossRef]
- Sun, H.; Liu, P.; Nolan, L.K.; Lamont, S.J. Avian Pathogenic Escherichia Coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens. BMC Genom. 2015, 16, 690. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, P.; Nolan, L.K.; Lamont, S.J. Thymus Transcriptome Reveals Novel Pathways in Response to Avian Pathogenic Escherichia Coli Infection. Poult. Sci. 2016, 95, 2803–2814. [Google Scholar] [CrossRef]
- Mol, N.; Peng, L.; Esnault, E.; Quéré, P.; Haagsman, H.P.; Veldhuizen, E.J.A. Avian Pathogenic Escherichia Coli Infection of a Chicken Lung Epithelial Cell Line. Vet. Immunol. Immunopathol. 2019, 210, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-Y.; Cui, Z.-Q.; Wu, Z.-M.; Fu, B.-D.; Yi, P.-F.; Shen, H.-Q. RNA-Seq Profiles of Chicken Type II Pneumocyte in Response to Escherichia Coli Infection. PLoS ONE 2019, 14, e0217438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tian, W.; Zhang, M.; Ren, T.; Sun, G.; Jiang, R.; Han, R.; Kang, X.; Yan, F. Transcriptom Analysis Revealed Regulation of Dexamethasone Induced MicroRNAs in Chicken Thymus. J. Cell. Biochem. 2019, 120, 6570–6579. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhou, K.; Zhang, L.; Li, P.; He, M.; Zhang, X.; Ye, H.; Zhang, Q.; Wei, Q.; Zhang, G. High-Throughput Sequencing Reveals Crucial MiRNAs in Skeletal Muscle Development of Bian Chicken. Br. Poult. Sci. 2021, 62, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Sun, Y.; Cui, J.; Xu, T. Inducible MicroRNA-214 Contributes to the Suppression of NF-ΚB-Mediated Inflammatory Response via Targeting Myd88 Gene in Fish. J. Biol. Chem. 2017, 292, 5282–5290. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Kuo, I.-Y.; Hsieh, H.-C.; Wu, S.-T.; Su, W.-C.; Wang, Y.-C. Rab37 Mediates Trafficking and Membrane Presentation of PD-1 to Sustain T Cell Exhaustion in Lung Cancer. J. Biomed. Sci. 2024, 31, 20. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Pan, X.; Wang, L.; Yin, C.; Lin, Q.; Jiang, J.; Zhang, Y.; Wan, B. Knockout of GGPPS1 Restrains Rab37-Mediated Autophagy in Response to Ventilator-Induced Lung Injury. Hum. Cell 2022, 35, 871–884. [Google Scholar] [CrossRef] [PubMed]
Groups | Raw Reads | Clean Reads | Reads with UIDs | Deduplicate Reads |
---|---|---|---|---|
Control_1 | 46,188,862 | 46,078,160 | 39,986,032 (86.78%) | 8,523,900 (18.50%) |
Control_2 | 46,857,762 | 46,724,126 | 42,694,530 (91.38%) | 8,550,132 (18.30%) |
Control_3 | 46,427,898 | 46,312,776 | 42,684,074 (92.16%) | 8,657,362 (18.69%) |
APEC_1 | 49,902,970 | 49,774,208 | 44,373,224 (89.15%) | 7,939,504 (15.95%) |
APEC_2 | 44,639,162 | 44,508,316 | 39,748,056 (89.30%) | 8,205,638 (18.44%) |
APEC_3 | 43,479,222 | 43,369,696 | 34,854,086 (80.37%) | 8,240,754 (19.00%) |
Reads | Control_1 | Control_2 | Control_3 | APEC_1 | APEC_2 | APEC_3 |
---|---|---|---|---|---|---|
Clean total reads | 2,404,069 | 2,571,083 | 2,570,090 | 2,323,328 | 2,412,368 | 2,182,006 |
Clean unique reads | 433,612 | 489,753 | 531,798 | 426,729 | 441,966 | 372,738 |
Mapped total reads | 2,256,838 | 2,424,036 | 2,426,251 | 2,187,424 | 2,271,269 | 2,040,879 |
Mapped unique reads | 391,669 | 443,789 | 483,368 | 382,585 | 398,407 | 331,739 |
Total mapping rate | 93.88% | 94.28% | 94.4% | 94.15% | 94.15% | 93.53% |
Unique mapping rate | 90.33% | 90.61% | 90.89% | 89.66% | 90.14% | 89.00% |
Mapped Region Types | Control_1 | Control_2 | Control_3 | APEC_1 | APEC_2 | APEC_3 |
---|---|---|---|---|---|---|
Promoter | 565,030 | 594,927 | 596,361 | 594,287 | 600,101 | 584,033 |
5′UTR | 57,616 | 59,133 | 62,722 | 52,413 | 52,704 | 52,006 |
Exon | 162,857 | 173,472 | 180,611 | 133,605 | 157,659 | 119,356 |
Intron | 597,966 | 631,074 | 656,954 | 555,887 | 576,698 | 535,047 |
3′UTR | 136,543 | 152,700 | 166,529 | 125,689 | 132,972 | 113,511 |
Intergenic | 6,395,694 | 6,670,854 | 6,734,144 | 5,215,841 | 5,621,161 | 5,490,755 |
Groups | Raw Reads | Clean Reads | UID Reads | Total Mapped Reads | Unique Mapped Reads |
---|---|---|---|---|---|
Control_1 | 108,900,922 | 92,315,076 | 65,356,410 | 60,859,692 (93.12%) | 58,266,983 (95.74%) |
Control_2 | 95,851,924 | 81,885,132 | 62,389,512 | 58,057,547 (93.06%) | 56,020,822 (96.49%) |
Control_3 | 90,658,838 | 76,540,890 | 58,025,610 | 54,137,065 (93.30%) | 52,164,176 (96.36%) |
APEC_1 | 92,958,930 | 78,999,574 | 60,753,500 | 56,250,074 (92.59%) | 54,033,269 (96.06%) |
APEC_2 | 92,886,340 | 78,420,516 | 58,481,020 | 54,373,787 (92.98%) | 52,247,961 (96.09%) |
APEC_3 | 95,451,360 | 80,257,402 | 61,511,190 | 57,189,896 (92.97%) | 54,934,499 (96.06%) |
miRNA | Length of miRNA (nt) | Gene | Official Full Name |
---|---|---|---|
gga-miR-214 | 21 | RAB37 | member RAS oncogene family |
gga-miR-214 | 21 | IL1RAPL1 | interleukin 1 receptor accessory protein like 1 |
gga-miR-214 | 21 | KIF4B | kinesin family member 4B |
gga-miR-214 | 21 | LOC100857964 | uncharacterized |
gga-miR-214 | 21 | AvBD1 | avian beta-defensin 1 |
gga-miR-214 | 21 | SCN4B | sodium voltage-gated channel beta subunit 4 |
gga-miR-1649-5p | 20 | ARL10 | ADP ribosylation factor like GTPase 10 |
gga-miR-1649-5p | 20 | CSF3R | colony stimulating factor 3 receptor |
gga-miR-1649-5p | 20 | FN1 | fibronectin 1 |
gga-miR-1649-5p | 20 | LOC101749531 | uncharacterized |
gga-miR-1649-5p | 20 | LOC107057545 | uncharacterized |
gga-miR-1649-5p | 20 | LOC121113126 | basic proline-rich protein-like |
gga-miR-1649-5p | 20 | N6AMT1 | N-6 adenine-specific DNA methyltransferase 1 |
gga-miR-1649-5p | 20 | PRC1 | protein regulator of cytokinesis 1 |
gga-miR-1649-5p | 20 | SLAMF1 | signaling lymphocytic activation molecule family member 1 |
gga-miR-1649-5p | 20 | ST6GALNAC6 | ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 6 |
gga-miR-1649-5p | 20 | TRAIP | TRAF interacting protein |
gga-miR-12256-3p | 22 | CHIR-B4 | cluster homolog of immunoglobulin like receptor 4B 2 |
gga-miR-12256-3p | 22 | CLSPN | claspin |
gga-miR-12256-3p | 22 | HSPB9 | heat shock protein family B (small) member 9 |
gga-miR-12256-3p | 22 | SHISA4 | shisa family member 4 |
gga-miR-212-5p | 23 | C2orf40 | C2orf40 homolog (augurin) |
gga-miR-212-5p | 23 | TRPM6 | transient receptor potential cation channel subfamily M member 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Tan, J.; Li, X.; Lamont, S.J.; Sun, H. Integrated Transcriptome Analysis Reveals the Lung miRNA–mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection. Vet. Sci. 2025, 12, 95. https://doi.org/10.3390/vetsci12020095
Li H, Tan J, Li X, Lamont SJ, Sun H. Integrated Transcriptome Analysis Reveals the Lung miRNA–mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection. Veterinary Sciences. 2025; 12(2):95. https://doi.org/10.3390/vetsci12020095
Chicago/Turabian StyleLi, Huan, Jishuang Tan, Xiaoyi Li, Susan J. Lamont, and Hongyan Sun. 2025. "Integrated Transcriptome Analysis Reveals the Lung miRNA–mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection" Veterinary Sciences 12, no. 2: 95. https://doi.org/10.3390/vetsci12020095
APA StyleLi, H., Tan, J., Li, X., Lamont, S. J., & Sun, H. (2025). Integrated Transcriptome Analysis Reveals the Lung miRNA–mRNA Regulatory Network Associated with Avian Pathogenic E. coli Infection. Veterinary Sciences, 12(2), 95. https://doi.org/10.3390/vetsci12020095