Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and PCR Identification
2.2. DNA Extraction, Library Construction, and Sequencing
2.3. RNA Extraction, Library Construction, and Sequencing
2.4. NGS Read Processing and Sequence Assembly
2.5. Virus Isolation
2.6. Phylogenetic Analysis
2.7. Recombination Analyses
3. Results
3.1. Epidemiological Survey of PPV2
3.2. Viral Isolation
3.3. Phylogenetic Analysis of SC2020
3.4. Homologous Recombination Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palinski, R.M.; Mitra, N.; Hause, B.M. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes 2016, 52, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Miek, D.; Woniak, A.; Guzowska, M.; Stadejek, T. Detection Patterns of Porcine Parvovirus (PPV) and Novel Porcine Parvoviruses 2 through 6 (PPV2–PPV6) in Polish Swine Farms. Viruses 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, K.K.; Wang, J.; Wang, X.P.; Zhao, L.; Sun, P.; Li, Y.D. Detection and molecular characterization of novel porcine parvovirus 7 in Anhui province from Central-Eastern China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 71, 31–35. [Google Scholar] [CrossRef]
- Hijikata, M.; Abe, K.; Win, K.M.; Shimizu, Y.K.; Keicho, N.; Yoshikura, H. Identification of new parvovirus DNA sequence in swine sera from Myanmar. Jpn. J. Infect. Dis. 2001, 54, 244–245. [Google Scholar] [PubMed]
- Wang, F.; Wei, Y.; Zhu, C.; Huang, X.; Xu, Y.; Yu, L.; Yu, X. Novel parvovirus sublineage in the family of Parvoviridae. Virus Genes 2010, 41, 305–308. [Google Scholar] [CrossRef] [PubMed]
- LeeLee, J.Y.; Kim, E.J.; Cho, I.S.; Lee, K.K.; Shin, Y.K. Complete Genome Sequences of Porcine Parvovirus 2 Isolated from Swine in the Republic of Korea. Genome Announc. 2017, 5, e01738-16. [Google Scholar]
- Garcia-Camacho, L.A.; Vargas-Ruiz, A.; Marin-Flamand, E.; Ramírez-Álvarez, H.; Brown, C. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol. Immunol. 2020, 64, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Lőrincz, M.; Kiss, T.; Novosel, D.; Podgorska, K.; Becskei, Z.; Tuboly, T.; Cságola, A. Emerging novel porcine parvoviruses in Europe: Origin, evolution, phylodynamics and phylogeography. J. Gen. Virol. 2013, 94, 2330–2337. [Google Scholar] [CrossRef]
- Almeida, M.N.; Zhang, M.; Lopez, W.A.L.; Vilalta, C.; Sanhueza, J.; Corzo, C.A.; Zimmerman, J.J.; Linhares, D.C.L. A comparison of three sampling approaches for detecting PRRSV in suckling piglets. Prev. Vet. Med. 2021, 194, 105427. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Cságola, A.; Kiss, T.; Tuboly, T. Capsid protein evolution and comparative phylogeny of novel porcine parvoviruses. Mol. Phylogenetics Evol. 2013, 66, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Lei, R.; Ding, S.W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2014, 31, 587–589. [Google Scholar] [CrossRef]
- Dinko, N.; Daniel, C.; Tamás, T.; Andreja, J.; Tomasz, S.; Tahar, A.A.; Attila, C. Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC Vet. Res. 2018, 14, 163. [Google Scholar]
- Xiao, C.-T.; Gerber, P.F.; Giménez-Lirola, L.G.; Halbur, P.G.; Opriessnig, T. Characterization of porcine parvovirus type 2 (PPV2) which is highly prevalent in the USA. Vet. Microbiol. 2013, 161, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Huang, L.; Wei, Y.; Wang, Y.; Chen, D.; Du, W.; Wu, H.; Liu, C. Prevalence of emerging porcine parvoviruses and their co-infections with porcine circovirus type 2 in China. Arch. Virol. 2015, 160, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Xiao, C.-T.; Gerber, P.F.; Halbur, P.G. Identification of recently described porcine parvoviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Vet. Microbiol. 2014, 173, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Jezdimirović, N.; Savić, B.; Milovanović, B.; Glišić, D.; Ninković, M.; Kureljušić, J.; Maletić, J.; Aleksić Radojković, J.; Kasagić, D.; Milićević, V. Molecular Detection of Porcine Cytomegalovirus, Porcine Parvovirus, Aujeszky Disease Virus and Porcine Reproductive and Respiratory Syndrome Virus in Wild Boars Hunted in Serbia during 2023. Vet. Sci. 2024, 11, 249. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, J.H.; Kim, J.Y.; Park, G.S.; Jeong, C.G.; Kim, W.I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet. Res. 2022, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.C.; Nguyen, V.G.; Huynh, T.M.; Park, Y.H.; Park, K.T.; Park, B.K. PCR-based detection and genetic characterization of porcine parvoviruses in South Korea in 2018. BMC Vet. Res. 2020, 16, 113. [Google Scholar] [CrossRef]
- Ferrara, G.; Piscopo, N.; Pagnini, U.; Esposito, L.; Montagnaro, S. Detection of selected pathogens in reproductive tissues of wild boars in the Campania region, southern Italy. Acta Vet. Scand. 2024, 66, 9. [Google Scholar] [CrossRef] [PubMed]
- Faustini, G.; Tucciarone, C.M.; Franzo, G.; Donneschi, A.; Boniotti, M.B.; Alborali, G.L.; Drigo, M. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses 2024, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Shackelton, L.A.; Hoelzer, K.; Parrish, C.R.; Holmes, E.C. Comparative analysis reveals frequent recombination in the parvoviruses. J. Gen. Virol. 2007, 88, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
Province | Region | No. Sample | No. Positive | Positive Percentage |
---|---|---|---|---|
Sichuan 3.77% (34/902) | Yibin | 96 | 6 | 6.25% |
Nanchong | 97 | 7 | 7.22% | |
Guangyuan | 50 | 1 | 2.00% | |
Bazhong | 53 | 0 | 0.00% | |
Mianyang | 54 | 2 | 3.70% | |
Chengdu | 63 | 5 | 7.94% | |
Deyang | 92 | 2 | 2.17% | |
Neijiang | 48 | 1 | 2.08% | |
Meishan | 78 | 0 | 0.00% | |
Yaan | 70 | 4 | 5.71% | |
Leshan | 85 | 6 | 7.06% | |
Luzhou | 44 | 0 | 0.00% | |
Dazhou | 72 | 0 | 0.00% | |
Chongqing 1.51% (1/66) | Chongqing | 66 | 1 | 1.52% |
Yunnan 1.26% (4/317) | Zhaotong | 80 | 0 | 0.00% |
Kunming | 54 | 2 | 3.70% | |
Qujing | 71 | 1 | 1.41% | |
Baoshan | 70 | 0 | 0.00% | |
Puer | 42 | 1 | 2.38% | |
Guizhou 2.81% (7/249) | Guiyang | 58 | 0 | 0.00% |
Anshun | 57 | 0 | 0.00% | |
Zunyi | 63 | 1 | 1.59% | |
Tongren | 71 | 6 | 8.45% | |
Total | Southwestern of China | 1534 | 46 | 3.00% |
Province | Region | Farm | Batch Abortion Rate |
---|---|---|---|
Sichuan | Yibin | Pinshan #1 | 10.34% |
Junlian #2 | 15.18% | ||
Jiangan #3 | 15.36% | ||
Nanchong | Yingshan #4 | 16.41% | |
Liangzhong #5 | 12.61% | ||
Yilong #6 | 15.65% | ||
Nanchong #7 | 11.42% | ||
Guangyuan | Wangchang #9 | 8.34% | |
Mianyang | Santai #1 | 11.63% | |
Chengdu | Chongzhou #17 | 18.46% | |
Meishan #18 | 9.33% | ||
Xinjing #20 | 15.76% | ||
Deyang | Mianzhu #21 | 5.74% | |
Neijiang | Zizhong #24 | 8.65% | |
Longchang #25 | 14.88% | ||
Yaan | Yaan #28 | 17.84% | |
Yaan #30 | 17.72% | ||
Leshan | Leshan #33 | 11.48% | |
Chongqi | Chongqing | Rongchang #42 | 10.40% |
Yunnan | Kunming | Kunming #46 | 18.24% |
Qujing | Xuanwei #48 | 8.27% | |
Puer | Puer #54 | 16.81% | |
Guizhou | Zunyi | Tongzhi #63 | 8.35% |
Tongren | Tongren #69 | 17.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Qing, Y.; Xu, L.; Zhu, L.; Yin, W.; Li, S.; Kuang, S.; Zhou, Y.; Xu, Z. Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023. Vet. Sci. 2025, 12, 99. https://doi.org/10.3390/vetsci12020099
Chen H, Qing Y, Xu L, Zhu L, Yin W, Li S, Kuang S, Zhou Y, Xu Z. Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023. Veterinary Sciences. 2025; 12(2):99. https://doi.org/10.3390/vetsci12020099
Chicago/Turabian StyleChen, Hongyu, Yi Qing, Lei Xu, Ling Zhu, Wenqi Yin, Shuwei Li, Shengyao Kuang, Yuancheng Zhou, and Zhiwen Xu. 2025. "Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023" Veterinary Sciences 12, no. 2: 99. https://doi.org/10.3390/vetsci12020099
APA StyleChen, H., Qing, Y., Xu, L., Zhu, L., Yin, W., Li, S., Kuang, S., Zhou, Y., & Xu, Z. (2025). Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023. Veterinary Sciences, 12(2), 99. https://doi.org/10.3390/vetsci12020099