Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Feed, and Experimental Design
2.2. Sample Collection and Chemical Analyses of Samples
2.3. Statistical Methods
3. Results
3.1. Feed Intake, Growth Performance, and Nutrients Digestibility
3.2. Rumen Parameters and Blood Metabolite
3.3. Volatile Fatty Acid (VFA) Profiles and Methane (CH4) Production
3.4. Microbial Population
4. Discussion
4.1. Feed Intake and Nutrient Digestibility
4.2. Rumen Parameters and Blood Metabolites
4.3. Ruminal Volatile Fatty Acid (VFA) Profiles and Methane (CH4) Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, A.L.G.; Freitas, J.A.; Micai, B.; Azevedo, R.A.; Greco, L.F.; Santos, J.E.P. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J. Dairy Sci. 2018, 101, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; Uwizeye, A.; Mohammed, R.; Yang, W.Z.; Walker, N.D.; Beauchemin, K.A. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci. 2014, 92, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Gao, X.; Duan, J.; Zhang, H.; Zheng, Y.; He, J.; Huo, N.; Pei, C.; Li, H.; Gu, S. Effects of yeasts on rumen bacterial flora, abnormal metabolites, and blood gas in sheep with induced subacute ruminal acidosis. Anim. Feed Sci. Technol. 2021, 280, 115042. [Google Scholar] [CrossRef]
- Magrin, L.; Gottardo, F.; Fiore, E.; Gianesella, M.; Martin, B.; Chevaux, E.; Cozzi, G. Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: Effects on growth, slaughter performance, behaviour, and rumen environment. Anim. Feed Sci. Technol. 2018, 241, 84–93. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y.; Niu, J.; Guo, Y.; Pauline, M.; Zhao, X.; Li, Q.; Cao, Y.; Bi, C.; Zhang, X. Effect of active dry yeast on lactation performance, methane production, and ruminal fermentation patterns in early-lactating Holstein cows. J. Dairy Sci. 2021, 104, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Pinloche, E.; McEwan, N.; Marden, J.P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Suntara, C.; Cherdthong, A.; Uriyapongson, S.; Wanapat, M.; Chanjula, P. Comparison effects of ruminal Crabtree-negative yeasts and Crabtree-positive yeasts for improving ensiled rice straw quality and ruminal digestion using in vitro gas production. J. Fungi 2020, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Khonkhaeng, B.; Cherdthong, A. Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. J. Fungi. 2020, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of yeast waste fermented citric waste as a protein source to replace soybean meal and various roughage to concentrate ratios on in vitro rumen fermentation, gas kinetic, and feed digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Alugongo, G.M.; Xiao, J.X.; Chung, Y.H.; Dong, S.Z.; Li, S.L.; Yoon, I.; Wu, Z.H.; Cao, Z.J. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J. Dairy Sci. 2017, 100, 1189–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Hua, C.; Tian, J.; Tian, P.; Cong, R.; Luo, Y.; Geng, Y.; Tao, S.; Ni, Y.; Zhao, R. Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalouei, H.; Seranatne, V.; Fehr, K.; Guo, J.; Yoon, I.; Khafipour, E.; Plaizier, J.C. Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows. Can. J. Anim. Sci. 2021, 101, 143–157. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayat, A.R.; Kairenius, P.; Stefański, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K.J. Effect of Camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, C.; Wills, D.A.; Yan, T. Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows. Anim. Prod. Sci. 2017, 57, 656–664. [Google Scholar] [CrossRef]
- Hristov, A.N.; Varga, G.; Cassidy, T.; Long, M.; Heyler, K.; Karnati, S.K.R.; Corl, B.; Hovde, C.J.; Yoon, I. Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J. Dairy Sci. 2010, 93, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Rossow, H.A.; Riordan, T.; Riordan, A. Effects of addition of a live yeast product on dairy cattle performance. J. Appl. Anim. Res. 2018, 46, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.Y.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.E.; Huws, S.A.; Kim, E.J.; Kingston-Smith, A.H. Characterization of the dynamics of initial bacterial coloni- zation of nonconserved forage in the bovine rumen. FEMS Microbiol. Ecol. 2007, 62, 323–335. [Google Scholar] [CrossRef]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Koike, S.; Kobayashi, Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 2001, 204, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Ohene-Adjei, S.; Teather, R.M.; Ivan, M.; Forster, R.J. Post inoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen. Appl. Environ. Microbiol. 2007, 73, 4609–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS (Statistical Analysis System). User’s Guide: Statistic, 4th ed.; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Finck, D.N.; Ribeiro, F.R.B.; Burdick, N.C.; Parr, S.L.; Carroll, J.A.; Young, T.R.; Bernhard, B.C.; Corley, J.R.; Estefan, A.G.; Rathmann, R.J. Yeast supplementation alters the performance and health status of receiving cattle. Prof. Anim. Sci. 2014, 30, 333–341. [Google Scholar] [CrossRef]
- Sousa, D.O.; Oliveira, C.A.; Velasquez, A.V.; Souza, J.M.; Chevaux, E.; Mari, L.J.; Silva, L.F.P. Live Yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Anim. Feed Sci. Technol. 2018, 236, 149–158. [Google Scholar] [CrossRef]
- Cagle, C.M.; Fonseca, M.A.; Callaway, T.R.; Runyan, C.A.; Cravey, M.D.; Tedeschi, L.O. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl. Anim. Sci. 2020, 36, 36–47. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Ameilbonne, A.; Bichat, A.; Mosoni, P.; Ossa, F.; Forano, E. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microbiol. 2016, 120, 560–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, C.Y.; Ren, L.P.; Zhou, Z.M.; Chang, Y.; Meng, Q.X. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim. Sci. J. 2016, 87, 982–988. [Google Scholar] [CrossRef]
- Cagle, C.M.; Fernando Batista, L.D.; Anderson, R.C.; Fonseca, M.A.; Cravey, M.D.; Julien, C.; Tedeschi, L.O. Evaluation of different inclusion levels of dry live yeast impacts on various rumen parameters and in situ digestibilities of dry matter and neutral detergent fiber in growing and finishing beef cattle. J. Anim. Sci. 2019, 97, 4987–4998. [Google Scholar] [CrossRef]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- AlZahal, O.; Li, F.; Guan, L.L.; Walker, N.D.; McBride, B.W. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast. J. Dairy Sci. 2017, 100, 4377–4393. [Google Scholar] [CrossRef] [Green Version]
- Uyeno, Y.; Akiyama, K.; Hasunuma, T.; Yamamoto, H.; Yokokawa, H.; Yamaguchi, T.; Kawashima, K.; Itoh, M.; Kushibiki, S.; Hirako, M. Effects of supplementing an active dry yeast product on rumen microbial community composition and on subsequent rumen fermentation of lactating cows in the mid-to-late lactation period. Anim. Sci. J. 2017, 88, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Crossland, W.L.; Cagle, C.M.; Sawyer, J.E.; Callaway, T.R.; Tedeschi, L.O. Evaluation of active dried yeast in the diets of feedlot steers. II. Effects on rumen pH and liver health of feedlot steers. J. Anim. Sci. 2019, 97, 1347–1363. [Google Scholar] [CrossRef]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Kowalik, B.; Skomiał, J.; Pajak, J.J.; Taciak, M.; Majewska, M.; Bełzecki, G. Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Anim. Sci. Pap. Rep. 2012, 30, 329–338. [Google Scholar]
- Lombardi, P.; Musco, N.; Calabro, S.; Tudisco, R.; Mastellone, V.; Vastolo, A.; Infascelli, F.; Cutrignelli, I.M. Different carbohydrate sources affect swine performance and post-prandial glycaemic response. Ital. J. Anim. Sci. 2020, 19, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ogunade, I.M.; Qi, S.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the dose and viability of Saccharomyces cerevisiae. Diversity of ruminal microbes as analyzed by illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, Z.; Beauchemin, K.A.; Tang, S.; Zhou, C.; Han, X.; Wang, M.; Kang, J.; Odongo, N.E.; Tan, Z. Evaluation of different yeast species for improving in vitro fermentation of cereal straws. Asian-Australas. J. Anim. Sci. 2016, 29, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.L.; Arce-Cordero, J.A.; Brandao, V.L.N.; Vinyard, J.R.; Agustinho, B.C.; Monteiro, H.F.; Lobo, R.R.; Tomaz, L.; Faciola, A.P. Effects of bacterial cultures, enzymes, and yeast-based feed additive combinations on ruminal fermentation in a dual-flow continuous culture system. Transl. Anim. Sci. 2021, 5, txab026. [Google Scholar] [CrossRef] [PubMed]
- Darabighane, B.; Salem, A.Z.M.; Mirzaei Aghjehgheshlagh, F.; Mahdavi, A.; Zarei, A.; Elghandour, M.M.M.Y.; López, S. Environmental efficiency of Saccharomyces cerevisiae on methane production in dairy and beef cattle via a meta-analysis. Environ. Sci. Pollut. Res. 2019, 26, 3651–3658. [Google Scholar] [CrossRef]
- Ding, G.; Chang, Y.; Zhao, L.; Zhou, Z.; Ren, L.; Meng, Q. Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J. Anim. Sci. Biotechnol. 2014, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Wu, J.; Wang, M.; Zhou, C.; Han, X.; Odongo, E.N.; Tan, Z.; Tang, S. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats. Arch. Anim. Nutr. 2016, 70, 224–238. [Google Scholar] [CrossRef] [PubMed]
Ingredient Composition | % Dry Matter Basis |
---|---|
Rice straw | 25.3 |
Corn silage | 4.7 |
Cassava chip | 26.2 |
Rice bran | 33.4 |
Soybean meal | 4.4 |
Urea | 2.0 |
Molasses | 2.0 |
Mineral mixture | 2.0 |
Salt | 1.0 |
Chemical composition | |
Dry matter, % | 69.8 |
Organic matter | 91.3 |
Ash | 9.7 |
Crude protein | 12.8 |
Neutral detergent fiber | 29.6 |
Acid detergent fiber | 18.2 |
Total digestible nutrients (TDN) * | 77.9 |
Target Species | Primer Set | Reference |
---|---|---|
Total bacteria | 5′-AGCAGCCGCGGTAAT-3′ 5′-CAGGGTATCTAATCCTGTT-3′ | [25] |
Fibrobacter succinogenes | 5′-GTTCGGAATTACTGGGCGTAAA-3′ 5′-CGCCTGCCCCTGAACTATC-3′ | [26] |
Ruminococus flavefaciens | 5′-CGAACGGAGATAATTTGAGTTTACTTAGG-3′ 5′-CGGTCTCTGTATGTTATGAGGTATTACC-3′ | [26] |
Ruminococus albus | 5′-CCCTAAAAGCAGTCTTAGTTCG-3′ 5′-CCTCCTTGCGGTTAGAACA-3′ | [27] |
Butyvibrio fibrisolvens | 5′-ACCGCATAAGCGCACGGA-3′ 5′-CGGGTCCATCTTGTACCGATAAAT-3′ | [28] |
Megasphera eldinii | 5′-AGATGGGGACAACAGCTGGA-3′ 5′-CGAAAGCTCCGAAGAGCCT-3′ | [28] |
Methanogenic archaea | 5′-GAGGAAGGAGTGGACGACGGTA-3′ 5′-ACGGGCGGTGTGTGCAAG-3′ | [29] |
Protozoa | 5′-GCTTTCGWTGGTAGTGTATT-3′ 5′-CTTGCCCTCYAATCGTWCT-3′ | [30] |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | Linear | Quadratic | ||
Initial body weight (BW), kg | 375.5 | 376.1 | 373.8 | 372.6 | 1.21 | 0.14 | 0.43 |
Final BW, kg | 434.4 a | 442.7 b | 462.5 c | 461.6 c | 4.85 | 0.04 | 0.52 |
Average daily gain, g/day | 649 a | 744 b | 984 c | 993 c | 6.03 | 0.04 | 0.71 |
Dry matter intake, kg/day | 9.2 b | 10.5 b | 11.4 a | 11.6 a | 0.13 | 0.04 | 0.29 |
Feed conversion (feed: gain) | 14.1 b | 14.2 b | 11.6 a | 11.7 a | 0.48 | 0.04 | 0.07 |
Nutrient digestibility, % | |||||||
Dry matter | 59.7 | 60.8 | 61.4 | 61.6 | 0.29 | 0.39 | 0.62 |
Organic matter | 63.2 a | 65.6 b | 67.7 c | 67.4 c | 0.04 | 0.04 | 0.11 |
Crude protein | 66.1 | 66.4 | 66.9 | 66.6 | 0.06 | 0.38 | 0.58 |
Neutral detergent fiber | 49.8 a | 55.7 b | 57.9 c | 58.1 c | 0.04 | 0.04 | 0.04 |
Acid detergent fiber | 45.4 a | 47.5 b | 49.9 c | 49.5 c | 0.02 | 0.03 | 0.04 |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | Linear | Quadratic | ||
Ruminal pH | 5.9 a | 6.3 b | 6.5 b | 6.5 b | 0.09 | 0.04 | 0.05 |
Temperature, °C | 39.4 | 39.6 | 39.8 | 39.7 | 0.07 | 0.11 | 0.29 |
NH3-N, mg/dL | 15.0 a | 16.9 b | 18.3 c | 18.6 c | 0.27 | 0.04 | 0.05 |
Blood metabolite, mg/dL | |||||||
Urea–Nitrogen | 13.8 | 14.1 | 14.6 | 15.1 | 0.42 | 0.38 | 0.59 |
Glucose | 66.1 | 67.6 | 66.9 | 67.3 | 1.94 | 0.42 | 0.71 |
Free fatty acid | 0.6 | 0.7 | 0.7 | 0.7 | 0.16 | 0.20 | 0.59 |
Total protein | 1.1 | 1.0 | 1.2 | 1.3 | 0.25 | 0.36 | 0.87 |
Triglyceride | 0.3 | 0.4 | 0.5 | 0.4 | 0.32 | 0.17 | 0.89 |
Total cholesterol | 4.1 | 4.2 | 4.4 | 4.5 | 0.14 | 0.22 | 0.94 |
Total VFAs, mmol/L | 117.8 | 118.2 | 120.5 | 121.0 | 1.43 | 1.05 | 0.06 |
VFAs, mol/100mol | |||||||
Acetic acid (C2) | 69.3 b | 68.8 b | 65.1 a | 64.6 a | 0.26 | 0.04 | 0.05 |
Propionic acid (C3) | 22.8 a | 24.0 b | 27.2 c | 27.5 c | 0.17 | 0.04 | 0.05 |
Butyric acid (C4) | 7.9 | 7.2 | 7.7 | 7.9 | 0.19 | 0.06 | 0.08 |
C2: C3 | 3.0 b | 2.9 b | 2.4 a | 2.3 a | 0.05 | 0.04 | 0.05 |
CH4 (mM/l) | 28.1 b | 27.2 b | 24.9 a | 24.6 a | 0.19 | 0.04 | 0.05 |
Items | Yeast Supplementation (g/day) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | Linear | Quadratic | ||
Real-time PCR, copies/mL rumen content | |||||||
Total bacteria, ×109 | 5.1 a | 6.2 b | 7.5 c | 7.9 c | 0.65 | 0.03 | 0.04 |
F. succinogenes, ×108 | 2.8 a | 5.7 b | 8.2 c | 8.0 c | 0.28 | 0.04 | 0.06 |
R. flavefaciens, ×107 | 4.8 a | 4.4 a | 6.9 b | 7.2 b | 0.44 | 0.04 | 0.07 |
R. albus, ×107 | 3.7 | 3.3 | 3.8 | 3.1 | 0.82 | 0.08 | 0.11 |
B. fibrisolvens, ×106 | 3.4 a | 5.8 b | 6.6 bc | 7.2 c | 0.43 | 0.04 | 0.06 |
M. eldinii, ×102 | 1.4 a | 2.8 b | 4.1 c | 4.4 c | 0.58 | 0.04 | 0.05 |
Methanogens, ×105 | 7.1 a | 5.4 b | 2.1 c | 2.0 c | 0.05 | 0.04 | 0.05 |
Protozoa, ×105 | 5.6 a | 3.7 b | 1.9 c | 1.2 c | 0.18 | 0.03 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phesatcha, K.; Phesatcha, B.; Chunwijitra, K.; Wanapat, M.; Cherdthong, A. Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance. Vet. Sci. 2021, 8, 294. https://doi.org/10.3390/vetsci8120294
Phesatcha K, Phesatcha B, Chunwijitra K, Wanapat M, Cherdthong A. Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance. Veterinary Sciences. 2021; 8(12):294. https://doi.org/10.3390/vetsci8120294
Chicago/Turabian StylePhesatcha, Kampanat, Burarat Phesatcha, Krittika Chunwijitra, Metha Wanapat, and Anusorn Cherdthong. 2021. "Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance" Veterinary Sciences 8, no. 12: 294. https://doi.org/10.3390/vetsci8120294
APA StylePhesatcha, K., Phesatcha, B., Chunwijitra, K., Wanapat, M., & Cherdthong, A. (2021). Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance. Veterinary Sciences, 8(12), 294. https://doi.org/10.3390/vetsci8120294