Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Information
2.2. Genotype Quality Control
2.3. Statistical Analyses
2.3.1. Identification of Associated and Informative Loci
2.3.2. Population Genetic Structure
2.3.3. Cluster Analyses
2.3.4. Principal Components Analysis
3. Results and Discussion
3.1. Sample Size and Power Analysis
3.2. Identification of Associated and Informative Loci
3.3. Population Genetic Structure
3.4. Clustering Using Hierarchical Methods and K-Means Algorithms
3.5. Principal Components Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 2212. [Google Scholar] [CrossRef]
- Suleiman, T.S.; Karimuribo, E.D.; Mdegela, R.H. Prevalence of bovine subclinical mastitis and antibiotic susceptibility patterns of major mastitis pathogens isolated in Unguja island of Zanzibar, Tanzania. Trop. Anim. Health Prod. 2018, 50, 259–266. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, C.; Basang, W.; Zhu, Y.; Wang, X.; Li, C.; Chen, L.; Zhou, X. Mechanisms by which mastitis affects reproduction in dairy cow: A review. Reprod. Domest. Anim. 2021, 56, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Haugaard, K.; Tusell, L.; Perez, P.; Gianola, D.; Whist, A.C.; Heringstad, B. Prediction of clinical mastitis outcomes within and between environments using whole-genome markers. J. Dairy Sci. 2013, 96, 3986–3993. [Google Scholar] [CrossRef] [Green Version]
- Brunes, L.C.; Baldi, F.; Lopes, F.B.; Narciso, M.G.; Lobo, R.B.; Espigolan, R.; Costa, M.F.O.; Magnabosco, C.U. Genomic prediction ability for feed efficiency traits using different models and pseudo-phenotypes under several validation strategies in Nelore cattle. Animal 2021, 15, 100085. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Sahana, G.; Ma, P.; Su, G.; Yu, Y.; Zhang, S.; Lund, M.S.; Sørensen, P. Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds. BMC Genom. 2017, 18, 604. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; Arends, D.; Korkuć, P.; Neumann, G.B.; Brockmann, G.A. A genome-wide association study for clinical mastitis in the dual-purpose German Black Pied cattle breed. J. Dairy Sci. 2020, 103, 10289–10298. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Cole, J.B.; Hubbard, S.M.; Sonstegard, T.S. Genomic selection in dairy cattle: The USDA experience. Annu. Rev. Anim. Biosci. 2017, 5, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Suhail, S.M.; Shafiq, M. Heritability estimates and genetic correlations of various production and reproductive traits of different grades of dairy cattle reared under subtropical condition. Reprod. Domest. Anim. 2019, 54, 1026–1033. [Google Scholar] [CrossRef]
- Bhati, M.; Kadri, N.K.; Crysnanto, D.; Pausch, H. Assessing genomic diversity and signatures of selection in Original Braunvieh cattle using whole-genome sequencing data. BMC Genom. 2020, 21, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Yao, Y.; Li, C.; Zhang, F.; Qu, K.; Chen, H.; Huang, B.; Lei, C. Genetic diversity of Chinese cattle revealed by Y-SNP and Y-STR markers. Anim. Genet. 2018, 50, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.; Wang, Y.; Yan, P.; Oliveira, H.; Schenkel, F.; Zhang, Y.; Xu, Q.; Brito, L. Genetic diversity and signatures of selection for thermal stress in cattle and other two Bos Species adapted to divergent climatic conditions. Front. Genet. 2021, 12, 604823. [Google Scholar] [CrossRef]
- Cai, Z.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genom. 2018, 19, 656. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, Z.; Zhang, S.; Werling, D.; Wathes, C. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J. Anim. Sci. 2015, 5, 358–393. [Google Scholar] [CrossRef] [Green Version]
- Kurz, J.P.; Yang, Z.; Weiss, R.B.; Wilson, D.J.; Rood, K.A.; Liu, G.E.; Wang, Z. A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. Immunogenetics 2019, 71, 35–47. [Google Scholar] [CrossRef]
- Moretti, R.; Soglia, D.; Chessa, S.; Sartore, S.; Finocchiaro, R.; Rasero, R.; Sacchi, P. Identification of SNPs associated with somatic cell score in candidate genes in Italian Holstein Friesian bulls. Animals 2021, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Meredith, B.K.; Berry, D.P.; Kearney, F.; Finlay, E.K.; Fahey, A.G.; Bradley, D.G.; Lynn, D.J. A genome-wide association study for somatic cell score using the Illumina high-density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet. 2013, 4, 229. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, P.; Liu, J.; Zhang, Q.; Zhang, Y.; Ding, X.; Jiang, L.; Wang, Y.; Zhang, Y.; Sun, D.; et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska-Sabat, A.M.; Kirsanova, E.; Klopp, C.; Solberg, T.R.; Heringstad, B.; Østerås, O.; Boysen, P.; Olsaker, I. Transcription profiling of monocyte-derived macrophages infected in vitro with two strains of Streptococcus agalactiae reveals candidate pathways affecting subclinical mastitis in cattle. Front. Genet. 2019, 10, 689. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, X.; Chen, Z. Identification of key candidate genes in dairy cow in response to Escherichia coli mastitis by bioinformatical analysis. Front. Genet. 2019, 10, 1251. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; He, Y.; Zhou, H.; Zhang, Y.; Li, X.; Yu, Y. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep. 2016, 6, 29390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsanova, E.; Boysen, P.; Johansen, G.M.; Heringstad, B.; Lewandowska-Sabat, A.; Olsaker, I. Expression analysis of candidate genes for chronic subclinical mastitis in Norwegian Red cattle. J. Dairy Sci. 2020, 103, 9142–9149. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australasian J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Miles, A.M.; Huson, H.J. Graduate Student Literature Review: Understanding the genetic mechanisms underlying mastitis. J. Dairy Sci. 2020, 104, 1183–1191. [Google Scholar] [CrossRef]
- Gene. 2021, Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. Available online: https://www.ncbi.nlm.nih.gov/gene/ (accessed on 15 June 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 16 November 2021).
- Sherwin, W.B. Entropy and information approaches to genetic diversity and its expression: Genomic geography. Entropy 2010, 12, 1765–1798. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T.; Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 16 November 2021).
- Lengyel, A.; Botta-Dukát, Z. Silhouette width using generalized mean—A flexible method for assessing clustering efficiency. Ecol. Evol. 2019, 9, 13231–13243. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Zeebarree, D.Q.; Haron, H.; Abdulazeez, A.M.; Zeebaree, S.R.M. Combination of K-means clustering with genetic algorithm: A review. Int. J. Appl. Eng. Res. 2017, 12, 14238–14245. [Google Scholar]
- Mrode, R.; Ojango, J.M.K.; Okeyo, A.M.; Mwacharo, J.M. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front. Genet. 2019, 9, 694. [Google Scholar] [CrossRef]
- Zepeda-Batista, J.L.; Parra-Bracamonte, G.M.; Núñez-Domínguez, R.; Ramírez-Valverde, R.; Ruíz-Flores, A. Screening genetic diseases prevalence in Braunvieh cattle. Trop. Anim. Health Prod. 2019, 51, 25–31. [Google Scholar] [CrossRef]
- Trujano-Chavez, M.Z.; Valerio-Hernández, J.E.; López-Ordaz, R.; Pérez-Rodríguez, P.; Ruíz-Flores, A. Allelic and genotypic frequencies for loci associated with meat quality in Mexican Braunvieh cattle. Trop. Anim. Health Prod. 2021, 53, 307. [Google Scholar] [CrossRef]
- Champely, S. pwr: Basic Functions for Power Analysis. R Package Version 1.3-0. 2020. Available online: https://CRAN.R-project.org/package=pwr (accessed on 16 November 2021).
- Khalilzadeh, J.; Tasci, A.D.A. Large sample size, significance level, and the effect size: Solutions to perils of using big data for academic research. Tour. Manag. 2017, 62, 89–96. [Google Scholar] [CrossRef]
- Upadhyay, M.; Eriksson, S.; Mikko, S.; Strandberg, E.; Stålhammar, H.; Groenen, M.A.M.; Crooijmans, P.M.A.; Anderson, G.; Johansson, A.M. Genomic relatedness and diversity of Swedish native cattle breeds. Genet. Sel. Evol. 2019, 51, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gao, X.; Zhang, Y.; Zhao, Y.; Zhang, J.; Jia, Y.; Zhu, B.; Xu, L.; Zhang, L.; Gao, H.; et al. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC Genet. 2018, 19, 114. [Google Scholar] [CrossRef] [Green Version]
- Agung, P.P.; Saputra, F.; Zein, M.; Wulandari, A.S.; Putra, W.; Said, S.; Jakaria, J. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-australas. J. Anim. Sci. 2019, 32, 467–476. [Google Scholar] [CrossRef]
- Abdelmanova, A.S.; Kharzinova, V.R.; Volkova, V.V.; Mishina, A.I.; Dotsev, A.V.; Sermyagin, A.A.; Boronetskaya, O.I.; Petrikeeva, L.V.; Chinarov, R.Y.; Brem, G.; et al. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis. Genes 2020, 11, 940. [Google Scholar] [CrossRef]
- Ocampo, R.J.; Martínez, J.F.; Martínez, R. Assessment of genetic diversity and population structure of Colombian Creole cattle using microsatellites. Trop. Anim. Health Prod. 2021, 53, 122. [Google Scholar] [CrossRef]
- Moscarelli, A.; Sardina, M.T.; Cassandro, M.; Ciani, E.; Pilla, F.; Senczuck, G.; Portolano, B.; Mastrangelo, S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim. Genet. 2020, 52, 21–31. [Google Scholar] [CrossRef]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Parida, S.; Bhushan, B.; Gaur, G.K.; Kumar, P.; Dutt, T.; Mishra, B.P.; Singh, R.K. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim. Biotechnol. 2020, 30, 1–15. [Google Scholar] [CrossRef]
- Strucken, E.M.; Gebrehiwot, N.Z.; Swaminathan, M.; Joshi, S.; Al Kalaldeh, M.; Gibson, J.P. Genetic diversity and effective population sizes of thirteen Indian cattle breeds. Genet. Sel. Evo. 2021, 53, 47. [Google Scholar] [CrossRef]
- King, F.J.M.; Banga, C.B.; Visser, C. Genetic diversity and population structure of three native cattle populations in Mozambique. Trop. Anim. Health Prod. 2021, 53, 117. [Google Scholar] [CrossRef]
- Robbertse, L.; Richards, S.A.; Maritz-Olivier, C. Bovine immune factors underlying tick resistance: Integration and future directions. Front. Cell. Infect. Microbiol. 2017, 7, 522. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Scumpia, K.M.; Scumpia, P.O.; Delano, M.J.; Weinstein, J.S.; Cuenca, A.G.; Wynn, J.L.; Moldawer, L.L. Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. J. Exp. Med. 2010, 207, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.Z.; Khan, A.; Xiao, J.; Ma, J.; Ma, Y.; Chen, T.; Shao, D.; Cao, Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals 2020, 10, 1625. [Google Scholar] [CrossRef] [PubMed]
- Kiser, J.N.; Wang, Z.; Zanella, R.; Scraggs, E.; Neupane, M.; Cantrell, B.; Van Tassell, C.P.; White, S.N.; Taylor, J.F.; Neibergs, H.L. Functional variants surrounding Endothelin 2 are associated with Mycobacterium avium subspecies paratuberculosis infection. Front. Vet. Sci. 2021, 8, 280. [Google Scholar] [CrossRef]
- Signer-Hasler, H.; Burren, A.; Neuditschko, M.; Frischknecht, M.; Garrick, D.; Stricker, C.; Gredler, B.; Bapst, B.; Flury, C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet. Sel. Evol. 2017, 49, 83. [Google Scholar] [CrossRef] [Green Version]
- Balloux, F.; Amos, W.; Coulson, T. Does heterozygosity estimate inbreeding in real populations? Mol. Ecol. 2004, 13, 3021–3031. [Google Scholar] [CrossRef] [PubMed]
- Tsairidou, S.; Allen, A.R.; Pong-Wong, R.; McBride, S.H.; Wright, D.M.; Matika, O.; Pooley, C.M.; McDowell, S.W.J.; Glass, E.J.; Skuce, R.A.; et al. An analysis of effects of heterozygosity in dairy cattle for bovine tuberculosis resistance. Anim. Genet. 2018, 49, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, S.; Hosoda, M.; Yoshino, K.; Yamanoue, M.; Shirai, Y. Gene expression analysis provides new insights into the mechanism of intramuscular fat formation in Japanese Black Cattle. Genes 2021, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Salleh, M.S.; Mazzoni, G.; Nielsen, M.O.; Løvendahl, P.; Kadarmideen, H.N. Identification of expression QTLs targeting candidate genes for residual feed intake in dairy cattle using systems genomics. J. Genet. Genome Res. 2018, 5, 38. [Google Scholar] [CrossRef]
Gene | Chr | Position, pb (±25 k) | SNP Marker Name | LN |
---|---|---|---|---|
ARHGAP10 [16] | 17 | 9,994,895–10,429,767 | ARS-BFGL-NGS-113821 | 1 |
BovineHD1700002890 | 2 | |||
BDH2 [15] | 6 | 21,737,056–21,815,795 | BovineHD0600006001 | 3 |
CAPG [14] | 11 | 49,562,863–49,630,835 | Hapmap54495-rs29018810 | 4 |
CHD5 [14] | 16 | 47,131,943–47,253,618 | BovineHD1600013051 | 5 |
CST6 [15] | 29 | 44,076,083–44,127,573 | BovineHD2900013196 | 6 |
ELMO1 [14] | 4 | 59,842,686–60,475,511 | BovineHD0400016236 | 7 |
FBL [16] | 18 | 49,363,469–49,425,788 | ARS-BFGL-NGS-113564 | 8 |
FOCAD [14] | 8 | 23,394,437–23,750,228 | BovineHD0800007122 | 9 |
IMMP2L [14] | 4 | 56,736,178–57,747,698 | BovineHD0400015680 | 10 |
LOC510112 [16] | 10 | 27,914,007–27,964,951 | BovineHD1000009188 | 11 |
BovineHD1000009179 | 12 | |||
MBL2 [17] | 26 | 6,306,933–6,362,539 | BovineHD2600001441 | 13 |
BovineHD2600001446 | 14 | |||
MYO1E [14] | 10 | 50,932,729–51,205,381 | BovineHD1000015285 | 15 |
PON1 [14] | 4 | 12,517,349–12,601,241 | ARS-BFGL-NGS-48351 | 16 |
PPP3CA [14] | 6 | 23,419,690–23,795,287 | BovineHD0600006555 | 17 |
ST7 [14] | 4 | 51,162,819–51,481,394 | BovineHD0400014185 | 18 |
SULF2 [15] | 13 | 76,130,676–76,307,180 | BovineHD1300022072 | 19 |
TBC1D8 [14] | 11 | 5,953,170–6,144,340 | BovineHD1100002208 | 20 |
TBCK [14] | 6 | 18,840,254–19,099,244 | BovineHD0600005226 | 21 |
ZNFX1 [15] | 13 | 77,323,734–77,400,021 | BovineHD1300022388 | 22 |
Gene | Chr | Position, pb (±25 k) | SNP Marker Name | LN |
---|---|---|---|---|
ANKRD33B [18] | 20 | 62,576,901–62,728,565 | ARS-BFGL-NGS-112060 | 1 |
CTNND2 [18] | 20 | 61,189,491–62,339,843 | BovineHD2000017160 | 2 |
BovineHD2000017153 | 3 | |||
BTB-00791947 | 4 | |||
GRIA3 [19] | 10 | 7,542,786–7,901,396 | ARS-BFGL-NGS-87466 | 5 |
ILDR2 [19] | 3 | 1,878,471–1,997,329 | Hapmap42630-BTA-67480 | 6 |
ITPK1 [19] | 21 | 57,564,349–57,778,522 | BovineHD2100016547 | 7 |
BovineHD2100016592 | 8 | |||
BovineHD2100016552 | 9 | |||
SIDT1 [19] | 1 | 58,193,233–58,355,060 | BovineHD0100016494 | 10 |
TBXAS1 [19] | 4 | 103,270,503–103,494,001 | BovineHD0400029111 | 11 |
Gene | Chr | Position, pb (±25 k) | SNP Marker Name | LN |
---|---|---|---|---|
ECHDC1 1 [22] | 9 | 23,922,553–24,025,911 | BovineHD0900006460 | 1 |
GNAI1 2 [20] | 4 | 40,930,829–41,086,584 | ARS-BFGL-NGS-110306 | 2 |
IL1A 3 [21] | 11 | 46,457,553–46,518,533 | BovineHD1100013546 | 3 |
IL1RN 2,3 [20] | 11 | 46,790,914–46,862,407 | ARS-BFGL-NGS-113289 | 4 |
ARS-BFGL-NGS-113289 | 4 | |||
ITGA4 2 [20] | 2 | 15,058,580–15,200,364 | BovineHD0200004269 | 5 |
ITGB3 2 [20] | 19 | 46,305,531–46,418,474 | UA-IFASA-8333 | 6 |
NRG1 1 [22] | 27 | 28,396,076–28,680,095 | BovineHD2700007962 | 7 |
Gene | Chr | Position, pb (±25 k) | SNP Marker Name | LN |
---|---|---|---|---|
BMPR1B | 6 | 29,346,363–29,845,366 | BovineHD0600008191 | 1 |
BovineHD0600008283 | 2 | |||
BovineHD0600008292 | 3 | |||
EDN2 | 3 | 104,654,329–104,730,954 | BovineHD0300029984 | 4 |
BovineHD0300029996 | 5 | |||
GUCA2A | 3 | 103,990,493–104,056,213 | BTA-98478-no-rs | 6 |
HEYL | 3 | 106,417,713–106,483,224 | BTB-00148619 | 7 |
HIVEP3 | 3 | 104,084,087–104,699,365 | ARS-BFGL-NGS-35125 | 8 |
BovineHD0300029904 | 9 | |||
BovineHD0300029925 | 10 | |||
BovineHD0300029955 | 11 | |||
BTB-01612988 | 12 | |||
Hapmap48983-BTA-100103 | 13 | |||
MACF1 | 3 | 106,564,750–106,955,676 | ARS-BFGL-NGS-38199 | 14 |
BovineHD0300030641 | 15 | |||
BovineHD0300030658 | 16 | |||
BovineHD0300030677 | 17 | |||
BovineHD0300030702 | 18 | |||
MFSD2A | 3 | 106,097,951–10,616,0784 | BovineHD0300030435 | 19 |
SH3PXD2A | 26 | 24,136,301–24,435,553 | BovineHD2600006239 | 20 |
Gene | Chr | Position, pb (±25 k) | SNP Marker Name | LN |
---|---|---|---|---|
CXCL1 | 6 | 89,047,989–89,100,128 | BovineHD0600024410 | 1 |
CXCL8 | 6 | 88,785,817–88,839,572 | ARS-BFGL-NGS-17376 | 2 |
BovineHD0600024315 | 3 | |||
BovineHD0600024328 | 4 | |||
SEL1L | 10 | 92,733,415–92,848,117 | BovineHD1000026808 | 5 |
STAT4 | 2 | 79,543,834–79,730,325 | BovineHD0200022927 | 6 |
Trait | He ± SD | Ho ± SD | NL | p-Value BC | p-Value t-Test | He-Ho |
---|---|---|---|---|---|---|
Resistance to Mastitis | 0.495 ± 0.006 | 0.468 ± 0.034 | 22 | 4.5 × 10−4 | 5.5 × 10−4 | 0.027 |
Susceptibility to Mastitis | 0.495 ± 0.004 | 0.458 ± 0.019 | 11 | 9.1 × 10−4 | 1.0 × 10−5 | 0.037 * |
Resistance to Bacterial Mastitis | 0.488 ± 0.010 | 0.470 ± 0.031 | 7 | 1.4 × 10−3 | 4.4 × 10−2 | 0.018 |
Resistance to Subclinical Mastitis | 0.379 ± 0.153 | 0.403 ± 0.164 | 20 | 5.0 × 10−4 | 9.9 × 10−1 | −0.024 |
Resistance to Clinical Mastitis | 0.406 ± 0.105 | 0.426 ± 0.130 | 6 | 1.7 × 10−3 | 8.9 × 10−1 | −0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujano-Chavez, M.Z.; Sánchez-Ramos, R.; Pérez-Rodríguez, P.; Ruíz-Flores, A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Vet. Sci. 2021, 8, 329. https://doi.org/10.3390/vetsci8120329
Trujano-Chavez MZ, Sánchez-Ramos R, Pérez-Rodríguez P, Ruíz-Flores A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Veterinary Sciences. 2021; 8(12):329. https://doi.org/10.3390/vetsci8120329
Chicago/Turabian StyleTrujano-Chavez, Mitzilin Zuleica, Reyna Sánchez-Ramos, Paulino Pérez-Rodríguez, and Agustín Ruíz-Flores. 2021. "Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle" Veterinary Sciences 8, no. 12: 329. https://doi.org/10.3390/vetsci8120329
APA StyleTrujano-Chavez, M. Z., Sánchez-Ramos, R., Pérez-Rodríguez, P., & Ruíz-Flores, A. (2021). Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Veterinary Sciences, 8(12), 329. https://doi.org/10.3390/vetsci8120329