Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. RNA Extraction
2.3. Library Preparation and NGS
2.4. Sequence Assembly, Annotation, and Comparative Genomics
2.5. Phylogenetics
2.6. aMPV-Specific rRT-PCR Test
2.6.1. Bioinformatics
2.6.2. rRT-PCR Testing
3. Results
3.1. NGS-Based Nontargeted Virus Discovery
3.2. Sequence Assembly
3.3. Sequence Analysis
3.3.1. Non-Coding Intergenic Sequence (IGS) and Extragenic (3′-leader/5′-trailer) Genomic Regions
3.3.2. Coding Sequence (CDS) Regions
3.4. Genetic Relationships of the Mexican and Other aMPVs
3.4.1. Viral Membrane Proteins G, F, and SH
3.4.2. Viral Ribonucleoprotein Complex Proteins N, P, and L
3.4.3. Viral Replication and Assembly Matrix Glycoproteins M and M2
3.5. Revised aMPV-A rRT-PCR Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juhasz, K.; Easton, A. Extensive Sequence Variation in the Attachment (G) Protein Gene of Avian Pneumovirus: Evidence for Two Distinct Subgroups. J. Gen. Virol. 1994, 75, 2873–2880. [Google Scholar] [CrossRef] [PubMed]
- Bäyon-Auboyer, M.-H.; Arnauld, C.; Toquin, D.; Eterradossi, N. Nucleotide Sequences of the F, L and G Protein Genes of Two Non-A/Non-B Avian Pneumoviruses (APV) Reveal a Novel APV Subgroup. J. Gen. Virol. 2000, 81, 2723–2733. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Amarasinghe, G.K.; Bányai, K.; Bào, Y.; Basler, C.F.; Bavari, S.; Bejerman, N.; Blasdell, K.R.; Briand, F.-X.; Briese, T. Taxonomy of the Order Mononegavirales: Update 2016. Arch. Virol. 2016, 161, 2351–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canuti, M.; Kroyer, A.N.; Ojkic, D.; Whitney, H.G.; Robertson, G.J.; Lang, A.S. Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds. Viruses 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Retallack, H.; Clubb, S.; DeRisi, J.L. Genome Sequence of a Divergent Avian Metapneumovirus from a Monk Parakeet (Myiopsitta Monachus). Microbiol. Resour. Announc. 2019, 8, e00284-19. [Google Scholar] [CrossRef] [Green Version]
- Easton, A.J.; Domachowske, J.B.; Rosenberg, H.F. Animal Pneumoviruses: Molecular Genetics and Pathogenesis. Clin. Microbiol. Rev. 2004, 17, 390–412. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.A.; Allée, C.; Courtillon, C.; Szerman, N.; Lemaitre, E.; Toquin, D.; Mangart, J.-M.; Amelot, M.; Eterradossi, N. Host Specificity of Avian Metapneumoviruses. Avian Pathol. 2019, 48, 311–318. [Google Scholar] [CrossRef]
- Van de Zande, S.; Nauwynck, H.; Pensaert, M. The Clinical, Pathological and Microbiological Outcome of an Escherichia Coli O2: K1 Infection in Avian Pneumovirus Infected Turkeys. Vet. Microbiol. 2001, 81, 353–365. [Google Scholar] [CrossRef]
- Turpin, E.A.; Perkins, L.E.; Swayne, D.E. Experimental Infection of Turkeys with Avian Pneumovirus and Either Newcastle Disease Virus or Escherichia Coli. Avian Dis. 2002, 46, 412–422. [Google Scholar] [CrossRef]
- Guionie, O.; Toquin, D.; Sellal, E.; Bouley, S.; Zwingelstein, F.; Allee, C.; Bougeard, S.; Lemiere, S.; Eterradossi, N. Laboratory Evaluation of a Quantitative Real-Time Reverse Transcription PCR Assay for the Detection and Identification of the Four Subgroups of Avian Metapneumovirus. J. Virol. Methods 2007, 139, 150–158. [Google Scholar] [CrossRef]
- Mo, J.; Angelichio, M.; Gow, L.; Leathers, V.; Jackwood, M.W. Quantitative Real-Time PCR Assays for the Concurrent Diagnosis of Infectious Laryngotracheitis Virus, Newcastle Disease Virus and Avian Metapneumovirus in Poultry. J. Vet. Sci. 2022, 23, e21. [Google Scholar] [CrossRef]
- Jardine, C.; Parmley, E.; Buchanan, T.; Nituch, L.; Ojkic, D. Avian Metapneumovirus Subtype C in Wild Waterfowl in Ontario, Canada. Transbound. Emerg. Dis. 2018, 65, 1098–1102. [Google Scholar] [CrossRef]
- Cecchinato, M.; Ferreira, H.L.; Munir, M.; Catelli, E. Chapter 10. Avian Metapneumovirus. In Mononegaviruses of Veterinary Importance; Molecular Epidemiology and Control; Munir, M., Ed.; CAB International: Oxford, UK, 2017; Volume 2, pp. 127–143. ISBN 978-1-78064-417-2. [Google Scholar]
- Rima, B.; Collins, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.A.; Lee, B.; Maisner, A.; Rota, P.; Wang, L.; et al. ICTV Virus Taxonomy Profile: Pneumoviridae. J. Gen. Virol. 2017, 98, 2912–2913. [Google Scholar] [CrossRef]
- Deng, Q.; Song, M.; Demers, A.; Weng, Y.; Lu, W.; Wang, D.; Kaushik, R.S.; Yu, Q.; Li, F. Biochemical Characterization of the Small Hydrophobic Protein of Avian Metapneumovirus. Virus Res. 2012, 167, 297–301. [Google Scholar] [CrossRef]
- Naylor, C.J.; Brown, P.A.; Edworthy, N.; Ling, R.; Jones, R.C.; Savage, C.E.; Easton, A.J. Development of a Reverse-Genetics System for Avian Pneumovirus Demonstrates That the Small Hydrophobic (SH) and Attachment (G) Genes Are Not Essential for Virus Viability. J. Gen. Virol. 2004, 85, 3219–3227. [Google Scholar] [CrossRef]
- Ling, R.; Sinkovic, S.; Toquin, D.; Guionie, O.; Eterradossi, N.; Easton, A.J. Deletion of the SH Gene from Avian Metapneumovirus Has a Greater Impact on Virus Production and Immunogenicity in Turkeys than Deletion of the G Gene or M2-2 Open Reading Frame. J. Gen. Virol. 2008, 89, 525–533. [Google Scholar] [CrossRef]
- Hou, L.; Hu, X.; Guo, J.; Quan, R.; Wei, L.; Wang, J.; Song, J.; Liu, J. Avian Metapneumovirus Subgroup C Induces Mitochondrial Antiviral Signaling Protein Degradation through the Ubiquitin-Proteasome Pathway. Viruses 2021, 13, 1990. [Google Scholar] [CrossRef]
- de Graaf, M.; Osterhaus, A.D.; Fouchier, R.A.; Holmes, E.C. Evolutionary Dynamics of Human and Avian Metapneumoviruses. J. Gen. Virol. 2008, 89, 2933–2942. [Google Scholar] [CrossRef]
- de Graaf, M.; Herfst, S.; Schrauwen, E.J.; Choi, Y.; van den Hoogen, B.G.; Osterhaus, A.D.; Fouchier, R.A. Specificity and Functional Interaction of the Polymerase Complex Proteins of Human and Avian Metapneumoviruses. J. Gen. Virol. 2008, 89, 975–983. [Google Scholar] [CrossRef]
- Kaboudi, K.; Lachheb, J. Avian Metapneumovirus Infection in Turkeys: A Review on Turkey Rhinotracheitis. J. Appl. Poult. Res. 2021, 30, 100211. [Google Scholar] [CrossRef]
- Franzo, G.; Tucciarone, C.M.; Enache, M.; Bejan, V.; Ramon, G.; Koutoulis, K.C.; Cecchinato, M. First Report of Avian Metapneumovirus Subtype B Field Strain in a Romanian Broiler Flock during an Outbreak of Respiratory Disease. Avian Dis. 2017, 61, 250–254. [Google Scholar] [CrossRef]
- Lupini, C.; Cecchinato, M.; Ricchizzi, E.; Naylor, C.J.; Catelli, E. A Turkey Rhinotracheitis Outbreak Caused by the Environmental Spread of a Vaccine-Derived Avian Metapneumovirus. Avian Pathol. 2011, 40, 525–530. [Google Scholar] [CrossRef]
- Banet-Noach, C.; Simanov, L.; Laham-Karam, N.; Perk, S.; Bacharach, E. Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks. Avian Dis. 2009, 53, 184–189. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Rautenschlein, S. Investigations on the Protective Role of Passively Transferred Antibodies against Avian Metapneumovirus Infection in Turkeys. Avian Pathol. 2009, 38, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Catelli, E.; Cecchinato, M.; Savage, C.E.; Jones, R.C.; Naylor, C.J. Demonstration of Loss of Attenuation and Extended Field Persistence of a Live Avian Metapneumovirus Vaccine. Vaccine 2006, 24, 6476–6482. [Google Scholar] [CrossRef]
- Brown, P.A.; Lupini, C.; Catelli, E.; Clubbe, J.; Ricchizzi, E.; Naylor, C.J. A Single Polymerase (L) Mutation in Avian Metapneumovirus Increased Virulence and Partially Maintained Virus Viability at an Elevated Temperature. J. Gen. Virol. 2011, 92, 346–354. [Google Scholar] [CrossRef]
- Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Clubbe, J.; Battilani, M.; Naylor, C.J. Avian Metapneumovirus (AMPV) Attachment Protein Involvement in Probable Virus Evolution Concurrent with Mass Live Vaccine Introduction. Vet. Microbiol. 2010, 146, 24–34. [Google Scholar] [CrossRef]
- Jones, R. Avian Pneumovirus Infection: Questions Still Unanswered. Avian Pathol. 1996, 25, 639–648. [Google Scholar] [CrossRef]
- Buys, S.; Du Preez, J.; Els, H. The Isolation and Attenuation of a Virus Causing Rhinotracheitis in Turkeys in South Africa. Onderstepoort J. Vet. Res. 1989, 56, 87–98. [Google Scholar] [PubMed]
- Tegegne, D.; Deneke, Y.; Sori, T.; Abdurahaman, M.; Kebede, N.; Cecchinato, M.; Franzo, G. Molecular Epidemiology and Genotyping of Infectious Bronchitis Virus and Avian Metapneumovirus in Backyard and Commercial Chickens in Jimma Zone, Southwestern Ethiopia. Vet. Sci. 2020, 7, 187. [Google Scholar] [CrossRef]
- Mescolini, G.; Lupini, C.; Franzo, G.; Quaglia, G.; Legnardi, M.; Cecchinato, M.; Tucciarone, C.M.; Blanco, A.; Turblin, V.; Biarnés, M. What Is New on Molecular Characteristics of Avian Metapneumovirus Strains Circulating in Europe? Transbound. Emerg. Dis. 2021, 68, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Graziosi, G.; Mescolini, G.; Silveira, F.; Lupini, C.; Tucciarone, C.M.; Franzo, G.; Cecchinato, M.; Legnardi, M.; Gobbo, F.; Terregino, C. First Detection of Avian Metapneumovirus Subtype C Eurasian Lineage in a Eurasian Wigeon (Mareca Penelope) Wintering in Northeastern Italy: An Additional Hint on the Role of Migrating Birds in the Viral Epidemiology. Avian Pathol. 2022, 51, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Legnardi, M.; Mescolini, G.; Tucciarone, C.M.; Lupini, C.; Quaglia, G.; Catelli, E.; Cecchinato, M. Avian Metapneumovirus Subtype B around Europe: A Phylodynamic Reconstruction. Vet. Res. 2020, 51, 88. [Google Scholar] [CrossRef] [PubMed]
- Jesse, S.T.; Ribó-Molina, P.; Jo, W.K.; Rautenschlein, S.; Vuong, O.; Fouchier, R.A.; Ludlow, M.; Osterhaus, A.D. Molecular Characterization of Avian Metapneumovirus Subtype C Detected in Wild Mallards (Anas Platyrhynchos) in The Netherlands. Transbound. Emerg. Dis. 2022, 1–11. [Google Scholar] [CrossRef]
- Tucciarone, C.M.; Franzo, G.; Legnardi, M.; Pasotto, D.; Lupini, C.; Catelli, E.; Quaglia, G.; Graziosi, G.; Dal Molin, E.; Gobbo, F. Molecular Survey on A, B, C and New Avian Metapneumovirus (AMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet. Sci. 2022, 9, 373. [Google Scholar] [CrossRef]
- dos Santos, M.B.; Martini, M.C.; Ferreira, H.L.; da Silva, L.H.; Fellipe, P.A.; Spilki, F.R.; Arns, C.W. Brazilian Avian Metapneumovirus Subtypes A and B: Experimental Infection of Broilers and Evaluation of Vaccine Efficacy. Pesq. Vet. Bras. 2012, 32, 1257–1262. [Google Scholar] [CrossRef] [Green Version]
- Velayudhan, B.T.; McComb, B.; Bennett, R.S.; Lopes, V.C.; Shaw, D.; Halvorson, D.A.; Nagaraja, K.V. Emergence of a Virulent Type C Avian Metapneumovirus in Turkeys in Minnesota. Avian Dis. 2005, 49, 520–526. [Google Scholar] [CrossRef]
- ho Lee, E.; Song, M.-S.; Shin, J.-Y.; Lee, Y.-M.; Kim, C.-J.; Lee, Y.S.; Kim, H.; Choi, Y.K. Genetic Characterization of Avian Metapneumovirus Subtype C Isolated from Pheasants in a Live Bird Market. Virus Res. 2007, 128, 18–25. [Google Scholar] [CrossRef]
- Sun, S.; Chen, F.; Cao, S.; Liu, J.; Lei, W.; Li, G.; Song, Y.; Lu, J.; Liu, C.; Qin, J. Isolation and Characterization of a Subtype C Avian Metapneumovirus Circulating in Muscovy Ducks in China. Vet. Res. 2014, 45, 1–13. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, S.; Yan, X.; Wang, J.; Zhang, C.; Liu, S.; She, R.; Hu, F.; Quan, R.; Liu, J. Avian Metapneumovirus Subgroup C Infection in Chickens, China. Emerg. Infect. Dis. 2013, 19, 1092. [Google Scholar] [CrossRef]
- Toquin, D.; Guionie, O.; Jestin, V.; Zwingelstein, F.; Allee, C.; Eterradossi, N. European and American Subgroup C Isolates of Avian Metapneumovirus Belong to Different Genetic Lineages. Virus Genes 2006, 32, 97–103. [Google Scholar] [CrossRef]
- Shin, H.-J.; Cameron, K.T.; Jacobs, J.A.; Turpin, E.A.; Halvorson, D.A.; Goyal, S.M.; Nagaraja, K.V.; Kumar, M.C.; Lauer, D.C.; Seal, B.S. Molecular Epidemiology of Subgroup C Avian Pneumoviruses Isolated in the United States and Comparison with Subgroup A and B Viruses. J. Clin. Microbiol. 2002, 40, 1687–1693. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Benitez, J.F.; Martínez-Bautista, R.; Ríos-Cambre, F.; Ramírez-Mendoza, H. Molecular Detection and Isolation of Avian Metapneumovirus in Mexico. Avian Pathol. 2014, 43, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Luis Chacón, J.; Brandão, P.E.; Buim, M.; Villarreal, L.; Piantino Ferreira, A.J. Detection by Reverse Transcriptase-Polymerase Chain Reaction and Molecular Characterization of Subtype B Avian Metapneumovirus Isolated in Brazil. Avian Pathol. 2007, 36, 383–387. [Google Scholar] [CrossRef]
- Chacón, J.L.; Mizuma, M.; Vejarano, M.P.; Toquín, D.; Eterradossi, N.; Patnayak, D.P.; Goyal, S.M.; Piantino Ferreira, A.J. Avian Metapneumovirus Subtypes Circulating in Brazilian Vaccinated and Nonvaccinated Chicken and Turkey Farms. Avian Dis. 2011, 55, 82–89. [Google Scholar] [CrossRef]
- Felippe, P.A.; da Silva, L.H.A.; dos Santos, M.B.; Sakata, S.T.; Arns, C.W. Detection of and Phylogenetic Studies with Avian Metapneumovirus Recovered from Feral Pigeons and Wild Birds in Brazil. Avian Pathol. 2011, 40, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Parris, D.J.; Kariithi, H.M.; Suarez, D.L. Non-Target RNA Depletion Strategy to Improve Sensitivity of next-Generation Sequencing for the Detection of RNA Viruses in Poultry. J. Vet. Diagn. Investig. 2022, 34, 638–645. [Google Scholar] [CrossRef]
- Chrzastek, K.; Lee, D.; Smith, D.; Sharma, P.; Suarez, D.L.; Pantin-Jackwood, M.; Kapczynski, D.R. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for Rapid Detection, Identification, and Characterization of Avian RNA Viruses. Virology. 2017, 509, 159–166. [Google Scholar] [CrossRef]
- Krueger, A.F.; Afyounian, E.; Ewels, P.; Schuster-Boeckler, B. Taking Appropriate QC Measures for RRBS-Type or Other -Seq Applications with Trim Galore! 2021. Available online: https://Github.Com/FelixKrueger/TrimGalore (accessed on 30 August 2022).
- Breitwieser, F.P.; Baker, D.N.; Salzberg, S.L. KrakenUniq: Confident and Fast Metagenomics Classification Using Unique k-Mer Counts. Genome Biol. 2018, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, 1–3. [Google Scholar] [CrossRef]
- Volkening, J.D. B2b-Utils: Genomics Utilities from BASE₂BIO. 2019. Available online: https://Github.Com/Jvolkening/B2b-Utils (accessed on 30 August 2022).
- Gupta, R.; Brunak, S. Prediction of Glycosylation across the Human Proteome and the Correlation to Protein Function. In Pacific Symposium on Biocomputing 2002; Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K., Klein, T.E., Eds.; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2002; pp. 310–322. ISBN 981-02-4777-X. [Google Scholar]
- Hansen, J.E.; Lund, O.; Tolstrup, N.; Gooley, A.A.; Williams, K.L.; Brunak, S. NetOglyc: Prediction of Mucin Type O-Glycosylation Sites Based on Sequence Context and Surface Accessibility. Glycoconj. J. 1998, 15, 115–130. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis V6. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z. ViPR: An Open Bioinformatics Database and Analysis Resource for Virology Research. Nucleic Acids Res. 2012, 40, D593–D598. [Google Scholar] [CrossRef]
- O’Flaherty, B.M.; Li, Y.; Tao, Y.; Paden, C.R.; Queen, K.; Zhang, J.; Dinwiddie, D.L.; Gross, S.M.; Schroth, G.P.; Tong, S. Comprehensive Viral Enrichment Enables Sensitive Respiratory Virus Genomic Identification and Analysis by next Generation Sequencing. Genome Res. 2018, 28, 869–877. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ling, R.; Randhawa, J.S.; Shaw, K.; Davis, P.J.; Juhasz, K.; Pringle, C.R.; Easton, A.J.; Cavanagh, D. Sequence of the Nucleocapsid Protein Gene of Subgroup A and B Avian Pneumoviruses. Virus Res. 1996, 41, 185–191. [Google Scholar] [CrossRef]
- Naylor, C.J.; Lupini, C.; Brown, P.A. Charged Amino Acids in the AMPV Fusion Protein Have More Influence on Induced Protection than Deletion of the SH or G Genes. Vaccine 2010, 28, 6800–6807. [Google Scholar] [CrossRef]
- Brown, P.A.; Bonci, M.; Ricchizzi, E.; Jones, R.C.; Naylor, C.J. Identification of Two Regions within the Subtype A Avian Metapneumovirus Fusion Protein (Amino Acids 211–310 and 336–479) Recognized by Neutralizing Antibodies. Virus Res. 2009, 146, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.A.; Lemaitre, E.; Briand, F.-X.; Courtillon, C.; Guionie, O.; Allee, C.; Toquin, D.; Bayon-Auboyer, M.-H.; Jestin, V.; Eterradossi, N. Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and–D Isolates, Further Supports Possible Subclassification within the MPV Genus. PLoS ONE. 2014, 9, e102740. [Google Scholar] [CrossRef] [PubMed]
- Barr, J.; Chambers, P.; Pringle, C.; Easton, A. Sequence of the Major Nucleocapsid Protein Gene of Pneumonia Virus of Mice: Sequence Comparisons Suggest Structural Homology between Nucleocapsid Proteins of Pneumoviruses, Paramyxoviruses, Rhabdoviruses and Filoviruses. J. Gen. Virol. 1991, 72, 677–685. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, B.G.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Analysis of the Genomic Sequence of a Human Metapneumovirus. Virology 2002, 295, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Poch, O.; Blumberg, B.M.; Bougueleret, L.; Tordo, N. Sequence Comparison of Five Polymerases (L Proteins) of Unsegmented Negative-Strand RNA Viruses: Theoretical Assignment of Functional Domains. J. Gen. Virol. 1990, 71, 1153–1162. [Google Scholar] [CrossRef]
- Villarreal, L.; Sandri, T.; Assayag, M.; Richtzenhain, L.; Malo, A.; Brandão, P. Field Observations after Natural Infection of Brazilian Layer Chickens with a Phylogeneticaly Divergent Lineage of Subtype B AMPV.; Heffels-Redmann, U., Sommer, D., Kaleta, E.F., Eds.; VVB Laufersweiler Verlag: Wettenberg, Germany, 2009; pp. 255–259. [Google Scholar]
- Cook, J.K.A. Avian Rhinotracheitis. Rev. Sci. Tech. 2000, 19, 602–613. [Google Scholar] [CrossRef]
- Belkasmi, S.F.Z.; Fellahi, S.; Touzani, C.D.; Faraji, F.Z.; Maaroufi, I.; Delverdier, M.; Guérin, J.-L.; Fihri, O.F.; El Houadfi, M.; Ducatez, M.F. Co-Infections of Chickens with Avian Influenza Virus H9N2 and Moroccan Italy 02 Infectious Bronchitis Virus: Effect on Pathogenesis and Protection Conferred by Different Vaccination Programmes. Avian Pathol. 2020, 49, 21–28. [Google Scholar] [CrossRef] [Green Version]
- DaPalma, T.; Doonan, B.P.; Trager, N.M.; Kasman, L.M. A Systematic Approach to Virus–Virus Interactions. Virus Res. 2010, 149, 1–9. [Google Scholar] [CrossRef]
- Catelli, E.; Lupini, C.; Cecchinato, M.; Ricchizzi, E.; Brown, P.; Naylor, C.J. Field Avian Metapneumovirus Evolution Avoiding Vaccine Induced Immunity. Vaccine 2010, 28, 916–921. [Google Scholar] [CrossRef]
- Franzo, G.; Naylor, C.J.; Drigo, M.; Croville, G.; Ducatez, M.F.; Catelli, E.; Laconi, A.; Cecchinato, M. Subpopulations in AMPV Vaccines Are Unlikely to Be the Only Cause of Reversion to Virulence. Vaccine 2015, 33, 2438–2441. [Google Scholar] [CrossRef]
- Barr, J.N.; Fearns, R. How RNA Viruses Maintain Their Genome Integrity. J. Gen. Virol. 2010, 91, 1373–1387. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Suarez, D.L. Single-Nucleotide Polymorphism Analysis to Select Conserved Regions for an Improved Real-Time Reverse Transcription–PCR Test Specific for Newcastle Disease Virus. Avian Dis. 2019, 63, 625–633. [Google Scholar] [CrossRef]
Sample ID a | Sampled Tissue | Sampling Date | No. of Filtered/Trimmed NGS Reads | No. of aMPV Contigs c | Sequence Coverage Depth d | Genomic Region (Consensus seq Length; no. of Bases) | Other Agents Identified (NGS Reads) e | |||
---|---|---|---|---|---|---|---|---|---|---|
Total | Chicken | aMPV b | Viruses | Bacteria | ||||||
1651/19 | choana | 1-May-19 | 831,098 | 49.9% | 4194 | N/A | N/A | full CDS; P (852), M (837), M2 (787), SH (525) | IBV (809) | |
2390/20 | Choana; lung | 9-December-20 | 279,560 | 6.7% | 30,237 | 4 | 1|98|308|933|2794 | full genome (13,369) | IBV GI-3 (341) | B. avium (22,902); ORT (19,718); S. pluranimalium (676) |
2392/20 | Choana; lung | 9-December-20 | 438,683 | 10.5% | 8107 | N/A | N/A | full CDS; N (1176), P (852), M (837), M2 (787), SH (525), G (1176), L (6033) | IBV (87) | ORT (5118); B. avium (3374); S. pluranimalium (2269) |
2518/21 | Choana; lung | 21-January-21 | 350,857 | 18.24% | 44,220 | 1 | 1|190|464|920|12450 | full genome (13,370) | ||
2566/21 | Choana; lung | 25-February-21 | 128,883 | 52.05% | 165 | N/A | N/A | full CDS; P (852), M (837) | IBV (620) | |
2582/21 | Choana; lung | 27-March-21 | 162,856 | 32.68% | 1985 | N/A | N/A | full CDS; P (852), M (837), M2 (776), G (1176) | ||
2721/21 | Choana; lung | 6-June-21 | 600,788 | 31.38% | 3463 | N/A | N/A | full CDS; P (852), M (837), M2 (787), SH (525) | IBV (13,543); SiV (1126); ANV (182) | E. cecorum (2555); S. pluranimalium (32,279) |
2759/21 | Choana; lung | 30-June-21 | 596,799 | 53.37% | 106,434 | 2 | 0|770|1430|2658|10796 | full genome (13,365) | SiV-A (4948); IBV GI-1 (262); AIV H5N2 (968); NDV II (306) | S. enterica (500); E. cecorum (1586) |
2760/21 | Choana; lung | 30-June-21 | 476,815 | 49.64% | 6426 | N/A | N/A | full CDS; P (852), M (837), F (1617), M2 (787), SH (525) | SiV-A (2781); H5N2 (83.383) | S. pluranimalium (1342); E. cecorum (664) |
2948/21 | Choana; lung | 17-November-21 | 386,419 | 31.27% | 23,106 | 2 | 2|117|277|475|3522 | full genome (13,288) | SiV-A (8550) | S. pluranimalium (7574); E. cecorum (1985) |
2939/21 | Choana | 7-December-21 | 261,910 | 1.8% | 1530 | N/A | N/A | full CDS; N (1176), P (852), M (837), M2-2 (267), SH (525) | ORT (3495); E. cecorum (5990) | |
3153/22 | Choana | 27-April-22 | 232,341 | 20.23% | 114,243 | 4 | 0|662|1195|2520|8314 | full genome (13,368) | ORT (10,387); B. avium (720) | |
3154/22 | Choana; lung | 27-April-22 | 194,497 | 46.82% | 31,306 | 1 | 1|181|351|708|2159 | full genome (13,362) | H5N2 (2066); NDV V.5 (803) | B. avium (12,286) |
3155/22 | Choana | 27-April-22 | 277,845 | 19.74% | 141,073 | 1 | 1|913|1562|3067|12823 | full genome (13,381) | B. avium (7022); S. pluranimalium (776) |
Sequence | DQ666911/UK/8544/06 | JF424833/ITA/259-1/03 | NC_039231/UK/LAH-A/90s | MF093139 /BR-SP/669/03 | L34032/UK/CVL14-1/88 | ||||
---|---|---|---|---|---|---|---|---|---|
Genome | G-Gene | Genome | G-Gene | Genome | G-Gene | Genome | G-Gene | G-Gene | |
ON854007/2390/20 | 97.37% | 95.07% (90.28%) | 97.27% | 94.90% (90.28%) | 97.23% | 94.90% (90.28%) | 97.13% | 94.73% (89.77%) | 94.30% (89.26%) |
OP359613/2392/20 * | N/A | 95.07% (90.28%) | N/A | 94.90% (90.28%) | N/A | 94.90% (90.03%) | N/A | 94.73% (89.77%) | 94.30% (89.26%) |
ON854006/2518/21 | 97.47% | 95.83% (92.84%) | 97.39% | 95.83% (92.84%) | 97.33% | 95.66% (92.58%) | 97.22% | 95.49% (92.33%) | 95.24% (91.82%) |
OP359619/2582/21 * | N/A | 95.15% (90.54%) | N/A | 94.98% (90.54%) | N/A | 94.98% (90.28%) | N/A | 94.81% (90.03%) | 94.39% (89.51%) |
ON854004/2759/21 | 97.41% | 95.49% (91.05%) | 97.32% | 95.32% (91.05%) | 97.26% | 95.32% (90.79%) | 97.14% | 95.15% (90.54%) | 94.90% (90.03%) |
ON854003/2948/21 | 97.37% | 95.15% (91.56%) | 97.29% | 94.98% (91.56%) | 97.21% | 94.98% (91.30%) | 97.10% | 94.81% (91.05%) | 94.73% (90.54%) |
ON854012/3153/22 | 97.38% | 95.83% (92.58%) | 97.30% | 95.66% (92.58%) | 97.24% | 95.66% (92.33%) | 97.13% | 95.49% (92.07%) | 95.24% (91.56%) |
ON854013/3154/22 | 97.39% | 95.83% (92.58%) | 97.31% | 95.66% (92.58%) | 97.25% | 95.66% (92.33%) | 97.13% | 95.49% (92.07%) | 95.24% (91.56%) |
ON854014/3155/22 | 97.22% | 95.66% (92.33%) | 97.14% | 95.49% (92.33%) | 97.08% | 95.49% (92.07%) | 96.96% | 95.32% (91.82%) | 95.07% (91.30%) |
aa Position (from Start Met Residue) | aa Residue in Other aMPV-A Strains (UK/LAH-A/90s, UK/8544/06, ITA/259-10/03, and BR-SP/669/03) | aa Residue in Mexican aMPV-A Isolates | ||
---|---|---|---|---|
Cluster I | Cluster II.1 | Cluster II.2 | ||
44 | Tyr (TAT) | His (CAT) | His (CAT) | His (CAT) |
313 | Arg (CGA) | Gln (CAA) | Gln (CAA) | Gln (CAA) |
817 | Ala (GCA) | Ser (TCA) | Ser (TCA) | Ser (TCA) |
862 | Val (GTT) | Ile (ATT) | Ile (ATT) | Ile (ATT) |
877 | Asp (GAT) | Asn (AAT) | Asn (AAT) | Asn (AAT) |
1103 | Ile (ATA) | Met (ATG) | Met (ATG) | Met (ATG) |
1354 | His (CAC) | Arg (CGC) | Arg (CGC) | Arg (CGC) |
1557 | Thr (ACT) | Asn (AAT) | Asn (AAT) | Asn (AAT) |
133 | Arg (CGT) | Cys (TGT) | Arg (CGT) | Arg (CGT) |
328 | Gly (GGC) | Ser (AGT) | Gly (GGC) | Gly (GGC) |
1204 | Ala (GCC) | Val (GTT) | Ala (GCC) | Ala (GCC) |
1397 | Pro (CCA) | Leu (CTA) | Pro (CCA) | Pro (CCA) |
1739 | Ser (AGC) | Gly (GGC) | Ser (AGT) | Ser (AGC) |
71 | Arg (AGA) | Arg (AGA) | Ser (AGC) | Arg (AGA) |
1791 | Val (GTG) | Val (GTG) | Val (GTG) | Ile (ATA) |
1912 | Lys (AAG) | Lys (AAG) | Lys (AAG) | Arg (AGG) |
4 | Ser (TCC) | Ser (TCC) | Pro (CCC) | Pro (CCC) |
1606 | Thr (ACT) | Thr (ACT) | Ile (ATT) | Ile (ATT) |
1690 | Ile (ATT) | Ile (ATT) | Val (GTT) | Val (GTT) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kariithi, H.M.; Christy, N.; Decanini, E.L.; Lemiere, S.; Volkening, J.D.; Afonso, C.L.; Suarez, D.L. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Vet. Sci. 2022, 9, 579. https://doi.org/10.3390/vetsci9100579
Kariithi HM, Christy N, Decanini EL, Lemiere S, Volkening JD, Afonso CL, Suarez DL. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Veterinary Sciences. 2022; 9(10):579. https://doi.org/10.3390/vetsci9100579
Chicago/Turabian StyleKariithi, Henry M., Nancy Christy, Eduardo L. Decanini, Stéphane Lemiere, Jeremy D. Volkening, Claudio L. Afonso, and David L. Suarez. 2022. "Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico" Veterinary Sciences 9, no. 10: 579. https://doi.org/10.3390/vetsci9100579
APA StyleKariithi, H. M., Christy, N., Decanini, E. L., Lemiere, S., Volkening, J. D., Afonso, C. L., & Suarez, D. L. (2022). Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Veterinary Sciences, 9(10), 579. https://doi.org/10.3390/vetsci9100579