Can Stray Cats Be Reservoirs of Antimicrobial Resistance?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. E. coli Isolation and Identification
2.2. Determination of Minimum Inhibitory Concentration (MIC)
2.3. Detection of Antibiotic Resistance Genes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Wall, B.A.; Mateus, A.; Marshall, L.; Pfeiffer, D.; Lubroth, J.; Ormel, H.J.; Otto, P.; Patriarchi, A. Food and Agriculture Organization of the United Nations. In Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in Agriculture and the Risk to Human Health: How Worried Should We Be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Collignon, P.; Mcewen, S. One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Europian Commission. Regulation (EU) 2021/578 Supplementing Regulation (EU) 2019/6 of the European Parliament and of the Council with Regard to Requirements for the Collection of Data on the Volume of Sales and on the Use of Antimicrobial Medicinal Products in Animals; Europian Commission: Luxembourg, 2021. [Google Scholar]
- Mader, R.; Muñoz Madero, C.; Aasmäe, B.; Bourély, C.; Broens, E.M.; Busani, L.; Callens, B.; Collineau, L.; Crespo-Robledo, P.; Damborg, P.; et al. Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front. Microbiol. 2022, 13, 838490. [Google Scholar] [CrossRef]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Pinto Ferreira, J. Why Antibiotic Use Data in Animals Needs to Be Collected and How This Can Be Facilitated. Front. Vet. Sci. 2017, 4, 213. [Google Scholar] [CrossRef] [Green Version]
- Guardabassi, L. Pet Animals as Reservoirs of Antimicrobial-Resistant Bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D.; et al. Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions. J. Comp. Pathol. 2016, 155, S27–S40. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.; Nickel, S.; Schmiedel, J.; Falgenhauer, L.; et al. Subgrouping of ESBL-Producing Escherichia Coli from Animal and Human Sources: An Approach to Quantify the Distribution of ESBL Types between Different Reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef]
- Bryan, A.; Shapir, N.; Sadowsky, M.J. Frequency and Distribution of Tetracycline Resistance Genes in Genetically Diverse, Nonselected, and Nonclinical Escherichia coli Strains Isolated from Diverse Human and Animal Sources. Appl. Environ. Microbiol. 2004, 70, 2503–2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing-Escherichia Coli in Dogs and Cats—A Scoping Review and Meta-Analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Rodan, I. Understanding Feline Behavior and Application for Appropriate Handling and Management. Top. Companion Anim. Med. 2010, 25, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tateo, A.; Zappaterra, M.; Covella, A.; Padalino, B. Factors Influencing Stress and Fear-Related Behaviour of Cats during Veterinary Examinations. Ital. J. Anim. Sci. 2021, 20, 46–58. [Google Scholar] [CrossRef]
- Marchetti, M.L.; Buldain, D.; Castillo, L.G.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef]
- del Castillo, J.R.E. Tetracyclines. In Antimicrobial Therapy in Veterinary Medicine; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 257–268. ISBN 978-0-470-96302-9. [Google Scholar]
- Ministero della Salute Italiano. Legge Quadro in Materia Di Animali Di Affezione e Prevenzione Del Randagismo N. 281 (GU Serie Generale n. 203 Del 30-08-1991); Ministero della Salute Italiano: Rome, Italy, 1991. [Google Scholar]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K.; Hardy, D.; Zimmer, B.; et al. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [Green Version]
- The Medicines Utilisation Monitoring Centre. National Report on Antibiotics Use in Italy. Year 2020; Italian Medicines Agency: Rome, Italy, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility: Supplement M100, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-105-5. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-092-8. [Google Scholar]
- Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.L.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021, 9, 203. [Google Scholar] [CrossRef]
- Gargano, V.; Sciortino, S.; Gambino, D.; Costa, A.; Agozzino, V.; Reale, S.; Alduina, R.; Vicari, D. Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella Spp. Strains Isolated from Animals and Food. Antibiotics 2021, 10, 809. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, F.L.; Belas, A.; Foti, M.; Fisichella, V.; Marques, C.; Pomba, C. Detection of Multidrug Resistance and Extended-Spectrum/Plasmid-Mediated AmpC Beta-Lactamase Genes in Enterobacteriaceae Isolates from Diseased Cats in Italy. J. Feline Med. Surg. 2020, 22, 613–622. [Google Scholar] [CrossRef]
- Ratti, G.; Stranieri, A.; Penati, M.; Dall’ara, P.; Luzzago, C.; Lauzi, S. Extended-Spectrum β-Lactamase Producing Escherichia Coli in Stray Cats from Northern Italy. Int. J. Infect. Dis. 2022, 116, S11. [Google Scholar] [CrossRef]
- Schmidt, P.M.; Lopez, R.R.; Collier, B.A. Survival, Fecundity, and Movements of Free-Roaming Cats. J. Wildl. Manag. 2007, 71, 915–919. [Google Scholar] [CrossRef]
- Albarellos, G.A.; Landoni, M.F. Current Concepts on the Use of Antimicrobials in Cats. Vet. J. 2009, 180, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Donati, V.; Feltrin, F.; Hendriksen, R.S.; Svendsen, C.A.; Cordaro, G.; García-Fernández, A.; Lorenzetti, S.; Lorenzetti, R.; Battisti, A.; Franco, A. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella Spp. from Companion Animals in Italy. PLoS ONE 2014, 9, e90564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebbia, P.; Tramuta, C.; Odore, R.; Nucera, D.; Zanatta, R.; Robino, P. Genetic and Phenotypic Characterisation of Escherichia Coli Producing Cefotaximase-Type Extended-Spectrum β-Lactamases: First Evidence of the ST131 Clone in Cats with Urinary Infections in Italy. J. Feline Med. Surg. 2014, 16, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; García, P.; Listoni, F.J.P.; Moreno-Switt, A.I.; Paes, A.C. Risk Factors Associated with Faecal Carriage of Extended-Spectrum Cephalosporin-Resistant Escherichia Coli among Dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Moreno-Switt, A.I.; Paes, A.C.; Shiva, C.; Munita, J.M.; Rivas, L.; Benavides, J.A. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics 2021, 10, 122. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia Coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of Beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 521–547. ISBN 978-1-68367-052-0. [Google Scholar]
- Baede, V.O.; Wagenaar, J.A.; Broens, E.M.; Duim, B.; Dohmen, W.; Nijsse, R.; Timmerman, A.J.; Hordijk, J. Longitudinal Study of Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacteriaceae in Household Dogs. Antimicrob Agents Chemother 2015, 59, 3117–3124. [Google Scholar] [CrossRef]
Target | Primers | Sequence (5′–3′) | Amplicon Size (bp) | References |
---|---|---|---|---|
blaTEM | blaTEM_F | TTCCTGTTTTTGCTCACCCAG | 112 | [26] |
blaTEM_R | CTCAAGGATCTTACCGCTGTTG | |||
blaCTX-M | blaCTX-M_F | CTATGGCACCACCAACGATA | 103 | |
blaCTX-M_R | ACGGCTTTCTGCCTTAGGTT | |||
tet(A) | tet(A)_F | GCTACATCCTGCTTGCCTTC | 210 | [27] |
tet(A)_R | CATAGATCGCCGTGAAGAGG | |||
tet(B) | tet(B)_F | TTGGTTAGGGGCAAGTTTTG | 659 | |
tet(B)_R | GTAATGGGCCAATAACACCG |
Phenotypic Patterns | Genetic Patterns | Number of Strain |
---|---|---|
AMP-AUG2 | blaTEM | 7 |
FAZ-FOT | blaCTXM | 5 |
AMP-TET | blaTEM-tet(A)-tet(B) | 5 |
AMP- AUG2-FAZ-FOT-TET | blaTEM-blaCTXM-tet(A)-tet(B) | 4 |
AMP-FAZ-FOT | blaTEM-blaCTXM | 4 |
TET | tet(A)-tet(B) | 3 |
AMP-AUG2-FAZ-FOT-TET | blaTEM-blaCTXM-tet(A) | 2 |
FOT-TET | blaCTXM-tet(A)-tet(B) | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargano, V.; Gambino, D.; Orefice, T.; Cirincione, R.; Castelli, G.; Bruno, F.; Interrante, P.; Pizzo, M.; Spada, E.; Proverbio, D.; et al. Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Vet. Sci. 2022, 9, 631. https://doi.org/10.3390/vetsci9110631
Gargano V, Gambino D, Orefice T, Cirincione R, Castelli G, Bruno F, Interrante P, Pizzo M, Spada E, Proverbio D, et al. Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Veterinary Sciences. 2022; 9(11):631. https://doi.org/10.3390/vetsci9110631
Chicago/Turabian StyleGargano, Valeria, Delia Gambino, Tiziana Orefice, Roberta Cirincione, Germano Castelli, Federica Bruno, Paolo Interrante, Mariangela Pizzo, Eva Spada, Daniela Proverbio, and et al. 2022. "Can Stray Cats Be Reservoirs of Antimicrobial Resistance?" Veterinary Sciences 9, no. 11: 631. https://doi.org/10.3390/vetsci9110631
APA StyleGargano, V., Gambino, D., Orefice, T., Cirincione, R., Castelli, G., Bruno, F., Interrante, P., Pizzo, M., Spada, E., Proverbio, D., Vicari, D., Salgado-Caxito, M., Benavides, J. A., & Cassata, G. (2022). Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Veterinary Sciences, 9(11), 631. https://doi.org/10.3390/vetsci9110631