Bias Associated with Peripheral Non-Invasive Compared to Invasive Arterial Blood Pressure Monitoring in Healthy Anaesthetised and Standing Horses Using the Bionet BM7Vet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaesthetised Group
2.1.1. Animals
2.1.2. Anaesthesia
2.1.3. Catheterisation and Invasive Blood Pressure Apparatus
2.1.4. Non-Invasive Blood Pressure Apparatus
2.1.5. Arterial Blood Pressure Assessment
2.2. Standing Group
2.2.1. Animals
2.2.2. Catheterisation and Invasive Blood Pressure Apparatus
2.2.3. Non-Invasive Blood Pressure Apparatus
2.2.4. Blood Pressure Manipulation
2.3. Data Management and Statistical Analysis
3. Results
3.1. Anaesthetised Group
3.2. Standing Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bidwell, L.A.; Bramlage, L.R.; Rood, W.A. Equine perioperative fatalities associated with general anaesthesia at a private practice--a retrospective case series. Vet. Anaesth. Analg. 2007, 34, 23–30. [Google Scholar] [CrossRef]
- Grandy, J.L.; Steffey, E.P.; Hodgson, D.S.; Woliner, M.J. Arterial hypotension and the development of postanaesthetic myopathy in halothane-anaesthetised horses. Am. J. Vet. Res. 1987, 2, 192–197. [Google Scholar]
- Magdesian, K.G. Monitoring the critically ill equine patient. Vet. Clin. N. Am. 2004, 20, 11–39. [Google Scholar] [CrossRef]
- Young, S.S.; Taylor, P.M. Factors influencing the outcome of equine anaesthesia: A review of 1,314 cases. Equine Vet. J. 1993, 25, 147–151. [Google Scholar] [CrossRef]
- Hardy, J. Venous and arterial catheterisation and fluid thearpy. In Equine Anaesthesia, 2nd ed; Muir, W.W., Hubbel, J.A.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 131–148. [Google Scholar]
- Drynan, E.A.; Schier, M.; Raisis, A.L. Comparison of invasive and noninvasive blood pressure measurements in anaesthetized horses using the Surgivet V9203. Vet. Anaesth Analg 2016, 43, 301–308. [Google Scholar] [CrossRef]
- Fouche, A.; Auer, U.; Iff, I. Comparison of non-invasive and invasive blood pressure measuremeants in horses during anaesthesia using the oscillometric blood pressure monitor S/5 Datex Ohmeda. Pferdeheilkunde 2016, 32, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Hatz, L.A.; Hartnack, S.; Kummerle, J.; Hassig, M.; Bettschart-Wolfensberger, R. A study of measurement of noninvasive blood pressure with the oscillometric device, Sentinel, in isoflurane-anaesthetized horses. Vet. Anaesth. Analg. 2015, 42, 369–376. [Google Scholar] [CrossRef]
- Heliczer, N.; Lorello, O.; Casoni, D.; Navas de Solis, C. Accuracy and Precision of Noninvasive Blood Pressure in Normo-, Hyper-, and Hypotensive Standing and Anesthetized Adult Horses. J. Vet. Intern. Med. 2016, 30, 866–872. [Google Scholar] [CrossRef]
- Olsen, E.; Pedersen, T.L.S.; Robinson, R.; Haubro Andersen, P. Accuracy and precision of oscillometric blood pressure in standing conscious horses. J. Vet. Emerg. Crit. Care 2016, 26, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Tunsmeyer, J.; Hopster, K.; Feige, K.; Kastner, S.B. Agreement of high definition oscillometry with direct arterial blood pressure measurement at different blood pressure ranges in horses under general anaesthesia. Vet. Anaesth. Analg. 2015, 42, 286–291. [Google Scholar] [CrossRef]
- Yamaoka, T.T.; Flaherty, D.; Pawson, P.; Scott, M.; Auckburally, A. Comparison of arterial blood pressure measurements obtained invasively or oscillometrically using a Datex S/5 Compact monitor in anaesthetised adult horses. Vet. Anaes. Analg. 2017, 44, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Giguere, S.; Knowles, J.A.; Valverde, A.; Bucki, E.; Young, L. Accuracy of indirect measurement of blood pressure in neonatal foals. J. Vet. Intern. Med. 2005, 19, 571–576. [Google Scholar] [CrossRef]
- Nout, Y.S.; Corley, T.T.; Donaldson, L.L.; Furr, M.O. Indirect oscillometric and direct blood pressure measurements in anaesthetised and conscious neonatal foals. J. Vet. Emerg. Crit. Care 2002, 12, 75–80. [Google Scholar] [CrossRef]
- Duke, T.; Filzek, U.; Read, M.R.; Read, E.K.; Ferguson, J.G. Clinical observations surrounding an increased incidence of postanesthetic myopathy in halothane-anesthetized horses. Vet. Anaesth. Analg. 2006, 33, 122–127. [Google Scholar] [CrossRef]
- Hubbell, J.A.E.; Muir, W.W. Monitoring anaesthesia. In Equine Anaesthesia, 2nd ed.; Muir, W.W., Hubbell, J.A.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 149–170. [Google Scholar]
- Schwarzwald, C.C.; Bonagura, J.D.; Muir, W.W. The cardiovascular system. In Equine Anaesthesia, 2nd ed.; Muir, W.W., Hubbell, J.A.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 37–100. [Google Scholar]
- Gornik, H.L.; Garcia, B.; Wolski, K.; Jones, D.C.; Macdonald, K.A.; Fronek, A. Validation of a method for determination of the ankle-brachial index in the seated position. J. Vasc. Surg. Cases 2008, 48, 1204–1210. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, B. Comparing Clinical Measurement Methods: A Practical Guide; John Wiley & Sons, Ltd.: West Sussex, UK, 2010. [Google Scholar]
- Brown, S.; Atkins, C.; Bagley, R.; Carr, A.; Cowgill, L.; Davidson, M.; Egner, B.; Elliott, J.; GHenik, R.; Labato, M.; et al. Guidlines for the identification, evaluation and management of systemic hypertension in dogs and cats. J. Vet. Intern. Med. 2007, 21, 542–558. [Google Scholar] [CrossRef]
- Carstensen, B. The MethComp Package for R: Statistical Analysis of Method Comparison Studies. Available online: https://cran.r-project.org/web/packages/MethComp/MethComp.pdf (accessed on 8 April 2018).
- Bionetus. BM7VET Operation Manual. 2016, p. 139. Available online: https://www.bionetus.com/wp-content/file/2018/01/BM7Vet_User_Manual.pdf (accessed on 28 October 2021).
- Bailey, S.R.; Harbershon-Butcher, J.L.; Ransom, K.J.; Elliott, J.; Menzies-Gow, N.J. Hypertension and insulin resistance in a mixed-breed population of ponies predisposed to laminitis. Am. J. Vet. Res. 2008, 69, 122–129. [Google Scholar] [CrossRef]
- Hubbell, J.A.E.; Muir, W.W. Anaesthetic associated complications. In Equine Anaesthesia, 2nd ed.; Muir, W.W., Hubbell, J.A.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 397–417. [Google Scholar]
- Amoore, J.N.; Geake, W.B.; Scott, D.H.T. The effects of pulse rate, artifact and pulse strength on oscillometric non-invasive blood pressure measurements. J. Clin. Eng. 1998, 23, 103–109. [Google Scholar] [CrossRef]
- Shuai, W.; Wang, X.X.; Hong, K.; Peng, Q.; Li, J.X.; Li, P.; Cheng, X.S.; Su, H. How to estimate heart rate from pulse rate reported by oscillometric method in atrial fibrillation: The value of pulse rate variation. Int. J. Cardiol. 2016, 222, 1022–1026. [Google Scholar] [CrossRef]
- Jacobs-Fohrman, Z.R.; Barnes, T.S.; McEwen, M.M.; Goodwin, W.A. Clinical evaluation of arterial blood pressure in anesthetized dogs by use of a veterinary-specific multiparameter monitor. Am. J. Vet. Res. 2020, 81, 635–641. [Google Scholar] [CrossRef]
- Da Cunha, A.F.; Ramos, S.J.; Domingues, M.; Beaufrere, H.; Shelby, A.; Stout, R.; Acierno, M.J. Agreement between two oscillometric blood pressure technologies and invasively measured arterial pressure in the dog. Vet. Anaesth. Analg. 2016, 43, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vachon, C.; Belanger, M.C.; Burns, P.M. Evaluation of oscillometric and Doppler ultrasonic devices for blood pressure measurements in anesthetized and conscious dogs. Res. Vet. Sci. 2014, 97, 111–117. [Google Scholar] [CrossRef] [PubMed]
Anaesthetised Group Hypotension IBP MAP ≤ 70 mmHg Normotension IBP MAP (71–110) mm Hg Hypertension IBP MAP ≥ 111 mm Hg |
Standing Group Hypotension * IBP MAP ≤ 90 mm Hg Normotension IBP MAP (91–125) mm Hg Hypertension # IBP MAP ≥ 126 mm Hg |
No. Paired Observations | No. Horses | Bias (mm Hg) | SD (mm Hg) | LOA-L (mm Hg) | LOA-U (mm Hg) | ||
---|---|---|---|---|---|---|---|
Proximal Tail Base | |||||||
Systolic | Pooled | 177 | 14 | −12.9 | 14.1 | −41.0 | 15.2 |
Hypotension | 42 | 9 | −15.4 | 13.9 | −43.1 | 12.4 | |
Normotension | 133 | 14 | −12.8 | 14.4 | −41.5 | 16.0 | |
Hypertension | 2 | 1 | |||||
Mean | Pooled | 177 | 14 | −6.9 | 10.7 | −28.3 | 14.5 |
Hypotension | 42 | 9 | −11.4 | 11.0 | −33.3 | 10.5 | |
Normotension | 133 | 14 | −6.0 | 9.9 | −25.8 | 13.8 | |
Hypertension | 2 | 1 | |||||
Diastolic | Pooled | 177 | 14 | −5.4 | 10.3 | −25.9 | 15.2 |
Hypotension | 42 | 9 | −10.2 | 10.4 | −30.9 | 10.6 | |
Normotension | 133 | 14 | −4.0 | 9.7 | −23.4 | 15.4 | |
Hypertension | 2 | 1 | |||||
Metacarpus | |||||||
Systolic | 41 | 9 | 9.0 | 22.1 | −35.1 | 53.2 | |
Mean | 41 | 9 | 3.6 | 24.0 | −44.3 | 51.6 | |
Diastolic | 41 | 9 | 0.8 | 26.0 | −51.1 | 52.7 |
Parameter | Tension State | No. Paired Observations | No. Horses | Bias (mm Hg) | SD (mm Hg) | LOA-L (mm Hg) | LOA-U (mm Hg) |
---|---|---|---|---|---|---|---|
Systolic | Pooled | 179 | 9 | 15.7 | 23.0 | −30.4 | 61.7 |
Hypotension | 56 | 8 | 10.7 | 17.9 | −25.1 | 46.6 | |
Normotension | 82 | 9 | 14.4 | 24.4 | −34.5 | 63.3 | |
Hypertension | 41 | 9 | 23.7 | 24.1 | −24.5 | 71.8 | |
Mean | Pooled | 179 | 9 | 19.9 | 17.4 | −14.9 | 54.7 |
Hypotension | 56 | 8 | 16.3 | 13.4 | −10.5 | 43.1 | |
Normotension | 82 | 9 | 16.6 | 18.0 | −19.5 | 52.7 | |
Hypertension | 41 | 9 | 30.0 | 19.0 | −8.1 | 68.0 | |
Diastolic | Pooled | 179 | 9 | 18.4 | 18.2 | −18.0 | 54.7 |
Hypotension | 56 | 8 | 17.3 | 14.3 | −11.3 | 46.0 | |
Normotension | 82 | 9 | 14.3 | 18.1 | −21.8 | 50.4 | |
Hypertension | 41 | 9 | 26.2 | 22.9 | −19.6 | 71.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratt, S.; Barnes, T.S.; Cowling, N.; de Klerk, K.; Rainger, J.; Sole-Guitart, A.; Woldeyohannes, S.; Goodwin, W. Bias Associated with Peripheral Non-Invasive Compared to Invasive Arterial Blood Pressure Monitoring in Healthy Anaesthetised and Standing Horses Using the Bionet BM7Vet. Vet. Sci. 2022, 9, 52. https://doi.org/10.3390/vetsci9020052
Pratt S, Barnes TS, Cowling N, de Klerk K, Rainger J, Sole-Guitart A, Woldeyohannes S, Goodwin W. Bias Associated with Peripheral Non-Invasive Compared to Invasive Arterial Blood Pressure Monitoring in Healthy Anaesthetised and Standing Horses Using the Bionet BM7Vet. Veterinary Sciences. 2022; 9(2):52. https://doi.org/10.3390/vetsci9020052
Chicago/Turabian StylePratt, Shaun, Tamsin S. Barnes, Nicholas Cowling, Karla de Klerk, Joanne Rainger, Albert Sole-Guitart, Solomon Woldeyohannes, and Wendy Goodwin. 2022. "Bias Associated with Peripheral Non-Invasive Compared to Invasive Arterial Blood Pressure Monitoring in Healthy Anaesthetised and Standing Horses Using the Bionet BM7Vet" Veterinary Sciences 9, no. 2: 52. https://doi.org/10.3390/vetsci9020052
APA StylePratt, S., Barnes, T. S., Cowling, N., de Klerk, K., Rainger, J., Sole-Guitart, A., Woldeyohannes, S., & Goodwin, W. (2022). Bias Associated with Peripheral Non-Invasive Compared to Invasive Arterial Blood Pressure Monitoring in Healthy Anaesthetised and Standing Horses Using the Bionet BM7Vet. Veterinary Sciences, 9(2), 52. https://doi.org/10.3390/vetsci9020052