In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals, Diets, and Experimental Design
2.3. C. perfringens Challenge
2.4. Sample Collection
2.5. Bacteriophage Assay in the Feed and Gut Digesta
2.6. C. perfringens Counts in the Cecal Digesta
2.7. Intestinal Lesion Score
2.8. Intestinal Morphology
2.9. SCFA Analysis
2.10. Serum Parameters
2.11. Statistical Analysis
3. Results
3.1. BPs in Gut Digesta
3.2. Growth Performance
3.3. C. perfringens Counts in the Cecal Digesta
3.4. Intestinal Morphology
3.5. Concentration of SCFA in the Cecal Digesta
3.6. Serum Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gharib-Naseri, K.; Kheravii, S.K.; Keerqin, C.; Morgan, N.; Swick, R.A.; Choct, M.; Wu, S.B. Two different Clostridium perfringens strains produce different levels of necrotic enteritis in broiler chickens. Poult. Sci. 2019, 98, 6422–6432. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis. Vaccines 2022, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, R.M.; Brooker, J.D.; Acamovic, T.; Sparks, N.H.C. Necrotic enteritis; a continuing challenge for the poultry industry. Worlds. Poult. Sci. J. 2006, 62, 221–247. [Google Scholar]
- Wu, S.B.; Stanley, D.; Rodgers, N.; Swick, R.A.; Moore, R.J. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet. Microbiol. 2014, 169, 188–197. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Rood, J.I.; Moore, R.J.; Titball, R.W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 2009, 17, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaldhusdal, M.; Løvland, A. The economical impact of Clostridium perfringens is greater than anticipated. World Poult. 2000, 16, 50–51. [Google Scholar]
- Wade, B.; Keyburn, A. The true cost of necrotic. World Poult. 2015, 31, 16–17. [Google Scholar]
- Bae, D.; Lee, J.W.; Chae, J.P.; Kim, J.W.; Eun, J.S.; Lee, K.W.; Seo, K.H. Characterization of a novel bacteriophage φCJ22 and its prophylactic and inhibitory effects on necrotic enteritis and Clostridium perfringens in broilers. Poult. Sci. 2021, 100, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.W.; Skinner, J.; Sulakvelidze, A.; Mathis, G.F.; Hofacre, C.L. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis. 2010, 54, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ni, X.; Qing, X.; Liu, L.; Lai, J.; Khalique, A.; Li, G.; Pan, K.; Jing, B.; Zeng, D. Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front. Immunol. 2017, 8, 1592. [Google Scholar] [CrossRef]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef]
- Żbikowska, K.; Michalczuk, M.; Dolka, B. The use of bacteriophages in the poultry industry. Animals 2020, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Wernicki, A.; Nowaczek, A.; Urban-Chmiel, R. Bacteriophage therapy to combat bacterial infections in poultry. Virol. J. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Lau, G.L.; Sieo, C.C.; Tan, W.S.; Hair-Bejo, M.; Jalila, A.; Ho, Y.W. Efficacy of a bacteriophage isolated from chickens as a therapeutic agent for colibacillosis in broiler chickens. Poult. Sci. 2010, 89, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- D’angelantonio, D.; Scattolini, S.; Boni, A.; Neri, D.; Di Serafino, G.; Connerton, P.; Connerton, I.; Pomilio, F.; Di Giannatale, E.; Migliorati, G.; et al. Bacteriophage therapy to reduce colonization of campylobacter jejuni in broiler chickens before slaughter. Viruses 2021, 13, 1428. [Google Scholar] [CrossRef]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabouri, S.; Sepehrizadeh, Z.; Amirpour-Rostami, S.; Skurnik, M. A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157: H7 phages as potential biocontrol and phage therapy agents. Int. J. Food Microbiol. 2017, 243, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forde, A.; Hill, C. Phages of life—The path to pharma. Br. J. Pharmacol. 2018, 175, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kering, K.K.; Zhang, X.; Nyaruaba, R.; Yu, J.; Wei, H. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses 2020, 12, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahiya, J.P.; Hoehler, D.; Wilkie, D.C.; Van Kessel, A.G.; Drew, M.D. Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens. Poult. Sci. 2005, 84, 1875–1885. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.H.; Kim, Y.B.; Jeong, S.B.; Oh, S.T.; Cho, S.Y.; Lee, K.W. Dietary encapsulated essential oils improve production performance of coccidiosis-vaccine-challenged broiler chickens. Animals 2020, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusiak-Szelachowska, M.; Weber-Dabrowska, B.; Zaczek, M.; Borysowski, J.; Gorski, A. The presence of bacteriophages in the human body: Good, bad or neutral. Microorganisms 2020, 8, 2012. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Marshall, D.L.; DePaola, A. Antacid Increases survival of Vibrio vulnificus and Vibrio vulnificus phage in a gastrointestinal model. Appl. Environ. Microbiol. 2001, 67, 2895–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly-Chatain, M.H. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 2014, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo-Rebenaque, L.; Malik, D.J.; Catalá-Gregori, P.; Marin, C.; Sevilla-Navarro, S. In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry. Pharmaceuticals 2021, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhen, W.; Geng, Y.; Wang, Z.; Guo, Y. Pretreatment with probiotic Enterococcus faecium NCIMB 11181 ameliorates necrotic enteritis-induced intestinal barrier injury in broiler chickens. Sci. Rep. 2019, 9, 10256. [Google Scholar] [CrossRef]
- Zhang, B.; Gan, L.; Shahid, M.S.; Lv, Z.; Fan, H.; Liu, D.; Guo, Y. In vivo and in vitro protective effect of arginine against intestinal inflammatory response induced by Clostridium perfringens in broiler chickens. J. Anim. Sci. Biotechnol. 2019, 10, 73. [Google Scholar] [CrossRef]
- Craven, S.E. Colonization of the intestinal tract by Clostridium perfringens and fecal shedding in diet-stressed and unstressed broiler chickens. Poult. Sci. 2000, 79, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Olkowski, A.A.; Wojnarowicz, C.; Chirino-Trejo, M.; Drew, M.D. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis. Res. Vet. Sci. 2006, 81, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, J.P.; Hoehler, D.; Van Kessel, A.G.; Drew, M.D. Dietary encapsulated glycine influences Clostridium perfringens and Lactobacilli growth in the gastrointestinal tract of broiler chickens. J. Nutr. 2007, 137, 1408–1414. [Google Scholar] [CrossRef] [Green Version]
- Fasina, Y.O.; Lillehoj, H.S. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poult. Sci. 2019, 98, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Wang, W.; Gan, L.; Li, Z.; Guo, S.; Guo, Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervasi, T.; Horn, N.; Wegmann, U.; Dugo, G.; Narbad, A.; Mayer, M.J. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl. Microbiol. Biotechnol. 2014, 98, 2495–2505. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, S.; Thangavel, G.; Kurian, H.; Mani, R.; Mukkalil, R.; Chirakkal, H. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult. Sci. 2013, 92, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.Y.L.; Tan, H.M. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microbiol. 2005, 71, 4185–4190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, J.W.; Lee, B.B.; Lee, G.I.; Lee, J.H.; Kim, G.B.; Kil, D.Y. Effect of dietary supplementation of bacteriophage on growth performance and cecal bacterial populations in broiler chickens raised in different housing systems. Livest. Sci. 2014, 170, 137–141. [Google Scholar] [CrossRef]
- Mora, Z.V.D.L.; Macías-Rodríguez, M.E.; Arratia-Quijada, J.; Gonzalez-Torres, Y.S.; Nuño, K.; Villarruel-López, A. Clostridium perfringens as foodborne pathogen in broiler production: Pathophysiology and potential strategies for controlling necrotic enteritis. Animals 2020, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
- Alshamy, Z.; Richardson, K.C.; Hünigen, H.; Hafez, H.M.; Plendl, J.; Al Masri, S. Comparison of the gastrointestinal tract of a dual-purpose to a broiler chicken line: A qualitative and quantitative macroscopic and microscopic study. PLoS ONE 2018, 13, e0204921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laledashti, M.A.; Saki, A.A.; Rafati, A.A.; Abdolmaleki, M. Effect of in-ovo feeding of iron nanoparticles and methionine hydroxy analogue on broilers chickens small intestinal characteristics. Acta Sci. Anim. Sci. 2020, 42, e46903. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Jia, Z. Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet. Immunol. Immunopathol. 2018, 205, 97–105. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Liu, D.; Guo, Y. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2018, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.A.D.; Pessotti, B.M.D.S.; Zanini, S.F.; Colnago, G.L.; Rodrigues, M.R.A.; Nunes, L.D.C.; Zanini, M.S.; Martins, I.V.F. Intestinal mucosa structure of broiler chickens infected experimentally with Eimeria tenella and treated with essential oil of oregano. Cienc. Rural 2009, 39, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Šefcová, M.A.; Larrea-Álvarez, M.; Larrea-Álvarez, C.M.; Karaffová, V.; Ortega-Paredes, D.; Vinueza-Burgos, C.; Ševčíková, Z.; Levkut, M.; Herich, R.; Revajová, V. The probiotic lactobacillus fermentum Biocenol CCM 7514 moderates Campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals 2021, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Paiva, D.; Walk, C.; McElroy, A. Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poult. Sci. 2014, 93, 2752–2762. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, F.; Ma, H.; Ren, Z.; Yang, X.; Yang, X. Study on the interactive effect of deoxynivalenol and Clostridium perfringens on the jejunal health of broiler chickens. Poult. Sci. 2021, 100, 100807. [Google Scholar] [CrossRef] [PubMed]
- Van der Wielen, P.W.J.J.; Biesterveld, S.; Notermans, S.; Hofstra, H.; Urlings, B.A.; van Knapen, F. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 2000, 66, 2536–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Józefiak, D.; Świątkiewicz, S.; Kierończyk, B.; Rawski, M.; Długosz, J.; Engberg, R.M.; Højberg, O. Clostridium perfringens challenge and dietary fat type modifies performance, microbiota composition and histomorphology of the broiler chicken gastrointestinal tract. Eur. Poult. Sci. 2016, 80, 130. [Google Scholar]
- Dalloul, R.A.; Lillehoj, H.S. Recent advances in immunomodulation and vaccination strategies against coccidiosis. Avian Dis. 2005, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.H.; Liu, L.L.; Liu, J.; Yuan, F.W.; Tian, E.J.; Wang, H.W. Effect of diclazuril on the bursa of Fabricius morphology and SIgA expression in chickens infected with Eimeria tenella. Korean J. Parasitol. 2015, 53, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Vidanarachchi, J.K.; Mikkelsen, L.L.; Constantinoiu, C.C.; Choct, M.; Iji, P.A. Natural plant extracts and prebiotic compounds as alternatives to antibiotics in broiler chicken diets in a necrotic enteritis challenge model. Anim. Prod. Sci. 2013, 53, 1247–1259. [Google Scholar] [CrossRef]
- Brito, J.R.F.; Hinton, M.; Stokes, C.R.; Pearson, C.R. The humoral and cell mediated immune response of young chicks to Salmonella typhimurium and S. kedougou. Br. Vet. J. 1993, 149, 225–234. [Google Scholar] [CrossRef]
- Yu, K.; Choi, I.; Yun, C.-H. Immunosecurity: Immunomodulants enhance immune responses in chickens. Anim. Biosci. 2021, 34, 321–337. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Ingredients | |
Corn | 56.66 |
Soybean meal | 29.00 |
Corn gluten meal | 7.00 |
Animal fat | 2.00 |
Iodized salt | 0.30 |
Monocalcium phosphate | 1.30 |
DL-methionine, 99% | 0.35 |
L-lysine, 56% | 0.50 |
L-threonine, 99% | 0.10 |
Ground limestone | 1.90 |
Sodium bicarbonate | 0.24 |
Choline chloride, 50% | 0.20 |
Vitamin premix 1 | 0.20 |
Mineral premix 2 | 0.25 |
Total | 100.0 |
Calculated nutrient composition, % | |
Nitrogen-corrected apparent metabolizable energy, kcal/kg | 3039 |
Dry matter | 87.9 |
Crude protein | 22.2 |
Calcium | 1.02 |
Total phosphorus | 0.71 |
Available phosphorus | 0.45 |
Chloride | 0.21 |
Sodium | 0.21 |
Lysine | 1.33 |
Methionine | 0.72 |
Methionine + Cysteine | 1.08 |
Threonine | 0.92 |
Arginine | 1.29 |
Histidine | 0.55 |
Item 3 | NEG | C. perfringens Challenge | SEM 4 | p-Value | ||
---|---|---|---|---|---|---|
POS | Powdered BP | Encapsulated BP | ||||
BW, g/bird | ||||||
Day 0 | 41.01 2 | - | 41.04 | 41.03 | 0.04 | 0.947 |
Day 7 | 179.5 2 | - | 175.0 | 180.8 | 6.13 | 0.879 |
Day 14 | 519.4 2 | - | 511.7 | 518.1 | 11.29 | 0.923 |
Day 21 | 1090.2 2 | - | 1070.3 | 1095.1 | 16.85 | 0.730 |
Day 28 | 1822.9 | 1878.8 | 1801.4 | 1877.8 | 39.83 | 0.421 |
BWG, g/bird | ||||||
Day 0 to 7 | 138.4 2 | - | 133.9 | 139.8 | 6.14 | 0.879 |
Day 7 to 14 | 339.9 2 | - | 336.7 | 337.3 | 5.82 | 0.938 |
Day 14 to 21 | 570.8 2 | - | 558.7 | 577.0 | 7.50 | 0.466 |
Day 21 to 28 | 744.4 | 776.9 | 731.0 | 782.8 | 21.34 | 0.271 |
FI, g/bird | ||||||
Day 0 to 7 | 129.1 2 | - | 130.7 | 130.3 | 6.56 | 0.989 |
Day 7 to 14 | 372.4 2 | - | 374.6 | 372.8 | 8.26 | 0.988 |
Day 14 to 21 | 692.6 2 | - | 680.2 | 707.7 | 10.51 | 0.434 |
Day 21 to 28 | 995.0 | 1044.0 | 1017.6 | 1023.3 | 24.77 | 0.583 |
FCR, g:g | ||||||
Day 0 to 7 | 0.931 2 | - | 0.976 | 0.929 | 0.018 | 0.313 |
Day 7 to 14 | 1.094 2 | - | 1.112 | 1.104 | 0.008 | 0.437 |
Day 14 to 21 | 1.213 2 | - | 1.218 | 1.226 | 0.009 | 0.707 |
Day 21 to 28 | 1.338 | 1.344 | 1.393 | 1.314 | 0.025 | 0.189 |
Item 2 | NEG | C. perfringens Challenge | SEM 3 | p-Value | ||
---|---|---|---|---|---|---|
POS | Powdered BP | Encapsulated BP | ||||
Day 1 post C. perfringens challenge | 4.75 b | 5.52 a | 5.05 b | 4.82 b | 0.15 | 0.008 |
Day 2 post C. perfringens challenge | 4.22 b | 5.04 a | 4.40 b | 4.38 b | 0.20 | 0.047 |
Item 2 | NEG | C. perfringens Challenge | SEM 3 | p-Value | ||
---|---|---|---|---|---|---|
POS | Powdered BP | Encapsulated BP | ||||
1 d post C. perfringens challenge | ||||||
Villus height (VH), µm | 781.90 | 736.20 | 731.44 | 715.24 | 28.93 | 0.510 |
Crypt depth (CD), µm | 128.83 b | 145.75 a | 120.67 b | 123.93 b | 5.09 | 0.004 |
VH: CD ratio, µm: µm | 6.20 a | 5.17 b | 6.14 a | 5.87 a | 0.20 | 0.003 |
Item 2 | NEG | C. perfringens Challenge | SEM 4 | p-Value | ||
---|---|---|---|---|---|---|
POS | Powdered BP | Encapsulated BP | ||||
mmol/kg | ||||||
Acetate | 66.99 | 60.81 | 74.42 | 86.46 | 6.78 | 0.082 |
Propionate | 5.86 | 4.82 | 6.21 | 6.42 | 0.69 | 0.402 |
Isobutyrate | 0.89 | 0.99 | 0.97 | 0.98 | 0.13 | 0.957 |
Butyrate | 17.68 | 14.62 | 22.75 | 23.37 | 3.19 | 0.223 |
Isovalerate | 8.12 | 6.71 | 10.44 | 10.73 | 1.47 | 0.223 |
Valerate | 1.29 | 1.19 | 1.41 | 1.72 | 0.21 | 0.352 |
Lactate | 1.61 | 1.29 | 1.15 | 1.76 | 0.33 | 0.629 |
BCFA 3 | 10.30 | 8.90 | 12.82 | 13.43 | 1.56 | 0.193 |
SCFA 3 | 102.43 | 90.45 | 117.35 | 131.43 | 10.09 | 0.054 |
% of total SCFA | ||||||
Acetate | 65.73 | 67.73 | 63.74 | 65.83 | 2.64 | 0.811 |
Propionate | 5.92 | 5.30 | 5.33 | 4.99 | 0.57 | 0.773 |
Isobutyrate | 0.93 | 1.20 | 0.85 | 0.77 | 0.18 | 0.393 |
Butyrate | 16.85 | 15.78 | 19.12 | 17.64 | 1.94 | 0.729 |
Isovalerate | 7.74 | 7.25 | 8.78 | 8.10 | 0.89 | 0.729 |
Valerate | 1.31 | 1.31 | 1.19 | 1.33 | 0.16 | 0.941 |
Lactate | 1.52 | 1.44 | 0.98 | 1.35 | 0.25 | 0.578 |
BCFA 3 | 9.98 | 9.76 | 10.82 | 10.20 | 0.86 | 0.879 |
Item 2 | NEG | C. perfringens Challenge | SEM 4 | p-Value | ||
---|---|---|---|---|---|---|
POS | Powdered BP | Encapsulated BP | ||||
TAC 3, mM | 0.367 | 0.480 | 0.464 | 0.478 | 0.038 | 0.187 |
NO, µM | 22.38 | 22.80 | 17.02 | 21.17 | 1.89 | 0.230 |
IgA, mg/dL | 21.22 ab | 18.06 b | 20.76 ab | 25.91 a | 1.76 | 0.046 |
CORT, pg/mL | 120.92 | 136.81 | 106.35 | 102.81 | 8.21 | 0.154 |
TCHO, mg/dL | 104.14 | 108.57 | 108.86 | 117.57 | 3.69 | 0.101 |
TG, mg/dL | 43.00 | 44.75 | 51.50 | 55.75 | 7.73 | 0.633 |
GPT, U/L | 3.00 | 3.00 | 2.75 | 3.38 | 0.26 | 0.432 |
GOT, U/L | 211.43 | 203.57 | 193.86 | 210.0 | 11.61 | 0.703 |
HDL-C, mg/dL | 91.00 | 88.00 | 89.29 | 97.25 | 3.32 | 0.253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-G.; Kim, Y.-B.; Lee, S.-H.; Moon, J.-O.; Chae, J.-P.; Kim, Y.-J.; Lee, K.-W. In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens. Vet. Sci. 2022, 9, 119. https://doi.org/10.3390/vetsci9030119
Lee H-G, Kim Y-B, Lee S-H, Moon J-O, Chae J-P, Kim Y-J, Lee K-W. In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens. Veterinary Sciences. 2022; 9(3):119. https://doi.org/10.3390/vetsci9030119
Chicago/Turabian StyleLee, Hyun-Gwan, Yoo-Bhin Kim, Sang-Hyeok Lee, Jun-Ok Moon, Jong-Pyo Chae, Yu-Jin Kim, and Kyung-Woo Lee. 2022. "In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens" Veterinary Sciences 9, no. 3: 119. https://doi.org/10.3390/vetsci9030119
APA StyleLee, H. -G., Kim, Y. -B., Lee, S. -H., Moon, J. -O., Chae, J. -P., Kim, Y. -J., & Lee, K. -W. (2022). In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens. Veterinary Sciences, 9(3), 119. https://doi.org/10.3390/vetsci9030119