A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animal Trial
2.3. Application of the Complex Competitive Exclusion Product
2.4. C. jejuni Strain and Seeder Inoculation
2.5. Sampling Design and Microbiological Analysis
2.6. Statistical Analysis
3. Results
3.1. CE Culture
3.2. Effect on Colonization
3.3. Effect on Broilers’ Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar]
- Lin, J. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 2009, 6, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermans, D.; Pasmans, F.; Messens, W.; Martel, A.; Van Immerseel, F.; Rasschaert, G.; Heyndrickx, M.; Van Deun, K.; Haesebrouck, F. Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector-Borne Zoonotic Dis. 2012, 12, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Meunier, M.; Guyard-Nicodeme, M.; Dory, D.; Chemaly, M. Control strategies against Campylobacter at the poultry production level: Biosecurity measures, feed additives and vaccination. J. Appl. Microbiol. 2016, 120, 1139–1173. [Google Scholar] [CrossRef] [Green Version]
- Hansson, I.; Engvall, E.O.; Vagsholm, I.; Nyman, A. Risk factors associated with the presence of Campylobacter-positive broiler flocks in Sweden. Prev. Vet. Med. 2010, 96, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ellis-Iversen, J.; Jorgensen, F.; Bull, S.; Powell, L.; Cook, A.J.; Humphrey, T.J. Risk factors for Campylobacter colonisation during rearing of broiler flocks in Great Britain. Prev. Vet. Med. 2009, 89, 178–184. [Google Scholar] [CrossRef]
- Gibbens, J.C.; Pascoe, S.J.; Evans, S.J.; Davies, R.H.; Sayers, A.R. A trial of biosecurity as a means to control Campylobacter infection of broiler chickens. Prev. Vet. Med. 2001, 48, 85–99. [Google Scholar] [CrossRef]
- Borck Hog, B.; Sommer, H.M.; Larsen, L.S.; Sorensen, A.I.; David, B.; Hofshagen, M.; Rosenquist, H. Farm specific risk factors for Campylobacter colonisation in Danish and Norwegian broilers. Prev. Vet. Med. 2016, 130, 137–145. [Google Scholar] [CrossRef]
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of Campylobacteriosis. Transbound. Emerg. Dis. 2018, 65 (Suppl. 1), 30–48. [Google Scholar] [CrossRef] [Green Version]
- Alter, T. Prevention and Mitigation Strategies for Campylobacter with Focus on Poultry Production. In Campylobacter; Klein, G., Ed.; Academic Press: Waltham, MA, USA, 2017; pp. 111–129. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Davies, R.; de Cesare, A.; Herman, L.; Hilbert, F.; et al. Update and review of control options for Campylobacter in broilers at primary production. EFSA J. 2020, 18, e06090. [Google Scholar]
- Nurmi, E.; Nuotio, L.; Schneitz, C. The competitive exclusion concept: Development and future. Int. J. Food Microbiol. 1992, 15, 237–240. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Mead, G.C. Prospects for ‘competitive exclusion’ treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J. 2000, 159, 111–123. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Ferreira, C.S.; Knobl, T.; Moreno, A.M.; Bacarro, M.R.; Chen, M.; Robach, M.; Mead, G.C. Comparison of three commercial competitive-exclusion products for controlling Salmonella colonization of broilers in Brazil. J. Food Prot. 2003, 66, 490–492. [Google Scholar] [CrossRef]
- Bailey, J.S. Control of Salmonella and Campylobacter in poultry production. A summary of work at Russell Research Center. Poult. Sci. 1993, 72, 1169–1173. [Google Scholar] [CrossRef]
- Aho, M.; Nuotio, L.; Nurmi, E.; Kiiskinen, T. Competitive-Exclusion of Campylobacters from Poultry with K-Bacteria and Broilact (R). Int. J. Food Microbiol. 1992, 15, 265–275. [Google Scholar] [CrossRef]
- Schoeni, J.L.; Doyle, M.P. Reduction of Campylobacter jejuni colonization of chicks by cecum-colonizing bacteria producing anti-C. jejuni metabolites. Appl. Environ. Microbiol. 1992, 58, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Schoeni, J.L.; Wong, A.C. Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Appl. Environ. Microbiol. 1994, 60, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- Hampton, J.W.; Weidenbach, A.; Skye, G.E.; Rubenstein, C.; Taylor, F.B. Proceedings: Hemophilia: Modified by a post-exercise plasminogen activator. Thromb. Diath. Haemorrh. 1975, 34, 612. [Google Scholar]
- Mead, G.C.; Scott, M.J.; Humphrey, T.J.; Mcalpine, K. Observations on the control of Campylobacter jejuni infection of poultry by ‘competitive exclusion’. Avian Pathol. 1996, 25, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Wagenaar, J.A.; Mevius, D.J.; Havelaar, A.H. Campylobacter in primary animal production and control strategies to reduce the burden of human Campylobacteriosis. Rev. Sci. Tech. 2006, 25, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Mead, G.C. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. Worlds Poult. Sci. J. 2002, 58, 169–178. [Google Scholar] [CrossRef]
- Schneitz, C.; Hakkinen, M. The efficacy of a commercial competitive exclusion product on Campylobacter colonization in broiler chickens in a 5-week pilot-scale study. Poult. Sci. 2016, 95, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Lallemand Aviguard®. Available online: https://svitagro.com.ua/aviguard-eng/ (accessed on 25 October 2021).
- Best, E.L.; Fox, A.J.; Frost, J.A.; Bolton, F.J. Identification of Campylobacter jejuni multilocus sequence type ST-21 clonal complex by single-nucleotide polymorphism analysis. J. Clin. Microbiol. 2004, 42, 2836–2839. [Google Scholar] [CrossRef] [Green Version]
- Gormley, F.J.; Macrae, M.; Forbes, K.J.; Ogden, I.D.; Dallas, J.F.; Strachan, N.J.C. Has Retail Chicken Played a Role in the Decline of Human Campylobacteriosis? Appl. Environ. Microbiol. 2008, 74, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korczak, B.M.; Zurfluh, M.; Emler, S.; Kuhn-Oertli, J.; Kuhnert, P. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J. Clin. Microbiol. 2009, 47, 1996–2007. [Google Scholar] [CrossRef] [Green Version]
- Epping, L.; Walther, B.; Piro, R.M.; Knüver, M.T.; Huber, C.; Thürmer, A.; Flieger, A.; Fruth, A.; Janecko, N.; Wieler, L.H.; et al. Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Sci. Rep. 2021, 11, 10358. [Google Scholar] [CrossRef]
- Dingle, K.E.; Colles, F.M.; Wareing, D.R.A.; Ure, R.; Fox, A.J.; Bolton, F.E.; Bootsma, H.J.; Willems, R.J.L.; Urwin, R.; Maiden, M.C.J. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 2001, 39, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Szott, V.; Reichelt, B.; Alter, T.; Friese, A.; Roesler, U. In vivo efficacy of carvacrol on Campylobacter jejuni prevalence in broiler chickens during an entire fattening period. Eur. J. Microbiol. Immunol. 2020, 10, 131–138. [Google Scholar] [CrossRef]
- Indikova, I.; Humphrey, T.J.; Hilbert, F. Survival with a Helping Hand: Campylobacter and Microbiota. Front. Microbiol. 2015, 6, 1266. [Google Scholar] [CrossRef] [Green Version]
- Thibodeau, A.; Fravalo, P.; Yergeau, E.; Arsenault, J.; Lahaye, L.; Letellier, A. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive. PLoS ONE 2015, 10, e0131978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkinen, M.; Schneitz, C. Efficacy of a commercial competitive exclusion product against Campylobacter jejuni. Br. Poult. Sci. 1999, 40, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Stern, N.J.; Cox, N.A.; Bailey, J.S.; Berrang, M.E.; Musgrove, M.T. Comparison of mucosal competitive exclusion and competitive exclusion treatment to reduce Salmonella and Campylobacter spp. colonization in broiler chickens. Poult. Sci. 2001, 80, 156–160. [Google Scholar] [CrossRef]
- Ceccarelli, D.; Van Essen-Zandbergen, A.; Smid, B.; Veldman, K.T.; Boender, G.J.; Fischer, E.A.J.; Mevius, D.J.; Van Der Goot, J.A. Competitive Exclusion Reduces Transmission and Excretion of Extended-Spectrum-beta-Lactamase-Producing Escherichia coli in Broilers. Appl. Environ. Microbiol. 2017, 83, e03439-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantziaras, I.; Smet, A.; Filippitzi, M.E.; Damiaans, B.; Haesebrouck, F.; Boyen, F.; Dewulf, J. The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal E. coli in broilers. Avian Pathol. 2018, 47, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Hofacre, C.L.; Primm, N.D.; Vance, K.; Goodwin, M.A.; Brown, J. Comparison of a lyophilized chicken-origin competitive exclusion culture, a lyophilized probiotic, and fresh turkey cecal material against Salmonella colonization. J. Appl. Poult. Res. 2000, 9, 195–203. [Google Scholar] [CrossRef]
- Pivnick, H. The Nurmi concepts and its role in the control of Salmonella in poultry. Dev. Food Microbiol. 1982, 1, 41–70. [Google Scholar]
- Corrier, D.E.; Nisbet, D.J.; Scanlan, C.M.; Hollister, A.G.; Caldwell, D.J.; Thomas, L.A.; Hargis, B.M.; Tomkins, T.; Deloach, J.R. Treatment of commercial broiler chickens with a characterized culture of cecal bacteria to reduce salmonellae colonization. Poult. Sci. 1995, 74, 1093–1101. [Google Scholar] [CrossRef]
- Nurmi, E.; Rantala, M. New aspects of Salmonella infection in broiler production. Nature 1973, 241, 210–211. [Google Scholar] [CrossRef]
- Takeshita, N.; Watanabe, T.; Ishida-Kuroki, K.; Sekizaki, T. Transition of microbiota in chicken cecal droppings from commercial broiler farms. BMC Vet. Res. 2021, 17, 10. [Google Scholar] [CrossRef]
- Kittler, S.; Mengden, R.; Korf, I.H.; Bierbrodt, A.; Wittmann, J.; Plötz, M.; Jung, A.; Lehnherr, T.; Rohde, C.; Lehnherr, H.; et al. Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens 2020, 9, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, F.; Atanassova, V.; Haunhorst, E.; Klein, G. The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int. J. Food Microbiol. 2008, 127, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, H.; Sommer, H.M.; Nielsen, N.L.; Christensen, B.B. The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int. J. Food Microbiol. 2006, 108, 226–232. [Google Scholar] [CrossRef]
- European Food Safety Authority. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of poultry. EFSA J. 2012, 10, 2764. [Google Scholar]
- Rodgers, J.D.; Clifton-Hadley, F.A.; Marin, C.; Vidal, A.B. An evaluation of survival and detection of Campylobacter jejuni and C. coli in broiler caecal contents using culture-based methods. J. Appl. Microbiol. 2010, 109, 1244–1252. [Google Scholar] [CrossRef]
- Rosenquist, H.; Bengtsson, A.; Hansen, T.B. A collaborative study on a Nordic standard protocol for detection and enumeration of thermotolerant Campylobacter in food (NMKL 119, 3. Ed., 2007). Int. J. Food Microbiol. 2007, 118, 201–213. [Google Scholar] [CrossRef]
- Line, J.E.; Stern, N.J.; Lattuada, C.P.; Benson, S.T. Comparison of methods for recovery and enumeration of Campylobacter from freshly processed broilers. J. Food Prot. 2001, 64, 982–986. [Google Scholar] [CrossRef]
- Scherer, K.; Bartelt, E.; Sommerfeld, C.; Hildebrandt, G. Comparison of different sampling techniques and enumeration methods for the isolation and quantification of Campylobacter spp. in raw retail chicken legs. Int. J. Food Microbiol. 2006, 108, 115–119. [Google Scholar] [CrossRef]
- Stern, N.J. Mucosal competitive exclusion to diminish colonization of chickens by Campylobacter jejuni. Poult. Sci. 1994, 73, 402–407. [Google Scholar] [CrossRef]
- Ty, M.; Taha-Abdelaziz, K.; Demey, V.; Castex, M.; Sharif, S.; Parkinson, J. Performance of distinct microbial based solutions in a Campylobacter infection challenge model in poultry. Anim. Microbiome 2022, 4, 2. [Google Scholar] [CrossRef]
- Page, S. Psychiatric myths and their victims. Dimens. Health Serv. 1976, 53, 43. [Google Scholar]
- Oakley, B.B.; Buhr, R.J.; Ritz, C.W.; Kiepper, B.H.; Berrang, M.E.; Seal, B.S.; Cox, N.A. Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet. Res. 2014, 10, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz Carrasco, J.M.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, R.D. Efficacy and food safety considerations of poultry competitive exclusion products. Mol. Nutr. Food Res. 2006, 50, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Ma, L.; Doyle, M.P. Potential Competitive Exclusion Bacteria from Poultry Inhibitory to Campylobacter jejuni and Salmonella. J. Food Prot. 2007, 70, 867–873. [Google Scholar] [CrossRef]
- World Health Organization. WHO-FEDESA-FEP Workshop on Competitive Exclusion, Vaccination and Antimicrobials in Salmonella Control in Poultry, Obernkirchen, Germany, 29 August–1 September 1994; World Health Organization: Geneva, Switzerland, 1994.
- Yeoman, C.J.; Chia, N.; Jeraldo, P.; Sipos, M.; Goldenfeld, N.D.; White, B.A. The microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev. 2012, 13, 89–99. [Google Scholar] [CrossRef] [Green Version]
- EMA Committee for Medicinal Products for Veterinary Use (CVMP); EFSA (European Food Safety Authority). EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 2017, 15, e04666. [Google Scholar]
- Aho, M.; Hirn, J. Prevalence of Campylobacteria in the Finnish broiler chicken chain from the producer to the consumer. Acta Vet. Scand. 1988, 29, 451–462. [Google Scholar] [CrossRef]
Ingredients, per kg | Starter Feed (Day 0–8) | Grower Feed (Day 9–26) | Finisher Feed (Day 27–33) |
---|---|---|---|
Crude protein (%) | 21.5 | 21.0 | 20.0 |
Crude lipids (%) | 4.9 | 6.4 | 5.5 |
Crude fiber (%) | 2.9 | 3.4 | 3.3 |
Crude ash (%) | 5.3 | 5.1 | 4.9 |
MJ ME 1 | 12.4 | 12.4 | 12.4 |
Calcium (%) | 0.9 | 0.8 | 0.8 |
Phosphorous (%) | 0.6 | 0.55 | 0.5 |
Sodium (%) | 0.14 | 0.14 | 0.14 |
Methionine (%) | 0.55 | 0.50 | 0.50 |
Lysine (%) | 1.25 | 1.15 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szott, V.; Reichelt, B.; Friese, A.; Roesler, U. A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo. Vet. Sci. 2022, 9, 181. https://doi.org/10.3390/vetsci9040181
Szott V, Reichelt B, Friese A, Roesler U. A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo. Veterinary Sciences. 2022; 9(4):181. https://doi.org/10.3390/vetsci9040181
Chicago/Turabian StyleSzott, Vanessa, Benjamin Reichelt, Anika Friese, and Uwe Roesler. 2022. "A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo" Veterinary Sciences 9, no. 4: 181. https://doi.org/10.3390/vetsci9040181
APA StyleSzott, V., Reichelt, B., Friese, A., & Roesler, U. (2022). A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo. Veterinary Sciences, 9(4), 181. https://doi.org/10.3390/vetsci9040181