Treatment of Canine Oral Melanomas: A Critical Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Treatment Review
3.1. Surgery Alone
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Surgical Protocol | Adjunct | Adjuvant Therapy Treatment Protocol | Study Type | Number of Dogs | WHO Stage of Melanoma | Median DFI (Range) in Days | Median Survival Time (Range) in Days | Local Recurrence and Metastasis | Complications | Reference | LOE |
Oral cavity Curative intent surgery | Yes (n = 29/70) | CT (7): carboplatin (300 mg/m2, IV, q21 d, for 4 to 6 cycles) Metronomic CT (7): combinations of doxycycline (5 to 10 mg/kg, PO, q 24 h), NSAID (piroxicam or carprofen at standard labeled dosages) cyclophosphamide—low dosage (15 to 17 mg/m2, PO, q 24 h) Xenogeneic canine melanoma vaccine (1). Combination adjuvant therapy (14): CT, metronomic CT, RT, interferon treatment, and the xenogeneic canine melanoma vaccine | RCS | 69/70 | I: 36 (51.4%) II: 16 (22.9%) III: 13 (18.6%) IV: 1 (1.4%) Unable to stage: 4 | Surgery and adjuvant therapy (29/70): 241 Surgery only (39/70): >567 NR I: (36/70) >567 NR II: (16/70) >187 NR III: (13/70) 245 IV: N/A Location: Rostral (23/70): 360 Caudal (14/70): 358 Margins Complete (51/70): >2310 NR Incomplete (19/70): 446 | Surgery and adjuvant therapy (29/70): 396 Surgery only (39/70): 874 I: (36/70) 874 II: (16/70) 818 III: (13/70) 207 IV: N/A Location: Rostral (23/70): 375 Caudal (14/70): 416 Margins Complete (51/70): 619 Incomplete (19/70): 723 | LR: 12 M: 25 | NE | [26] | 4a |
Malignant melanomas of lips and oral cavity Surgery alone HWDMNs | No | N/A | RCS | 64 | Not specified | NE | 1020 | LR: 2\64 | NE | [18] | 4a |
Soft tissue only Cryo- or conventional surgery 7 dogs, no surgery All sites | No | N/A | RCS | S: 63 NT:7 | Not specified | NE | Surgery: 242 No treatment: 65 | NE | NE | [16] | 4a |
Oral melanomas 24 radical excision and 17 conservative (no bone excised) | No | 4 cases received cis-diammine- dichloroplatinum II, 2 cases were treated with piroxicam | RCS | 41 | 0: 3 (7%) I: 15 (37%) II: 11 (27%) III: 11 (27%) IV: 1 (2%) | 0: 284–765 I: 350–528 II: 0–86 III: 0–56 IV: 706 | 0: 284–765 I: 415–547 II: 138–179 III: 98–259 IV: 706 | NE | NE | [38] | 4c |
Mandible or maxilla Curative-intent surgery | No | N/A | RCS | 40 | Not specified | All dogs: 152 (3–2360) | All dogs: 206 (46–435) | LR: 11 M: 12 | NE | [34] | 4b |
Mandible (soft tissue and bone) | No | N/A | RCS | 37 | Not specified | NE | 297 (30–1080) | LR: 8/37 M: 16/37 | Drifting, malocclusion | [31] | 4b |
Lingual tumors Surgery | Yes, 2 cases | Rescue: Carboplatin (n = 1) and polyethylated glycol (n = 1) | RCS | 29 | Not specified | NE | 241 (4–1037) | LR: 9/29 M: 11/29 | For all lingual tumors, not OMM specific: bleeding post-op (10/97), dehiscence (2), partial tongue paralysis (2) | [33] | 4a |
Surgical treatment All sites | No | N/A | RCS | 16 | Not specified | NE | 90 | NE | NE | [3] | 4c |
Maxilla (soft tissue and bone) Maxillary resections | Yes, 5 cases | RT (10 doses given over 22 days—no Gy given, RT and hyperthermia (42.5 °C for 15 min), non-specific immune modulators, chemo or combinations ONLY as rescue protocol | RCS | 14/61 | Not specified | NE | 225 | 12 dogs PM: LR: 3 M: 20 | Dehiscence (80% caudal) | [24] | 4c |
Mandible (soft tissue and bone) Mandibulectomies | Yes (46%) | RT (10 doses given over 22 days—no Gy given, RT and hyperthermia (42.5 °C for 15 min), non-specific immune modulators, chemo or combinations ONLY as rescue protocol | RCS | 13/81 | Not specified | NE | 240 | 9 dogs for PM: LR: 1/9 M: 4 to lymph node, 6 to lungs and 4 elsewhere | Dehiscence, prehension dysfunction, medial drift, ptyalism | [25] | 4c |
Lingual tumors Surgery alone | No | N/A | RCS | 11/42 | Not specified | NE | 222 (47–840) | LR: 2/11 M: 5/11 | Ptyalism Dehiscence | [32] | 4c |
Mandible (bone and soft tissue) Mandibulectomies | No | N/A | RCS | 10 | I: 2 (2%) II: 6 (6%) III: 2 (2%) | NE | 180 | LR: 1/10 M: 3/10 | NE | [28] | 4c |
Lingual | Yes, 2 cases | 1 case received 36Gy RT and hyperthermia 1 case received Dimethyl-trianzeno-imadozole- carboxamide (200 mg/m2 BSA for 5 days, plus BCG (unknown dose) prednisone (20 mg/m2 BSA) sid | RCS | 7/57 | I: 1 (14%) II: 4 (57%) III: 2 (29%) | NE | 570 | M: 3/7 LR: 3/7 | NE | [29] | 4c |
Mandible (bone and soft tissue) Partial mandibulectomy Controls local recurrence | Yes, 1 case | 1 case received RT and hyperthermia | RCS | 7/30 | II: 1 (14%) III: 6 (86%) | NE | 219 | LR: 1/7 M: 5/7 | NE | [30] | 4c |
Mandibular, mandibulectomies | Yes, 3 cases | 3 cases received C. parvum | RCS | 4 | III: 4 | NE | 270 | M:3/4 | Ptyalism, cheilitis | [27] | 4c |
3.2. Chemotherapy
3.3. Radiotherapy with Adjunctive Therapy
Overall Evidence Grade: C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemotherapeutic Evaluated | Initial Surgery or Other Treatment | Chemotherapy Treatment Protocol | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median PFI (Range) in Days | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
Carboplatin | LRC: 17 Surgery: 11 Surgery and carboplatin: 6 GD: 13 Carboplatin only: 8 Palliative: 5 | Planned: 300 mg/m2 q21d, 4–6 treatments Actual: mean dose: 288 mg/m2, median treatments: 4 (range 1–11) Dose reduced by: 20%—2 dogs 10%—2 dogs | No | RCCS | 30 LRC: 17 GD: 13 | I: 9 (30%) II: 11(37%) III: 9 (30%) IV: 1 (3%) | NE | NE | All OMM: 389 (251–527), from diagnosis I: 242 (292–556) II: 246 (56–436) III: 495 (363–627) IV: 147 LRC Surgery: 495 (246–1460) Surgery and carboplatin: 389 (21–560) GD Carboplatin: 184 (93–275) Palliative: 141 (6–276) | Neutropenia Grd 4: 2 Death (severe gastritis and azotemia): 1 | [35] | 3b |
Carboplatin | Initially surgical resection: 13 Radiation prior to carboplatin: 7 | Planned: 300 (16 dogs) -350 (11 dogs) mg/m2 IV until no further response observed. Actual: median treatments: 2 (range 1–18) Dose reduced by 25% in 2 dogs (from 300 mg/m2) | No | RCS | 25 | I: 2 (8%) II: 3 (12%) III: 13 (52%) IV: 7 (28%) | OR: 7/25 (28%) CR: 1 (4%) PR: 6 (24%) SD: 9 (36%) PD: 9 (36%) | 66 | NE | 300 mg/m2: Anorexia Grd 1: 1 Grd 2: 3 GI toxicity Grd 2: 2 Grd 3: 3 Grd 4: 3 350 mg/m2: Vomiting Grd 2: 1 | [41] | 4b |
Intralesional cisplatin implants | Surgical debulking: 12 Cryosurgery: 1 Dacarbazine: 1 | Weekly implants: mean 5.2 treatments (range 2–15), 17 cisplatin only Mean dose of cisplatin/treatment: 4.9 mg/cm3 (range 0.3–22.1) | 1 MTX after cisplatin implants; 2 MTX followed by carmustine | PCS Only measurable tumors were included | 20 | I: 4 (20%) II and III: 15 (75%) IV: 1 (5%) | OR: 12/20 (60%) CR: 9/20 (45%) PR: 3/20 (15%) SD: 2 (10%) PD: 6 (30%) | NE | 116 | Necrosis limited to implant site: 17, Ulceration: 14 Oro- nasal fistula: 3 Fibrosis of the jaw with trismus with resolution: 2 | [42] | 4b |
Carboplatin | Surgery: 17 | Actual: Median of 300 mg/m2 (range 150–300), median of 4 (range 2–11) treatments 300 mg/m2: 11 dogs 250–300 mg/m2: 4 dogs 150–250 mg/m2: 2 dogs | RT: 11 8 Gy q7d, 4 fractions: 5 dogs 6 Gy q3–4d, 6 fractions: 4 dogs 10 Gy q7d, 3 fractions: 1 dog 6 Gy q7d, 4 fractions: 1 dog | RCS | 17 | I: 2 (12%) II: 9 (53%) III: 4 (23%) Not staged: 2 (12%) | NE | All: 259 (CI: 119–399) Sx and CT: 210 Sx, RT, CT: 291 | All: 440 (CI: 247–633), from diagnosis | Neutropenia Grd 1: 1 Grd 2: 1 Grd 3: 1 Grd 4: 3 Thrombocytopenia Grd 1: 1 Renal toxicity Grd 1: 1 GI toxicity Grd 1: 2 Grd 2: 2 | [43] | 4c |
Mitoxantrone | Yes, numbers for OMM not specified | Initially: 2.5 mg/m2, increased to 4–5 mg/m2 in 0.5 mg/m2 increments. Total of 1–5 doses | Yes, numbers for OMM not specified | PCS All dogs had measurable tumors | 12 | Not specified | OR: 1 (8%) CR: 0 PR: 1 (8%) SD or PD: 11 (92%) | Remission time for PR: 21 days | NE | NE | [44] | 4c |
Cisplatin and piroxicam | No Only dogs with non- resectable tumors included | Piroxicam (0.3 mg/kg, PO, q24 h) from 5 days before cisplatin. MTD of cisplatin with piroxicam was 50 mg/m2 IV every 3 weeks with standard saline diuresis | No | PCS (Phase I & II clincal trial—pharmaco-kinetic study) | 11 | Not specified | OR: 2/11 (18%) CR: 2/11 (18%) PR: 0 SD: 1/11 (9%) PD: 8/11 (73%) | NE | 119 (10 to 370) | Not specifically evaluated for OMM. Renal toxicity in 7/20 dogs in study | [45] | 4c |
Artesunate | No Only dogs with non- resectable tumors included | First five days increased stepwise from 600 to 1000 mg/m2/day, maintained till day 7–14. If no adverse effects, increased to 1200 mg/m2. 3 OMM cases: 688, 895 and 938 mg/m2/kg | No | PCS (Safety/efficacy field study) | 3 | Not specified | SD: 1 (day 25) SD: 1 (day 14, PD at day 42) Treatment stopped at 10 days: 1 (response unknown) | NE | NE | Fever Grd 3: 1 GI toxicity Grd 1: 1 Grd 2: 1 | [46] | 4c |
Carboplatin | Surgical resection | 250 mg/m2, IV, q3 week | No | Case report | 1 | IV | NE | NE | 90 | None | [48] | 4d |
Cell cycle inhibitors | ||||||||||||
Masitinib mesylate | Various combination of surgery or radiotherapy Enrolled due to progressive disease | Standard dose: 12.5 mg/kg (mean dose 12.08 mg/kg) PO, q24 h | Xenogeneic human tyrosinase DNA canine melanoma vaccine (Oncept®): 6 | PCS | 14 OMM, 2 digital, 1 anal | III: 4 (29%) IV: 10 (71%) | OR: 2/14 (14%) PR: 2 (14%) SD: 6 (43%) PD: 6 (43%) | All dogs: 66 (25–124) | All dogs: 119 (21–255) | Anemia Grd 2: 1 Neutropenia Grd 1: 1 Anorexia Grd 2: 1 Diarrhea Grd 1: 1 | [47] | 4c |
Olomoucine (cyclin- dependent kinases) | No | Olomucine at 8 mg/kg/day IV, q24 h, for 7 days | Yes, debulking surgery to remove necrotic tumor | Case report | 1 | III: 1 | CR | NE | Dog died 3 weeks after initiating therapy, post-operatively | Severe necrosis of mass | [49] | 4d |
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Radiotherapy Treatment Protocol | Initial Surgery | Chemotherapy Treatment Protocol | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median PFI (Range) in Days | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
(1) 30 Gy in 69 (49%) dogs at 3 × 10 Gy fractions on day 0, 7 and 21 (2) 36 Gy in 54 (39%) dogs at 4 × 9 Gy fractions on day 0, 7, 14 and 21 (3) Median of 46 Gy in 17 (12%) dogs with varied fractionation schemes | Yes: 84 At RT initiation: 93 (66%) had macroscopic tumor; 47 (34%) had microscopic tumor | CT: 80 (57%)
| RCS | 140/150 | <III: 62 (42%) III: 69 (49%) IV: 9 (6.4%) | 86 dogs OR: 71 (82%) CR: 44 (51%) PR: 27 (31%) SD: 14 (16%) PD: 1 (1%) | All dogs: 150 | All dogs: 210 | NE | [54] | 4a |
OVX (68): 40–50 Gy at 6.3–10.0 Gy/fraction in 4–6 fractions at 7–10 day intervals MVX (39): 40–50 Gy at 6.0–10.0 Gy/fraction in 4–8 fractions at 7–10 day intervals EBR (4): 6.0 Gy/fraction in 6 fractions at 7 day intervals, total dose of 36 Gy | Yes Surgery: 45 Surgery and CT: 27/111 | Cisplatin (0.5 mg/dog/treatment, q 1 to 2 wk) injected directly into the tumor Carboplatin (180–250 mg/m2, IV, q 3 weeks) Local treatment only: 26 Systemic treatment only: 26 Both: 14 | RCS | 111 | I: 19 (17%) II: 24 (22%) III: 37 (33%) IV: 31 (28%) | 87 dogs OR: 74 (85%) CR: 38 (44%) PR: 36 (41%) SD: 7 (8%) PD: 6 (7%) | NE | All dogs: 171 (3–1620) I: 758 II: 278 III: 163 IV: 80 OVX: 121.5 (11–1620) MVX: 233 (3 -966) | Acute radiation damage:49 OVX: Toxicity scores Grd: 1 = 18 Grd 2 = 14 Grd 3 = 4 MVX: Toxicity scores Grd 1 = 31 Grd 2 = 21 Grd 3 = 5 EBR Toxicity scores Grd 1 = 1 Grd 2 = 1 | [53] | 4a |
36 Gy in 6 weekly 6-gray (Gy) fractions of megavoltage irradiation Administered 60 min after administration of platinum-containing CT | Yes Incompletely resected OMM with no identifiable metastasis included | Cisplatin (36 dogs): 10–30 mg/m2 IV during 4 h saline and mannitol diuresis Carboplatin (3 dogs): 90 mg/m2, IV, over 30–45 min | RCS | 39 | I: 22 (56%) II: 3 (8%) III: 14 (36%) | NE | 139 (20–1077) | All dogs: 363 (24–2163) | Grd 1 acute radiation effects Grd 1 chronic radiation effects | [52] | 4b |
36 Gy in four weekly fractions of 9 Gy (to primary and metastatic nodules) | No | Planned: 2–6 doses carboplatin at 300 mg/m2 q 21 days Actual: median: 282 mg/m2, median of 3 doses (range 2–6). All doses at 300 mg/m2: 6/15 | RCCS | 28 RT only: 13 RT and CT: 15 | RT only: I: 2 (15%) II: 7 (54%) III: 3 (23%) Unknown: 1 (8%) RT and CT: I: 1 (7%) II: 6 (40%) III: 7 (46%) Unknown: 1 (7%) | RT: OR: 10 (77%) CR: 7 (54%) PR: 3 (23%) SD: 1 (8%) PD: 2 (15%) RT and CT: OR: 13 (81%) CR: 8 (50%) PR: 5 (31%) SD: 1 (6%) PD: 2 (13%) | NE | RT: 307 (108–585) RT and CT: 286 (87–707) | Neutropenia: Grd 1: 5 Grd 2: 1 GI toxicity: Grd 3: 1 RT Mucositis Grd 1: 4 | [50] | 3b |
(1) 24 Gy in three weekly sessions of 8 Gy in 16 cases (2) 32 Gy in four weekly sessions of 8 Gy in 8 cases | Yes Prior surgery: 6 As part of therapy: 5 | Carboplatin (250–300 mg/m2), IV, q21–30 days, total of 4 doses. First dose given 5–7 days before start of RT | RCCS | 24 RT and CT: 15 Surgery then RT/CT: 3 RT only: 3 ECT and RT: 1 | I: 1 (4%) II: 4 (17%) III: 12 (50%) IV: 7 (29%) | OR: 14 (93%) CR: 4 (26%) PR: 10 (67%) SD: 1 (7%) | CR: 213 | RT: 60 RT and Carbo: 150 Surgery, CT and RT: 380 I: 390 II: 277 III: 120 IV: 90 | Numbers not specified: Cutaneous: Grd 1 | [51] | 3b |
(1) 8-Gy fractions q7 days for 4 weeks (2) 6-Gy fractions q 3 or 7 days for 6 weeks (3) 3.5-Gy fractions q 3 days for 2 consecutive days | Yes: 7 Only gross disease included | Melanoma vaccine as adjuvant treatment in 9/11 | RCS | 11 | Not specified | SD: 8 (73%) PD: 3 (27%) | NE | 134 (21–451) | Not specified for OMM | [55] | 4c |
3.4. Radiotherapy without Adjunctive Therapy
3.5. Electrochemotherapy
3.6. Hyperthermia
3.7. Alternative Therapy
3.8. Immunotherapy
3.8.1. Vaccination
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median Survival Time (Range) in Days | Median DFI (Range) in Days | Adverse Events | Reference | LOE |
ONCEPT™ melanoma vaccine | Not reported | Surgery and/or RT | RCS | 131 | I: 25 (19%) II: 28 (22%) III: 37 (28%) Unknown: 41 (31%) | OR: 28/37 (76%) CR: 11/37 (30%) PR 17/37 (46%) SD: 9/37 (24%) | 442 (352–663) | NE | Local: Hematoma at injection site: 1 Systemic: Lethargy and coughing: 1 | [85] | 4a |
ONCEPT™ melanoma vaccine | Surgery | RT and/or CT and/or other (NSAIDs and Toceranib) | RCS | 69 | I: 18 (26%) II: 25 (36%) III:23 (33%) IV: 3 (5%) | OR: 4/13 (31%) CR: 3/13 (23%) PR: 1/13 (8%) SD: 3/13 (23%) PD: 6/13 (46%) | I: NR II: 269 (118–421) II: 342 (214–470) IV: 178 I–III: 455 (324–586) | I–III: 222 (175–269) | Local: Pain at injection site: 4 Local erythema: 2 Hair discoloration: 2 SC hemorrhage: 1 Systemic: Lethargy: 2 Lethargy and anorexia: 1 SCC at injection site: 1 | [86] | 4a |
ONCEPT™ melanoma vaccine | Surgery | No | PCS | 58 | II: 44 (76%) III: 14 (24%) | NE | II: NR III: 235 | NE | Local: wheal, hematoma, pain, bruising. Systemic: none | [83] | 4a |
ONCEPT™ melanoma vaccine | Surgery alone or surgery and RT | RT and/or surgery and/or MCT and/or tyrosine kinase inhibitor and/or CT | RCCS | Total: 45 Study: 22 Control: 23 | I: 10 (22%) II: 22 (49%) III: 8 (18%) Unknown: 5 (11%) | NE | II and III: Study: 477 Control: 491 I–III: Study: 485 Control: 585 | I and II: Study: 140 Control: 331 I–III: Study: 171 Control: 258 | None | [84] | 3b |
ONCEPT™ melanoma vaccine | Surgery | RT | RCS | 32 | I: 9 (28%) II: 17 (53%) III: 6 (19%) | NE | All: 335 (301–540) I: 373 (163–913) II: 383 (60–1078) III: 189 (60–428) | NE | None | [81] | 4b |
ONCEPT™ melanoma vaccine | Surgery | No | RCS | 25 | II: 23 (92%) III: 1 (4%) IV: 1 (4%) | NE | Alive at end of study (6/25): 806 Died of progressive disease (16/25): 357 | NE | None | [82] | 4b |
ONCEPT™ melanoma vaccine or Wisconsin vaccine | Surgery | CT: 32 Carboplatin (21) platinum-based treatment (5) lomustine (1) dacarbizine (1) doxorubicin (1) and metronomic chemotherapy (4) OR RT:12 Protocol varied but most often hypo- fractionated protocol | RCCS | Study: 24 Oncept: 14 dogs Wisconsin vaccine: 10 dogs Control: 98 | NE | NE | Study: 335 Control: 352 | NE | NE | [37] | 3b |
Hgp100-ATCV vaccine | Not reported | No | PCS | 25 | II: 9 (36%) III: 6 (24%) IV: 10 (40%) | OR: 4/25 (16%) CR: 1/25 (4%) PR: 3/25 (12%) SD: 3/25 (12%) PD: 18/25 (72%) | All dogs: 153 Responders: 417 Non-responders: 95 | NE | Mild induration and erythema at vaccination site 1 dog— depigmentation of oral tumor and mucosa | [88] | 4b |
BM-DC Adhgp100 vaccine | Surgery | RT | PCS | 3 | I: 2 (67%) III: 1 (33%) | I: CR 1/3 at 1440 days | I: 210 III: 660 | NE | None | [87] | 4c |
3.8.2. Electrovaccination and Microseeding
3.8.3. Gene Therapy
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median Survival Time (Range) in Days | Metastasis-Free Survival (Range) in Days | Adverse Events | Reference | LOE |
Lipid-complexed herpes simplex thymidine kinase with ganciclovir (suicide gene therapy) alone (SG) or with irradiated transgenic xenogeneic cells secreting hGM-CSF and hIL-2 (CT) | NE | No | PNRCT Results not specific to OMM. OMM > 80% of cases | 101 UC: 17 SC: 23 SG: 16 CT: 45 | I & II: 22 (22%) III: 67 (66%) IV: 12 (12%) | SG: OR: 7/16 (44%) PR: 6/16 (38%) CR: 1/16 (6%) SD: 4/16 (25%) PD: 5/16 (31%) CT: OR: 21/45 (46%) PR: 14/45 (31%) CR: 7/45 (15%) SD: 12/45 (27%) PD: 12/45 (27%) | UC: 69 (10–169) SC: 82 (43–2160) SG: 94 (46–159) CT: 160 (57–509) | UC: 41 (10–169) SC: 133 (43–216) SG: >159 (41–159) CT: >509 (57–509) | At Injection site: De- pigmentation (20%) Edema (30%) Swelling & itching (17%) | [95] | 3b |
Xenogenic Vero cells secreting hIL-2 | Surgery and RT | No | PNRCT Results not specific to OMM. OMM> 80% of cases | 32 Study: 16 Control: 16 | NE | NE | Study: 270 Control: 72 | NE | Local inflammation at injection site | [96] | 3b |
Intratumoral of Staphylococcal enterotoxin B DNA | NE | No | PCS Results not specific to OMM. OMM> 80% of cases | Total: 22 OMM: 20 | I: 3 (14%) II: 5 (23%) III: 12 (54%) IV: 2 (9%) | OR: I–IV: 12/22 (55%) I: 100% II: 60% III: 33% IV: 0% | I: 427 II: 399 III: 168 IV: 0 | NE | Transient peri- tumoral edema after injection: 1 Transient anorexia: 1 | [99] | 4b |
Intratumoral AdCD40L | NE | Surgery or chemotherapy | PCS | 14 | I: 2 (14%) II: 1 (7%) III: 8 (57%) IV: 3 (22%) Specific to OMM | OR: 11/14 (79%) CR: 4/14 (29%) PR: 7/14 (50%) SD: 3/14 (21%) Specific to OMM | I–IV: 160 (20–1141) II-IV: 131 Not specific to OMM | NE | Mild transient fever: 7 Mild anorexia: 5 Injection site swelling: 3 Mild transient liver enzyme elevation:2 Not specific to OMM | [97] | 4c |
Intratumoral FasL DNA | NE | Surgery and/or RT | PCS | 4 | III: 4 (100%) | OR: 4/4 (100%) CR: 2/4 (50%) PR: 2/4 (50%) | (91–574) | NE | None | [100] | 4c |
Intratumoral human AdCD40L | Local dia- thermia | CRS | Case report | 1 | IV: 1 (100%) | CR: 1 (100%) | 401 | NE | Mild swelling of tumor | [98] | 4d |
Electrogene therapy | |||||||||||
Intratumoral hIL-12 pDNA with EP | NE | MCT (cyclophosphamide) | Case report | 1 | IV: 1 (100%) | PD | NE | NE | Local swelling & erythema 2–3 days later | [101] | 4d |
Intratumoral hIL-12 pDNA with EP | NE | No | Case report | 1 | IV: 1 (100%) | Regression- progression cycles 1st Tx: PR 2nd Tx: PR 3rd Tx: PD 4th Tx: N/A 5th Tx: SD | NE | NE | None | [102] | 4d |
Electrochemogene therapy | |||||||||||
cIL-12 pDNA ECT & IV bleomycin | NE | CRS | PCS | 9 | I: 2 II: 4 III: 3 | OR: 6/9 (67%) | 180 | NE | Transient leucocytosis & neutrophilia: 4 | [104] | 4c |
fIL-12 pDNA ECT & Intralesional bleomycin | NE | Piroxicam & tramadol | Case report | 1 | IV: 1 | PR: 1 | NE | NE | 48 hours of diarrhea | [103] | 4d |
3.8.4. Combination of Gene Therapy and Vaccination
3.8.5. Checkpoint Inhibitors
3.8.6. Bacteria
3.8.7. Stimulatory Cytokines
3.8.8. Nanotechnology
3.8.9. Immunotherapy Conclusions and Future
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Nishiya, A.T.; Massoco, C.O.; Felizzola, C.R.; Perlmann, E.; Batschinski, K.; Tedardi, M.V.; Garcia, J.S.; Mendonça, P.P.; Teixeira, T.F.; Zaidan Dagli, M.L. Comparative Aspects of Canine Melanoma. Vet. Sci. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Wingo, K. Histopathologic Diagnoses from Biopsies of the Oral Cavity in 403 Dogs and 73 Cats. J. Vet. Dent. 2018, 35, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Todoroff, R.J.; Brodey, R.S. Oral and pharyngeal neoplasia in the dog: A retrospective survey of 361 cases. J. Am. Vet. Med. Assoc. 1979, 175, 567–571. [Google Scholar] [PubMed]
- Gorlin, R.J.; Barron, C.N.; Chaudhry, A.P.; Clark, J.J. The oral and pharyngeal pathology of domestic animals: A study of 487 cases. Am. J. Vet. Res. 1959, 20, 1032–1061. [Google Scholar]
- Brodey, R. A clinical and pathological study of 130 neoplasms of the mouth and pharynx in the dog. Am. J. Vet. Res. 1960, 21, 787–812. [Google Scholar]
- Weiss, E.; Frese, K. Tumours of the skin. Bull. World Health Organ. 1974, 50, 79–100. [Google Scholar]
- López, F.; Rodrigo, J.P.; Cardesa, A.; Triantafyllou, A.; Devaney, K.O.; Mendenhall, W.M.; Hai-gentz, M., Jr.; Strojan, P.; Pellitteri, P.K.; Bradford, C.R.; et al. Update on primary head and neck mucosal melanoma. Head Neck 2016, 38, 147–155. [Google Scholar]
- Mort, R.L.; Jackson, I.J.; Patton, E.E. The melanocyte lineage in development and disease. Development 2015, 142, 1387. [Google Scholar] [CrossRef] [Green Version]
- Spangler, W.L.; Kass, P.H. The histologic and epidemiologic bases for prognostic considerations in canine melanocytic neoplasia. Vet. Pathol. 2006, 43, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Vara, J.A.; Beissenherz, M.E.; Miller, M.A.; Johnson, G.C.; Pace, L.W.; Fard, A.; Kottler, S.J. Retrospective study of 338 canine oral melanomas with clinical, histologic, and immunohistochemical review of 129 cases. Vet. Pathol. 2000, 37, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Dorn, C.R.; Priester, W.A. Epidemiologic analysis of oral and pharyngeal cancer in dogs, cats, horses, and cattle. J. Am. Vet. Med. Assoc. 1976, 169, 1202–1206. [Google Scholar]
- Vos, J.H.; van der Gaag, I. Canine and feline oral-pharyngeal tumours. Zent. Vet. A 1987, 34, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Svendenius, L.; Warfvinge, G. Oral Pathology in Swedish Dogs: A Retrospective Study of 280 Biopsies. J. Vet. Dent. 2010, 27, 91–97. [Google Scholar] [CrossRef]
- Bostock, D.E. Prognosis after surgical excision of canine melanomas. Vet. Pathol. 1979, 16, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Bolon, B.; Calderwood Mays, M.B.; Hall, B.J. Characteristics of canine melanomas and comparison of histology and DNA ploidy to their biologic behavior. Vet. Pathol. 1990, 27, 96–102. [Google Scholar] [CrossRef]
- Harvey, H.J.; MacEwen, E.G.; Braun, D.; Patnaik, A.K.; Withrow, S.J.; Jongeward, S. Prognostic criteria for dogs with oral melanoma. J. Am. Vet. Med. Assoc. 1981, 178, 580–582. [Google Scholar]
- McGill, L.D.; Blue, J.; Powers, B. Report of the ad hoc committee on oncology to the ACVP membership and interested pathology community. American College of Veterinary Pathologists. Vet. Pathol. 2002, 39, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Esplin, D.G. Survival of dogs following surgical excision of histologically well-differentiated melanocytic neoplasms of the mucous membranes of the lips and oral cavity. Vet. Pathol. 2008, 45, 889–896. [Google Scholar] [CrossRef]
- Bergman, P.J. Canine oral melanoma. Clin. Tech. Small Anim. Pract. 2007, 22, 55–60. [Google Scholar] [CrossRef]
- Smedley, R.C.; Spangler, W.L.; Esplin, D.G.; Kitchell, B.E.; Bergman, P.J.; Ho, H.Y.; Bergin, I.L.; Kiupel, M. Prognostic markers for canine melanocytic neoplasms: A comparative review of the literature and goals for future investigation. Vet. Pathol. 2011, 48, 54–72. [Google Scholar] [CrossRef]
- Webster, J.D.; Dennis, M.M.; Dervisis, N.; Heller, J.; Bacon, N.J.; Bergman, P.J.; Bienzle, D.; Cassali, G.; Castagnaro, M.; Cullen, J.; et al. Recommended guidelines for the conduct and evaluation of prognostic studies in veterinary oncology. Vet. Pathol. 2011, 48, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Tellado, M.N.; Maglietti, F.H.; Michinski, S.D.; Marshall, G.R.; Signori, E. Electrochemotherapy in treatment of canine oral malignant melanoma and factors influencing treatment outcome. Radiol. Oncol. 2020, 54, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwood, C.; Devauchelle, P.; Elliott, J.; Freiche, V.; German, A.J.; Gualtieri, M.; Hall, E.; den Hertog, E.; Neiger, R.; Peeters, D.; et al. Emesis in dogs: A review. J. Small Anim. Pract. 2010, 51, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, P.D.; Withrow, S.J.; Curtis, C.R.; Powers, B.E.; Straw, R.C. b. Partial maxillary resection as a treatment for oral cancer in 61 dogs. J. Am. Anim. Hosp. Assoc. 1991, 27, 617–624. [Google Scholar]
- Schwarz, P.D.; Withrow, S.J.; Curtis, C.R.; Powers, B.E.; Straw, R.C. a. Mandibular resection as a treatment for oral cancer in 81 dogs. J. Am. Anim. Hosp. Assoc. 1991, 27, 601–610. [Google Scholar]
- Tuohy, J.L.; Selmic, L.E.; Worley, D.R.; Ehrhart, N.P.; Withrow, S.J. Outcome following curative-intent surgery for oral melanoma in dogs: 70 cases (1998–2011). J. Am. Vet. Med. Assoc. 2014, 245, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Withrow, S.J.; Holmberg, D.L. Mandibulectomy in the treatment of oral cancer. J. Am. Anim. Hosp. Assoc. 1983, 19, 273–286. [Google Scholar]
- Bradley, R.L.; MacEwen, E.G.; Loar, A.S. Mandibular resection for removal of oral tumors in 30 dogs and 6 cats. J. Am. Vet. Med. Assoc. 1984, 184, 460–463. [Google Scholar]
- Beck, E.R.; Withrow, S.J.; McChesney, A.E.; Richardson, R.C.; Henderson, R.A.; Norris, A.M.; Caywood, D.D.; Klausner, J.S.; Harvey, H.J.; Holmberg, D.L. Canine tongue tumors: A retrospective review of 57 cases. J. Am. Anim. Hosp. Assoc. 1986, 22, 525–532. [Google Scholar]
- Salisbury, S.K.; Lantz, G.C. Long-term results of partial mandibulectomy for treatment of oral tumours in 30 dogs. J. Am. Anim. Hosp. Assoc. 1988, 24, 285–294. [Google Scholar]
- Kosovsky, J.K.; Matthiesen, D.T.; Marretta, S.M.; Patnaik, A.K. Results of partial mandibulectomy for the treatment of oral tumors in 142 dogs. Vet. Surg. 1991, 20, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Syrcle, J.A.; Bonczynski, J.J.; Monette, S.; Bergman, P.J. Retrospective evaluation of lingual tumors in 42 dogs: 1999–2005. J. Am. Anim. Hosp. Assoc. 2008, 44, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Culp, W.T.; Ehrhart, N.; Withrow, S.J.; Rebhun, R.B.; Boston, S.; Buracco, P.; Reiter, A.M.; Schallberger, S.P.; Aldridge, C.F.; Kent, M.S.; et al. Results of surgical excision and evaluation of factors associated with survival time in dogs with lingual neoplasia: 97 cases (1995–2008). J. Am. Vet. Med. Assoc. 2013, 242, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Sarowitz, B.N.; Davis, G.J.; Kim, S. Outcome and prognostic factors following curative-intent surgery for oral tumours in dogs: 234 cases (2004 to 2014). J. Small Anim. Pract. 2017, 58, 146–153. [Google Scholar] [CrossRef]
- Brockley, L.K.; Cooper, M.A.; Bennett, P.F. Malignant melanoma in 63 dogs (2001–2011): The effect of carboplatin chemotherapy on survival. N. Z. Vet. J. 2013, 61, 25–31. [Google Scholar] [CrossRef]
- MacEwen, E.G.; Patnaik, A.K.; Harvey, H.J.; Hayes, A.A.; Matus, R. Canine oral melanoma: Comparison of surgery versus surgery plus Corynebacterium parvum. Cancer Investig. 1986, 4, 397–402. [Google Scholar] [CrossRef]
- Boston, S.E.; Lu, X.; Culp, W.T.; Montinaro, V.; Romanelli, G.; Dudley, R.M.; Liptak, J.M.; Mestrinho, L.A.; Buracco, P. Efficacy of systemic adjuvant therapies administered to dogs after excision of oral malignant melanomas: 151 cases (2001–2012). J. Am. Vet. Med. Assoc. 2014, 245, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Hahn, K.; DeNicola, D.B.; Richardson, R.C.; Hahn, E.A. Canine oral malignant melanoma: Prognostic utility of an alternative staging system. J. Small Anim. Pract. 1994, 35, 251–256. [Google Scholar] [CrossRef]
- Withrow, S.J.; Vail, D.M.; Page, R.L. Withrow & MacEwen’s Small Animal Clinical Oncology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume XVI, p. 159. [Google Scholar]
- Giannakakou, P.; Sackett, D.; Fojo, T. Tubulin/microtubules: Still a promising target for new chemotherapeutic agents. J. Natl. Cancer Inst. 2000, 92, 182–183. [Google Scholar] [CrossRef] [Green Version]
- Rassnick, K.M.; Ruslander, D.M.; Cotter, S.M.; Al-Sarraf, R.; Bruyette, D.S.; Gamblin, R.M.; Meleo, K.A.; Moore, A.S. Use of carboplatin for treatment of dogs with malignant melanoma: 27 cases (1989–2000). J. Am. Vet. Med. Assoc. 2001, 218, 1444–1448. [Google Scholar] [CrossRef]
- Kitchell, B.E.; Brown, D.M.; Luck, E.E.; Woods, L.L.; Orenberg, E.K.; Bloch, D.A. Intralesional implant for treatment of primary oral malignant-melanoma in dogs. J. Am. Vet. Med. Assoc. 1994, 204, 229–236. [Google Scholar] [PubMed]
- Dank, G.; Rassnick, K.M.; Sokolovsky, Y.; Garrett, L.D.; Post, G.S.; Kitchell, B.E.; Sellon, R.K.; Kleiter, M.; Northrup, N.; Segev, G. Use of adjuvant carboplatin for treatment of dogs with oral malignant melanoma following surgical excision. Vet. Comp. Oncol. 2014, 12, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, G.K.; Obradovich, J.E.; Elmslie, R.E.; Vail, D.M.; Moore, A.S.; Straw, R.C.; Dickinson, K.; Cooper, M.F.; Withrow, S.J. Efficacy of mitoxantrone against various neoplasms in dogs. J. Am. Vet. Med. Assoc. 1991, 198, 1618–1621. [Google Scholar] [PubMed]
- Boria, P.A.; Murry, D.J.; Bennett, P.F.; Glickman, N.W.; Snyder, P.W.; Merkel, B.L.; Schlittler, D.L.; Mutsaers, A.J.; Thomas, R.M.; Knapp, D.W. Evaluation of cisplatin combined with piroxicam for the treatment of oral malignant melanoma and oral squamous cell carcinoma in dogs. J. Am. Vet. Med. Assoc. 2004, 224, 388–394. [Google Scholar] [CrossRef]
- Rutteman, G.R.; Erich, S.A.; Mol, J.A.; Spee, B.; Grinwis, G.C.; Fleckenstein, L.; London, C.A.; Efferth, T. Safety and efficacy field study of artesunate for dogs with non-resectable tumours. Anticancer Res. 2013, 33, 1819–1827. [Google Scholar]
- Giuliano, A.; Dobson, J. Prospective clinical trial of masitinib mesylate treatment for advanced stage III and IV canine malignant melanoma. J. Small Anim. Pract. 2020, 61, 190–194. [Google Scholar] [CrossRef]
- Ji-Yun, L.; Sang-Yeon, O.; Chul, P.; Hun-Young, Y.; Soon-Wuk, J.; Hee-Myung, P. Oral malignant melanoma in a Labrador retriever. J. Vet. Clin. 2003, 20, 489–492. [Google Scholar]
- Hajduch, M.; Kolár, Z.; Novotný, R.; Hanus, J.; Mihál, V.; Hlobílková, A.; Nosková, V.; Strnad, M. Induction of apoptosis and regression of spontaneous dog melanoma following in vivo application of synthetic cyclin-dependent kinase inhibitor olomoucine. Anti-Cancer Drugs 1997, 8, 1007–1013. [Google Scholar] [CrossRef]
- Murphy, S.; Hayes, A.M.; Blackwood, L.; Maglennon, G.; Pattinson, H.; Sparkes, A.H. Oral malignant melanoma—The effect of coarse fractionation radiotherapy alone or with adjuvant carboplatin therapy. Vet. Comp. Oncol. 2005, 3, 222–229. [Google Scholar] [CrossRef]
- Cunha, S.C.D.; Corgozinho, K.B.; Silva, F.B.F.; da Silva, K.V.G.C.; Ferreira, A.M.R. Radiation therapy for oral melanoma in dogs: A retrospective study. Cienc. Rural 2018, 48, 396. [Google Scholar] [CrossRef] [Green Version]
- Freeman, K.P.; Hahn, K.A.; Harris, F.D.; King, G.K. Treatment of dogs with oral melanoma by hypofractionated radiation therapy and platinum-based chemotherapy (1987–1997). J. Vet. Intern. Med. 2003, 17, 96–101. [Google Scholar] [PubMed]
- Kawabe, M.; Mori, T.; Ito, Y.; Murakami, M.; Sakai, H.; Yanai, T.; Maruo, K. Outcomes of dogs undergoing radiotherapy for treatment of oral malignant melanoma: 111 cases (2006–2012). J. Am. Vet. Med. 2015, 247, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Proulx, D.R.; Ruslander, D.M.; Dodge, R.K.; Hauck, M.L.; Williams, L.E.; Horn, B.; Price, G.S.; Thrall, D.E. A retrospective analysis of 140 dogs with oral melanoma treated with external beam radiation. Vet. Radiol. Ultrasound 2003, 44, 352–359. [Google Scholar] [CrossRef]
- Tollett, M.A.; Duda, L.; Brown, D.C.; Krick, E.L. Palliative radiation therapy for solid tumors in dogs: 103 cases (2007–2011). J. Am. Vet. Med. Assoc. 2016, 248, 72–82. [Google Scholar] [CrossRef] [PubMed]
- LaDue, T.A.; Dodge, R.; Page, R.L.; Price, G.S.; Hauck, M.L.; Thrall, D.E. Factors influencing survival after radiotherapy of nasal tumors in 130 dogs. Vet. Radiol. Ultrasound 1999, 40, 312–317. [Google Scholar] [CrossRef]
- Blackwood, L.; Dobson, J.M. Radiotherapy of oral malignant melanomas in dogs. J. Am. Vet. Med. Assoc. 1996, 209, 98–102. [Google Scholar]
- Bateman, K.E.; Catton, P.A.; Pennock, P.W.; Kruth, S.A. 0-7-21 radiation therapy for the treatment of canine oral melanoma. J. Vet. Intern. Med. 1994, 8, 267–272. [Google Scholar] [CrossRef]
- Theon, A.P.; Rodriguez, C.; Madewell, B.R. Analysis of prognostic factors and patterns of failure in dogs with malignant oral tumors treated with megavoltage irradiation. J. Am. Vet. Med. Assoc. 1997, 210, 778–784. [Google Scholar]
- Esmaeili, N.; Friebe, M. Electrochemotherapy: A review of current status, alternative IGP approaches, and future perspectives. J. Healthc. Eng. 2019. [Google Scholar] [CrossRef]
- Spugnini, E.P.; Dragonetti, E.; Vincenzi, B.; Onori, N.; Citro, G.; Baldi, A. Pulse-mediated chemotherapy enhances local control and survival in a spontaneous canine model of primary mucosal melanoma. Melanoma Res. 2006, 16, 23–27. [Google Scholar] [CrossRef]
- Maglietti, F.; Tellado, M.; Olaiz, N.; Michinski, S.; Marshall, G. Combined local and systemic bleomycin administration in electrochemotherapy to reduce the number of treatment sessions. Radiol. Oncol. 2016, 50, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulbacka, J.; Paczuska, J.; Rembiałkowska, N.; Saczko, J.; Kiełbowicz, Z.; Kinda, W.; Liszka, B.; Kotulska, M.; Kos, B.; Miklavčič, D.; et al. Electrochemotherapy combined with standard and Co2 laser surgeries in canine oral melanoma. Slov. Vet. Zb. 2017, 54, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Maglietti, F.H.; Michinski, S.D.; Ricotti, I.; Maure, P.; Mir, L.M.; Olaiz, N.; Marshall, G. Amelanotic melanoma of the root of the tongue in a canine patient treated by electrochemotherapy. J. Anal. Oncol. 2014, 3, 217–221. [Google Scholar] [CrossRef]
- Dewhirst, M.W.; Sim, D.A.; Forsyth, K.; Grochowski, K.J.; Wilson, S.; Bicknell, E. Local control and distant metastases in primary canine malignant melanomas treated with hyperthermia and/or radiotherapy. Int. J. Hyperth. 1985, 1, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M., Jr.; Turrel, J.M. Hyperthermia and Radiation in the Management of Canine Tumors. J. Small Anim. Pract. 1987, 28, 457–477. [Google Scholar] [CrossRef]
- Theon, A.P.; Madewell, B.R.; Moore, A.S.; Stephens, C.; Krag, D.N. Localized thermo-cisplatin therapy—a pilot-study in spontaneous canine and feline tumors. Int. J. Hyperth. 1991, 7, 881–892. [Google Scholar] [CrossRef]
- Dressel, S.; Gosselin, M.C.; Capstick, M.H.; Carrasco, E.; Weyland, M.S.; Scheidegger, S.; Neufeld, E.; Kuster, N.; Bodis, S.; Rohrer Bley, C. Novel hyperthermia applicator system allows adaptive treatment planning: Preliminary clinical results in tumour-bearing animals. Vet. Comp. Oncol. 2018, 16, 202–213. [Google Scholar] [CrossRef]
- Lucroy, M.D.; Chen, W.R.; Ridgway, T.D.; Higbee, R.G.; Bartels, K.E. Selective laser-induced hyperthermia for the treatment of spontaneous tumors in dogs. J. X-ray Sci. Technol. 2002, 10, 237–243. [Google Scholar]
- Saleem, M.; Kaur, S.; Kweon, M.H.; Adhami, V.M.; Afaq, F.; Mukhtar, H. Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 2005, 26, 1956–1964. [Google Scholar] [CrossRef] [Green Version]
- Nitta, M.; Azuma, K.; Hata, K.; Takahashi, S.; Ogiwara, K.; Tsuka, T.; Imagawa, T.; Yokoe, I.; Osaki, T.; Minami, S.; et al. Systemic and local injections of lupeol inhibit tumor growth in a melanoma-bearing mouse model. Biomed. Rep. 2013, 1, 641–645. [Google Scholar] [CrossRef]
- Saleem, M.; Maddodi, N.; Abu Zaid, M.; Khan, N.; bin Hafeez, B.; Asim, M.; Suh, Y.; Yun, J.M.; Setaluri, V.; Mukhtar, H. Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis. Clin. Cancer Res. 2008, 14, 2119–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, P.K.; Bhui, K.; Shukla, Y. Lupeol: Connotations for chemoprevention. Cancer Lett. 2008, 263, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, I.; Azuma, K.; Hata, K.; Mukaiyama, T.; Goto, T.; Tsuka, T.; Imagawa, T.; Itoh, N.; Murahata, Y.; Osaki, T.; et al. Clinical systemic lupeol administration for canine oral malignant melanoma. Mol. Clin. Oncol. 2015, 3, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Withers, S.S.; York, D.; Johnson, E.; Al-Nadaf, S.; Skorupski, K.A.; Rodriguez, C.O., Jr.; Burton, J.H.; Guerrero, T.; Sein, K.; Wittenburg, L.; et al. In vitro and in vivo activity of liposome-encapsulated curcumin for naturally occurring canine cancers. Vet. Comp. Oncol. 2018, 16, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P.J. Cancer Immunotherapies. Vet. Clin. Small Anim. 2019, 49, 881–902. [Google Scholar] [CrossRef] [PubMed]
- Bergman, P.J. Immunotherapy in veterinary oncology. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Catchpole, B.; Gould, S.M.; Kellett-Gregory, L.M.; Dobson, J.M. Immunosuppressive cytokines in the regional lymph node of a dog suffering from oral malignant melanoma. J. Small Anim. Pract. 2002, 43, 464–467. [Google Scholar] [CrossRef]
- Almela, R.M.; Ansón, A. A review of immunotherapeutic strategies in canine malignant melanoma. Vet. Sci. 2019, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Regan, D.; Guth, A.; Coy, J.; Dow, S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet. J. 2016, 207, 20–28. [Google Scholar] [CrossRef]
- Treggiari, E.; Grant, J.P.; North, S.M. A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma. J. Vet. Med. Sci. 2016, 78, 845–850. [Google Scholar] [CrossRef] [Green Version]
- McLean, J.L.; Lobetti, R.G. Use of the melanoma vaccine in 38 dogs: The South African experience. J. S. Afr. Vet. Assoc. 2015, 86, 1246. [Google Scholar] [CrossRef] [PubMed]
- Grosenbaugh, D.A.; Leard, A.D.; Bergman, P.J.; Klein, M.K.; Meleo, K.; Susaneck, S.; Hess, P.R.; Jankowski, M.K.; Jones, P.D.; Leibman, N.F.; et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am. J. Vet. Res. 2011, 72, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Ottnod, J.M.; Smedley, R.C.; Walshaw, R.; Hauptman, J.G.; Kiupel, M.; Obradovich, J.E. A retrospective analysis of the efficacy of Oncept vaccine for the adjunct treatment of canine oral malignant melanoma. Vet. Comp. Oncol. 2013, 11, 219–229. [Google Scholar] [CrossRef]
- Turek, M.; LaDue, T.; Looper, J.; Nagata, K.; Shiomitsu, K.; Keyerleber, M.; Buchholz, J.; Gieger, T.; Hetzel, S. Multimodality treatment including ONCEPT for canine oral melanoma: A retrospective analysis of 131 dogs. Vet. Radiol. Ultrasound 2020, 61, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Verganti, S.; Berlato, D.; Blackwood, L.; Amores-Fuster, I..; Polton, G.A.; Elders, R.; Doyles, R.; Taylor, A.; Murphy, S. Use of Oncept melanoma vaccine in 69 canine oral malignant melanomas in the UK. J. Small Anim. Pract. 2017, 58, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Gyorffy, S.; Rodriguez-Lecompte, J.C.; Woods, J.P.; Foley, R.; Kruth, S.; Liaw, P.C.Y.; Gauldie, J. Bone marrow-derived dendritic cell vaccination of dogs with naturally occurring melanoma by using human gp100 antigen. J. Vet. Intern. Med. 2005, 19, 56–63. [Google Scholar]
- Alexander, A.N.; Huelsmeyer, M.K.; Mitzey, A.; Dubielzig, R.R.; Kurzman, I.D.; MacEwen, E.G.; Vail, D.M. Development of an allogeneic whole-cell tumor vaccine expressing xenogeneic gp100 and its implementation in a phase II clinical trial in canine patients with malignant melanoma. Cancer Immunol. Immunother. 2006, 55, 433–442. [Google Scholar] [CrossRef]
- Zuleger, C.L.; Kang, C.; Ranheim, E.A.; Kurzman, I.D.; Macklin, M.D.; Newton, M.A.; Wolchock, J.D.; Vail, D.M.; Eriksson, E.; Albertini, M.R. Pilot study of safety and feasibility of DNA microseeding for treatment of spontaneous canine melanoma. Vet. Med. Sci. 2017, 3, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Nemec, A.; Milevoj, N.; Tratar, U.L.; Sersa, G.; Cemazar, M.; Tozon, N. Electroporation-based treatments in small animal veterinary oral and maxillofacial oncology. Front. Vet. Sci. 2020, 7, 575911. [Google Scholar] [CrossRef]
- Riccardo, F.; Lussich, S.; Maniscalco, L.; Lorda Mayayo, S.; La Rosa, G.; Arigoni, M.; De Maria, R.; Gattino, F.; Lanzardo, S.; Lardone, E.; et al. CSPG4-specific immunity and survival prolongation in dogs with oral malignant melanoma immunized with human CSPG4 DNA. Clin. Cancer Res. 2014, 20, 3753–3762. [Google Scholar] [CrossRef] [Green Version]
- Piras, L.A.; Riccardo, F.; Iussich, S.; Maniscalco, L.; Gattino, F.; Martano, M.; Morello, E.; Lorda Mayayo, S.; Rolih, V.; Garavaglia, F.; et al. Prolongation of survival of dogs with oral malignant melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen electrovaccination. Vet. Comp. Oncol. 2017, 15, 996–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobino, D.; Camerino, M.; Riccardo, F.; Cavallo, F.; Tarone, L.; Martano, M.; Dentini, A.; Iussich, S.; Lardone, E.; Franci, P.; et al. Difference in outcome between curative intent vs marginal excision as a first treatment in dogs with oral malignant melanoma and the impact of adjuvant CSPG4-DNA electrovaccination: A retrospective study on 155 cases. Vet. Comp. Oncol. 2021, 19, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Thamm, D.H.; Kurzman, I.D.; Mac Ewen, E.G.; Feinmehl, R.; Towell, T.L.; Longhofer, S.L.; Johnson, C.M.; Geoly, F.J.; Stinchcomb, D.T. Intralesional lipid-complexed cytokine/superantigen immunogene therapy for spontaneous canine tumors. Cancer Immunol. Immunother. 2003, 52, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, L.M.; Fiszman, G.L.; Karara, A.L.; Glikin, G.C. Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma. Cancer Gene Ther. 2008, 15, 165–172. [Google Scholar] [CrossRef]
- Quintin-Colonna, F.; Devauchelle, P.; Fradelizi, D.; Mourot, B.; Faure, T.; Koueilsky, P.; Roth, C.; Mehtali, M. Gene therapy of spontaneous canine melanoma and feline fibrosarcoma by intratumoral administration of histoincompatible cells expressing human interleukin-2. Gene Ther. 1996, 3, 1104–1112. [Google Scholar]
- Westberg, S.; Sadeghi, A.; Svensson, E.; Segall, T.; Dimopoulou, M.; Korsgren, O.; Hemminki, A.; Loskog, A.S.I.; Totterman, T.H.; von Euler, H. Treatment efficacy and immune stimulation by AdCD40L gene therapy of spontaneous canine malignant melanoma. J. Immunother. 2013, 36, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Von Euler, H.; Sadeghi, A.; Carlsson, B.; Rivera, P.; Loskog, A.; Segall, T.; Korsgren, O.; Totterman, T.H. Efficient adenovector CD40 ligand immunotherapy of canine malignant melanoma. J. Immunother. 2008, 31, 377–384. [Google Scholar] [CrossRef]
- Dow, S.W.; Elmslie, R.E.; Willson, A.P.; Roche, L.; Gorman, C.; Potter, T.A. In Vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J. Clin. Investig. 1998, 101, 2406–2414. [Google Scholar] [CrossRef]
- Bianco, S.R.; Sun, J.; Fosmire, S.P.; Hance, K.; Padilla, M.L.; Ritt, M.G.; Getzy, D.M.; Duke, R.C.; Withrow, S.J.; Lana, S.; et al. Enhancing antimelanoma immune responses through apoptosis. Cancer Gene Ther. 2003, 10, 726–736. [Google Scholar] [CrossRef]
- Cicchelero, L.; Denies, S.; Vanderperren, K.; Stock, E.; Van Brantegem, L.; de Rooster, H.; Sanders, N.N. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study. Cancer Lett. 2017, 400, 205–218. [Google Scholar] [CrossRef]
- Cutrera, J.; King, G.; Jones, P.; Kicenuik, K.; Gumpel, E.; Xia, X.; Li, S. Safety and efficacy of tumor-targeted interleukin 12 gene therapy in treated and non-treated, metastatic lesions. Curr. Gene Ther. 2015, 15, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.D.; Fulmer, A.; Buckholz, J.; Zhang, B.; Cutrera, J.; Shiomitsu, K.; Li, S. Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Ther. 2010, 17, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milevoj, N.; Tratar, U.L.; Nemec, A.; Brozic, A.; Znidar, K.; Sersa, G.; Cemazar, M.; Tozon, N. A combination of electrochemotherapy, gene electrotransfer of plasmid encoding canine IL-12 and cytoreductive surgery in the treatment of canine oral malignant melanoma. Res. Vet. Sci. 2019, 122, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Finocchiaro, L.M.; Fondello, C.; Gil-Cardeza, M.L.; Rossi, U.A.; Villaverde, M.S.; Riveros, M.D.; Glikin, G.C. Cytokine-enhanced vaccine and interferon-β plus suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Hum. Gene Ther. 2015, 26, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finocchiaro, L.M.E.; Agnetti, L.; Fondello, C.; Glikin, G.C. Combination of cytokine-enhanced vaccine and chemo-gene therapy as surgery adjuvant treatments for spontaneous canine melanoma. Gene Ther. 2019, 26, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H. A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol. 2020, 27 (Suppl. 2), S87–S97. [Google Scholar] [CrossRef]
- Maekawa, N.; Konnai, S.; Nishimura, M.; Kagawa, Y.; Takagi, S.; Hosoya, K.; Ohta, H.; Kim, S.; Okagawa, T.; Izumi, Y.; et al. PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis. Oncol. 2021, 5, 10. [Google Scholar] [CrossRef]
- Maekawa, N.; Konnai, S.; Takagi, S.; Kagawa, Y.; Okagawa, T.; Nishimori, A.; Ikebuchi, R.; Izumi, Y.; Deguchi, T.; Nakajima, C.; et al. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci. Rep. 2017, 7, 8951. [Google Scholar] [CrossRef]
- Igase, M.; Nemoto, Y.; Itamoto, K.; Tani, K.; Nakaichi, M.; Sakurai, M.; Sakai, Y.; Noguchi, S.; Kato, M.; Tsukui, T.; et al. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci. Rep. 2020, 10, 18311. [Google Scholar] [CrossRef]
- Kamoto, S.; Shinada, M.; Kato, D.; Yoshimoto, S.; Ikeda, N.; Tsuboi, M.; Yoshitake, R.; Eto, S.; Hashimoto, Y.; Takahashi, Y.; et al. Phase I/II clinical trial of the anti-podoplanin monoclonal antibody therapy in dogs with malignant melanoma. Cells 2020, 9, 2529. [Google Scholar] [CrossRef]
- Misdorp, W. Incomplete surgery, local immunostimulation, and recurrence of some tumour types in dogs and cats. Vet. Q. 1987, 9, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacEwen, E.G.; Kurzman, I.D.; Vail, D.M.; Dubielzig, R.R.; Everlith, K.; Madewell, B.R.; Rodriguez Jr., C.O.; Phillips, B.; Zwahlen, C.H.; Obradovich, J.; et al. Adjuvant therapy for melanoma in dogs: Results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 1999, 5, 4249–4258. [Google Scholar] [PubMed]
- Lavalle, G.E.; Caires, C.E.T.; Teixeira, S.V.; Cunha, R.M.C.; Carneiro, R.A. Treatment of canine oral melanoma with adjuvant chemotherapy and immunotherapy. Acta Sci. Vet. 2021, 49, 1808. [Google Scholar] [CrossRef]
- Moore, A.S.; Theilen, G.H.; Newell, A.D.; Madewell, B.R.; Rudolf, A.R. Preclinical study of sequential tumor necrosis factor and interleukin 2 in the treatment of spontaneous canine neoplasms. Cancer Res. 1991, 51, 233–238. [Google Scholar] [PubMed]
- Hoopes, P.J.; Moodie, K.L.; Petryk, A.A.; Petryk, J.D.; Sechrist, S.; Gladstone, D.J.; Steinmetz, N.F.; Veliz, F.A.; Bursey, A.A.; Wagner, R.J.; et al. Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer. Proc. SPIE Int. Soc. Opt. Eng. 2017, 10066, 1006605. [Google Scholar] [PubMed] [Green Version]
- Hoopes, P.J.; Wagner, R.J.; Duval, K.; Kang, K.; Gladstone, D.J.; Moodie, K.L.; Crary-Burney, M.; Ariaspulido, H.; Veliz, F.A.; Steinmetz, N.F.; et al. Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Mol. Pharm. 2018, 15, 3717–3722. [Google Scholar] [CrossRef] [PubMed]
- Pernick, N. Staging-Mucosal Melanoma. Available online: https://www.pathologyoutlines.com/topic/oralcavitystagingmucosalmelanoma.html (accessed on 17 March 2022).
- Edge, S.; Compton, C.C. AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kamstock, D.A.; Ehrhart, E.J.; Getzy, D.M.; Bacon, N.J.; Rassnick, K.M.; Moroff, S.D.; Liu, S.M.; Straw, R.C.; McKnight, C.A.; Amorim, R.L.; et al. Recommended guidelines for submission, trimming, margin evaluation, and reporting of tumor biopsy specimens in veterinary surgical pathology. Vet. Pathol. 2011, 48, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Scolyer, R.A.; Rawson, R.V.; Gershenwald, J.E.; Ferguson, P.M.; Prieto, V.G. Melanoma pathology reporting and staging. Mod. Pathol. 2020, 33, 15–24. [Google Scholar] [CrossRef]
- Liptak, J.M. Histologic margins and the residual tumour classification scheme: Is it time to use a validated scheme in human oncology to standardise margin assessment in veterinary oncology? Vet. Comp. Oncol. 2020, 18, 25–35. [Google Scholar] [CrossRef]
(a) Study Type Level of Evidence (LOE) | Level of Evidence |
Systematic review (with homogeneity) of randomized controlled clinical trials (RCT) | 1a |
Individual RCT (with narrow confidence interval) | 1b |
All or none | 1c |
Systematic review (with homogeneity) of cohort studies | 2a |
Individual cohort study (including low-quality RCT; for, e.g., <80% follow-up) or well-controlled laboratory study | 2b |
“Outcomes” research; ecological studies | 2c |
Systematic review (with homogeneity) of case–control studies | 3a |
Individual case–control study or non-randomized controlled clinical trial/study or weak laboratory study | 3b |
Case series > 50 cases | 4a |
Case series 20 to 50 cases | 4b |
Case series < 20 cases | 4c |
Case report | 4d |
Expert opinion without explicit critical appraisal, or based on physiology, bench research or “first principles” | 5 |
(b) Types of Study | Overall Evidence Grade |
Consistent RCT, cohort study, all or none *, decision rule validated in different populations | A |
Consistent retrospective cohort, exploratory cohort, ecological study, outcomes research, good laboratory study, case–control study, non-randomized controlled clinical trial/study; or extrapolations from level A studies | B |
Case series study or extrapolations from level B studies. | C |
Expert opinion without explicit critical appraisal, or based on physiology, bench research or first principles | D |
Overall Evidence Grade: C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Radiotherapy Treatment Protocol | Initial Surgery | Study Type | Number of Dogs | WHO STAGE of Melanoma | Response Rate | Median PFI in Days | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
48 Gy given in 12 fractions over 4 weeks (Monday/Wednesday/Friday schedule) at 4 Gy/fraction | Yes No recurrence included | PCS | 38 | I–III: numbers not specified | NE | 237 I: 564 I: 180 III: 201 | NE | NE for OMM | [59] | 4b |
36 Gy in 4 fractions of 9 Gy at 7 day intervals. Ipsilateral lymph nodes radiated in 17 dogs: 18–27 Gy in 2 or 5 fractions | Yes: 24 22 had recurrence | PCS | 36 | <III: 26 (72%) III: 9 (25%) Not staged: 1 (3%) | OR: 34 (94%) CR: 25 (69%) PR: 9 (25%) SD: 2 (6%) | NE | 147 (35–1491) | “Most dogs”: Grd 1 cutaneous Late radiation toxicities (necrosis): 2 | [57] | 4b |
24 Gy in 7 Gy fractions on day 0, 7 and 21 | Yes: 11 Only macroscopic disease included | PCS | 18 | I: 6 (33%) II: 6 (33%) III: 6 (33%) | OR: 14 (83%) CR: 9 (53%) PR: 5 (30%) SD: 3 (17%) | CR Regrowth: 2 (90 and 195) Disease free: 5 (270, 270, 405, 450, 570) Death from metastasis: 1 Death from intercurrent disease: 10 | 237 | Acute cutaneous Grd 1: 12 Grd 2: 5 Late radiation toxicity: Tooth root abscess (5 months later) Chronic sialocele abscessed (3 months later) | [58] | 4c |
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Electrochemotherapy Treatment Protocol | CT Drug and Dosage | Adjunctive Treatment | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median PFI (Range) in Days | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
Eight minutes after IV bleomycin, electropolation (BTX ECM 830) with each train of pulses: eight square wave monopolar pulses of 400 V (1000 V/cm) 100 μs long at 10 Hz. Number of trains applied varied according to tumor size, aiming to cover the whole tumor volume plus safety margins beyond it. A 6-needle electrode used for all cases, but for nasal duct invasion, the single needle electrode® was indicated | Bleomycin, IV, 15,000 IU/m2 | No | PCS | 67 | I: 11 (16%) II: 19 (29%) III: 26 (39%) IV: 11 (16%) | * OR: 47 (70%) CR: 14 (21%) PR: 33 (49%) SD: 11 (17%) PD: 9 (13%) | I: 330 (120–900) II: 210 (90–630) III: 120 (60–120) IV: 120 (30–120) | I: 495 (120–900) II: 270 (120–630) III: 225 (90–510) IV: 135 (60–210) | Bleeding, pain, difficulty eating | [22] | 4a |
Four sessions of ECT, 1 week apart. Five minutes after bleomycin, sequential bursts of eight biphasic pulses lasting 50 + 50 ms were applied at a voltage of 800 V/cm using modified caliper and needle electrodes using a Chemopulse. The pulse repetition frequency was 1 Hz, burst repetition frequency was 1 kHz, total burst duration of 7.1 ms | Bleomycin, IT and peri- tumor (1cm surrounding the tumor at 1.5 IU/mL | Surgery: pre-ECT in six dogs with subsequent local recurrence | PCS | 10 | II: 6 (60%) III: 4 (40%) | OR: 8 (80%) CR = 7 (70%) SD = 2 (20%) PR = 1 (10%) | NE | 180 (CI: 0–514) | Mucosal discoloration at tumor site: 3 | [61] | 4c |
Eight minutes after IV and IT bleomycin, electroporation (BTX ECM 830) pulses were administered using a 6-needle electrode. A train of 8 electric pulses (1000 V/cm, 100 microseconds, 10 Hz) was applied, covering the whole tumor | Bleomycin, IV, 15,000 IU/m2 after bleomycin, IT, 125 IU/cm³ of tumor | No | PNRCT | Control: 3 Study: 3 | Control: I:1 II: 2 Study: II: 1 III: 2 | Control I: SD II: PR (2) Study All: CR (3) | NE | NE | No toxicity or side effects | [62] | 3b |
At the time of surgery, 8 min after IV and IT bleomycin, electropolation (BTX ECM 830 square wave) using two types of electrodes 1) two-needle-array (BTX model 532), and 2) Petri Pulser Electrode was performed. Additional Rx on day 14 when metastasis detected in ln.: ECT with calcium ions (CaCl2 in low concentration at 5 mM, 10 mL delivered i.t.) performed directly on the metastatic lymph nodes and remaining tumor mass. Only two-needle-array electrodes were used and in each application the electric field was 8 square wave pulses of 100 μs each, delivered at 1 Hz and voltage of 650 V. | Bleomycin, 0.3 mg/kg IV and 3 mg/mL IT | Surgery: Debulking (CO2 laser, 0.25 mm spot diameter, in the continuous wave mode | Case report | 1 | IV: 1 | N/A | N/A | 60 day (euthanized due to unrelated seizures) | Inflammation and necrosis of tissue that received ECT | [63] | 4d |
Eight minutes after bleomycin, a 6-needle electrode applied 8 pulses of 1000 V/cm with a length interval of 100 µsec at a repetition frequency of 10 Hz, using a BTX ECM 830 | Bleomycin, IV, 15,000 IU/m2 | No | Case report | 1 | III | PR | NE | 33 (death due to unrelated condition) | Short-lived edema of the tongue | [64] | 4d |
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hyperthermia Treatment Protocol | Initial Surgery | Adjunctive Treatment Protocol | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median PFI in Days | Median Survival Time in Days | Adverse Events | Reference | LOE |
HT: 500 kHz high-frequency current or 2450 MHz microwaves. (1) 30 min at a minimum of 42 °C once weekly, immediately prior to radiotherapy (17) (2) 60 min at a minimum of 42 °C twice weekly, immediately prior to radiotherapy (5) (3) 60 min at a minimum of 42 °C twice weekly, 2–3 h after radiotherapy (1) | Yes, numbers not specified | RT to primary and accessible regional ln.: 36.8 Gy in 8 fractions of 4.6 Gy/fraction, twice weekly | PRCT | 29 RT alone: 11 RT & HT: 15 | Not specified | RT alone: OR: 11 (100%) CR: 2 (18%) PR: 9 (78%) RT and HT: OR: 15 (100%) CR: 12 (80%) PR: 3 (20%) | NE | RT alone: 262 RT and HT: 165 | NE | [65] | 2b |
1 or 2 treatments within 10–20 min of RT. Water was circulated at 40 °C | No | RT planned protocol: 36–40 Gys in 9–10 Gy fractions at weekly intervals over 4 weeks. Final dose for OMM not specified | PCS | 4 | Not specified | OR: 4 (100%) CR: 3 (75%) PR: 1 (25%) All showed recurrence | NE | NE | Erythema, mucositis, localized hair loss, tumor necrosis. Not specified for OMM | [66] | 4c |
Initiated 15 min after intratumoral cisplatin. Tumor goal temperature was 42 °C for 30 min at steady state | Yes, in some. All had post- surgical recurrence | Localized cisplatin therapy, q7 days, 4 consecutive weeks. Cisplatin formulated to deliver to 3.3 mg/mL with a collagen concentration of 32.5 mg/mL. Delivered into tumors until mixture extruded throughout the treatment volume | PCS | 3 | II: 2 IV: 1 | SD or PD: 3 | NE | 14, 112 and 168 | Grd 1: Local erythema: 1 Grd 2: patchy mucositis: 1 Grd 3: Confluent fibrinous mucositis: 1 | [67] | 4c |
Once a week for 3 sessions. Effective heating time: 45 min, from the first intra-tumoral temperature sensor reached ≥41 °C, or after 15 min of heating-up time had elapsed | RT: 32 Gy delivered in 4 × 8 Gy weekly Additionally: Metronomic chemo Temozolomide (2 cycles) | PCS | 1 | III | PR | 178 | 360 | Grd 1: Acute radiation therapy toxicity | [68] | 4d | |
Laser-induced HT: 60-Watt surgical diode laser with a spectral output of 810 nm (±20 nm), directed into a 4-way beamsplitter and launched through four 400-µm diameter quartz microlens fibers. Each tumor was treated with 500 mW/cm2 laser energy for 30 min, weekly for 4 treatments | Yes. Post- surgical recurrence | No | PCS | 1 | Not specified | PR | 21 | NE | Not reported for OMM | [69] | 4d |
Overall Evidence Grade: C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drug | Initial Surgery | CT Treatment Protocol | Adjunctive Therapy | Study Type | Number of Dogs | Stage of Melanoma Evaluated | Response Rate | Median DFI in Days | Survival Time in Days | Adverse Events | Reference | LOE |
Lupeol | Yes, all dogs | 10 mg/kg, SC, 1 week post-operatively. Initially administered twice a week for 2 weeks Then, decreased to once a week for 4 weeks; then alternate weeks for 8 weeks; then once a month for several months (≥2 administrations); finally, discontinued | 1 = melphalan and piroxicam 1 = photodynamic hyperthermal CT 1 = photodynamic hyperthermal therapy | PCS | 12 | I: 3 (25%) II: 5 (42%) III: 3 (25%) Not staged: 1 (8%) | CR: 1/11 (9%) PR: 10/11 (91%) | 170 | >180 after surgery: 10 All 10 still alive at the end of study | No severe adverse effects | [74] | 4c |
Overall Evidence Grade: C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median PFI in Days | Survival in Days | Adverse Events | Reference | LOE |
Xenogeneic human tyrosinase plasmid DNA vaccine with microseeding | Surgery | No | PCS | 4 | II: 1 (25%) III: 1 (25%) IV: 2 (50%) | CR: 1/4 (25%) PD 3/4 (75%) | II: 412 III: 57 IV: 0 | II: 412 + III: 367 IV: 14 and 101 | Local irritation at vaccine site within 24 h. Resolved at 2 week f/up. | [89] | 4c |
Overall Evidence Grade: B | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median DFI (Range) in Days | Median Survival Time (Range) in Days | Outcome (Other) | Adverse Events | Reference | LOE |
CSPG4-DNA vaccine with EP | Surgery (Curative intent and marginal excision) | RT and/or metronomic treatment (NSAID/CT) and/or CT and/or ECT | RCS | 82 CIS: 51 MES: 31 | I–IV not specified for patients receiving vaccine | CIS SD: 19 (37%) PD: 32 (63%) MES SD: 4 (13%) PD: 27 (87%) | CIS: 324 (37–2632) MES: 184 (13-1049) | CIS: 1333 (78–2632) MES: 470 (187-1063) | LRR: CIS: 45.1% MES: 54.8% CM: 51.3% IM: 82.4% | None | [93] | 4a |
hCSPG4-DNA vaccine with EP | Surgery | No | PNRCT | 42 V: 23 NV: 19 | V: II: 9 (39%) III: 14 (61%) NV: II: 6 (32%) III: 13 (68%) | NE | V: 477 (50–1694) NV: 180 (38-1250) | V: 684 (78–1694) NV: 220 (75-1507) | LRR: V: 34.8% NV: 42% LM: V: 39% NV: 79% | None | [92] | 3b |
hCSPG4-DNA vaccine with EP | Surgery | No | PNRCT | 33 V: 14 NV: 19 | V: II: 5 (36%) III: 9 (64%) NV: II: 5 (26%) III: 14 (74%) | NE | V: 477 (207–∞) NV: 180 (165–∞) | V: 653 (458–∞) NV: 224 (185–∞) | NE | Local: Transient erythema at injection site | [91] | 3b |
Overall Evidence Grade: B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Median Survival Time (Range) in Days | Median DFI (Range) in Days | Outcome (Other) | Adverse Events | Reference | LOE |
Local cIFNβ and suicide gene therapy (lipid-complexed thymidine kinase suicide gene plus ganciclovir) and Vaccine composed of tumor extracts and lipoplexes carrying hIL-2 and hGM-CSF genes =CT | Surgery | No | PNRCT Results not specific for OMM. OMM > 80% of cases | Total: 464 OMM: 400 S: 163 CS: 98 PS: 65 S-CT: 301 CS-CT: 185 PS-CT: 116 | CS: I & II: 41 (42%) III: 51 (52%) IV: 6 (6%) CS-CT: I & II: 75 (40.5%) III: 99 (53.5%) IV: 11 (6%) PS: I & II: 17 (26%) III: 41 (63%) IV: 7 (11%) PS-CT: II & III: 29 (25%) III: 75 (65%) IV: 12 (10%) | CS: 101 (11–568) CS-CT: 704 (99–2251) PS: 78 (29–206) PS-CT: 323 (46–1321) | CS: 62 (8–425) CS-CT: >2251 (69–2251) | Proportion local disease free: CS: 11% CS-CT: 83% Proportion metastasis free: CS: 44% CS-CT: 89% PS: 48% PS-CT: 82% | Induration at injection site (14%) & 24 hours lethargy (22%) Itching & swelling (19%) 12-36 hours after surgery | [105] | 3b |
Local cIFNβ plus bleomycin and suicide gene therapy (lipid-complexed thymidine kinase suicide gene plus ganciclovir) and (=CT) /or (=V) Vaccine composed of tumor extracts & lipoplexes carrying hIL-2 & hGM-CSF genes | Surgery | No | PNRCT Results not specific to OMM. OMM > 80% of cases | Total: 537 OMM: 439 S: 173 CS: 105 PS: 68 CS-V: 154 CS-CT: 98 PS-CT: 112 | CS: I & II: 41 (39%) III: 55 (52%) IV: 9 (9%) CS-V: I & II: 55 (36%) III: 87 (56%) IV: 12 (8%) CS-CT: I & II: 38 (39%) III: 51 (52%) IV: 9 (9%) PS: I & II: 24 (35%) III: 36 (53%) IV: 8 (12%) PS-CT: I & II: 42 (37%) III: 59 (53%) IV: 11 (10%) | CS: 95 (10–540) CS-V: 614 (121–1896) CS-CT: 880 (177–2129) PS: 77 (30–225) PS-CT: 415 (92–1781) | CS: 66 (8–425) CS-V: >1896 (49–1896) CS-CT: >2129 (46–2129) | Proportion local disease free: CS: 20% CS-V: 74% CS-CT: 89% Proportion metastasis free: CS: 45% CS-V: 84% CS-CT: 87% PS: 44% PS-CT: 80% | Edema & induration at vaccine site | [106] | 3b |
Overall Evidence Grade: B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
Chimeric rat-dog anti-PD-L1 monoclonal antibody (c4G12) | NE | RT and/or surgery and/or CT | PNRCT (Using a HCG) | Total: 44 SG: 29 HCG: 15 | SG: IV: 29 (100%) HCG: IV: 15 (100%) | Dogs with measurable disease (13/19) OR: 1/13 (8%) CR: 1/13 (8%) PD: 10/13 (77%) NE: 2/13 (15%) | SG: 143 (91–194) HCG: 54 (25-NA) | Anorexia: 1 Vomiting: 4 Diarrhea: 3 Thrombocytopaenia:2 Hypoalbuminaemia:1 Elevated ALT: 8 Elevated AST: 3 Elevated ALP: 1 Elevated lipase: 3 Elevated CPK: 1 Conjunctivitis: 1 Pneumonitis: 1 | [108] | 3b |
Chimeric rat-dog (ch-4F12-E6) Or caninized (ca-4F12-E6) anti-PD-1 monoclonal antibodies | NE | Surgery and/or RT and/or CT and/or DNA vaccine | PNRCT (using a HCG) | Total: 44 SG: 21 HCG: 23 | SG: III: 4 IV: 17 HCG: IV: 23 | Stage IV dogs with measurable disease (15/17) OR: 4/15 (26.7%) PR: 4/15 (26.7%) PD: 10/15 (66.7%) SD: 1/15 (6.6%) | SG (IV): 166 (56–307) HCG (IV): 55 (27–143) | Fatigue: Grd 1: 3 Grd 2: 1 Anorexia: Grd 1: 3 Fever: Grd 1: 4 Grd 2: 1 GI toxicity: Grd 1: 12 Tachypnoea: Grd 1: 2 Grd 2: 1 Tremor Grd 1: 1 Death: 1 (pneumonitis) | [110] | 3b |
Chimeric rat-dog anti-PD-L1 monoclonal antibody (c4G12) | NE | Yes Surgery and/or RT and/or CT | PCS | Total OMM: 7 | II: 1 (14%) II: 2 (29%) IV: 4 (57%) | II & III & IV: OR: 1/7 (14%) PR: 1/7 (14%) PD: 6/7 (86%) | NE | Diarrhea: Grd 1: 1 | [109] | 3b |
Stage IV OMM dogs then compared to a HCG =RCCS | SG: 4/7 HCG: 15 | SG: IV: 4 (100%) HCG: IV: 15 (100%) | NE | SG: 94 (89–220) HCG: 54 (7–111) | As above | [109] | 3b | |||
Chimeric mouse-dog anti-PDPN monoclonal antibody (P38Bf) | Surgery | RT & CT: 1 | PCS | 3 | I: 1 III: 1 IV: 1 | SD: 1 PD: 1 PD: 1 | NE | Increase in C-RP: 3 GI toxicity: Grd 2: 1 | [111] | 4c |
Overall Evidence Grade: B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Median Survival Time (Range) in Days | Outcome (Other) | Adverse Events | Reference | LOE |
Systemic Corynebacterium parvum | Surgery | No | PNRCT | 89 SG: 42 CG: 47 | SG: I: 17 (41%) II: 19 (45%) III: 6 (14%) CG: I: 21 (45%) II: 20 (42%) III: 6 (13%) | SG: I-III: 370 I: 360 II & III: 288 CG: I-III: 228 I: 559 II & III: 121 | Death due to OMM: SG: 57% CG: 75% | Nausea, vomiting or diarrhea within 12 hr. of injection. Injection site inflammation: 6 | [36] | 2b |
SG: 42 | SG: | SG: | SG: 57% | Inj. site inflammation: 6 | ||||||
I: 17 (41%) | I–III: 370 | |||||||||
II: 19 (45%) | I: 360 | |||||||||
III: 6 (14%) | II and III: 288 | |||||||||
CG: 47 | CG: | CG: | CG: 75% | |||||||
I: 21 (45%) | I–III: 228 | |||||||||
II: 20 (42%) | I: 559 | |||||||||
III: 6 (13%) | II and III: 121 | |||||||||
Local Corynebacterium parvum | Surgery | No | PCS | 8 | NE | NE | All dogs died from metastasis and/or reoccurrence mostly within 6 months of injections | NE | [112] | 4c |
Overall Evidence Grade: B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Response Rate | Median DFI (Range) in Days | Median Survival Time (Range) in Days | Adverse Events | Reference | LOE |
L-MTP-PE alone or with rcGM-CSF | Surgery | No | PRDBCT | Total: 98 SG: 25 CG: 25 | SG: I: 11 (44%) II: 8 (32%) III: 6 (24%) CG: I: 9 (36%) II: 11 (44%) III: 5 (20%) | NE | SG: I-III: 346 II & III: 152 I: NR II: 152 III: 85 CG: I-III: 174 II & III: 156 I: 396 II: 150 III: 147 | SG: I-III: 504 II & III: 258 I: NR II: 254 III: 338 CG: I-III: 271 II & III: 243 I: 414 II: 293 III: 157 | Elevation in body temp. (1–2 °C) lasting 1–4 h after treatment | [113] | 1b |
SG: 24 CG: 24 | SG: I: 13 (54%) II: 7 (29%) III: 4 (17%) CG: I: 12 (50%) II: 8 (33%) III: 4 (17%) | NE | SG: I-III: 212 II & III: 90 I: 489 II: 118 III: 35 CG: I-III: 290 II & III: 112 I: 532 II: 117 III: 92 | SG: I-III: 498 II & III: 286 I: 573 II: 261 III: NR CG: I-III: 501 II & III: 306 I: NR II: 228 III: 275 | Thrombocytopenia: 4 Anterior uveitis: 2 Lethargy & mild diarrhea: 2 Gastritis: 1 Polyuria & polydipsia: 1 | [113] | 1b | ||||
Interferon-alpha | Surgery | CT (carboplatin) | RCCS | 20 SG: 17 CG: 3 | II: 7 (35%) III: 12 (60%) IV: 1 (5%) | NE | NE | SG: 894 CG: 86 | Mild- moderate myelosuppression (carboplatin) | [114] | 2b |
rhTNF and rhIL-2 | NE | Surgery and/or RT and/or immunotherapy and/or HT | PCS | 13 | II: 7 (54%) III: 3 (23%) IV: 3 (23%) | OR 5/13 (38%) | NE | NE | Vomiting Diarrhea Fever Weakness 1 patient died (rhTNF) | [115] | 4c |
Overall Evidence Grade: D | |||||||||
---|---|---|---|---|---|---|---|---|---|
Immunotherapeutic Agent Evaluated | Primary Treatment | Adjunctive Therapy | Study Type | Number of Dogs | WHO Stage of Melanoma | Survival Time in Days | Adverse Events | Reference | LOE |
mNPH alone OR Plant-based VLP alone OR In combination | NE | No | Case report | 1 | NE | 780 | [117] | 4d | |
RT | Case report | 2 | NE | 1 dog: 150 (Unrelated cause-tumor free) 1 dog: NR (Tumor free at 600 days) | NE | [117] | 4d | ||
RT | Case report | 1 | NE | 300 (Unrelated cause -tumor free) | None | [117] | 4d | ||
mNPH alone or with VLP | NE | No | Case report | 1 | NE | 1350 | None | [116] | 4d |
HRT | Case report | 1 | NE | Alive & in remission at 540 | None | [116] | 4d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazzi, P.; Steenkamp, G.; Rixon, A.J. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet. Sci. 2022, 9, 196. https://doi.org/10.3390/vetsci9050196
Pazzi P, Steenkamp G, Rixon AJ. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Veterinary Sciences. 2022; 9(5):196. https://doi.org/10.3390/vetsci9050196
Chicago/Turabian StylePazzi, Paolo, Gerhard Steenkamp, and Anouska J. Rixon. 2022. "Treatment of Canine Oral Melanomas: A Critical Review of the Literature" Veterinary Sciences 9, no. 5: 196. https://doi.org/10.3390/vetsci9050196
APA StylePazzi, P., Steenkamp, G., & Rixon, A. J. (2022). Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Veterinary Sciences, 9(5), 196. https://doi.org/10.3390/vetsci9050196