Blood Metabolites and Feed Utilization Efficiency in Thai-Native-Anglo-Nubian Goats Fed a Concentrate Diet Including Yeast Fermented Palm Kernel Cake Instead of Soybean Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Preparation of Yeast Fermented Palm Kernel Cake (YFPKCP)
2.2. Animals, Experimental Design, and Feeding
2.3. Sample Collection and Sampling Procedures
2.4. Analyses Statistical
3. Results and Discussion
3.1. Feed Utilization Effectiveness
3.2. Rumen Fermentation Characteristics
3.3. Ruminal Volatile Fatty Acid (VFA) Profiles
3.4. Rumen Microorganisms
3.5. Glucose Concentration and Red Blood Cell Volume
3.6. Nitrogen Utilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, S.; Gipson, T. Current situation and future prospects of the US goat industry. Prof. Agric. Work. J. 2019, 6, 17. [Google Scholar]
- Hartley, C.W.S. The Oil Palm; Longman Scientific and Technical: Harlow, UK; Essex, UK; London, UK, 1988. [Google Scholar]
- Abdullah, N.; Hanita, H.; Kudo, Y.H.; Jalaludin, S.; Ivan, M. The effects of bentonite on rumen protozoal population and rumen fluid characteristics of sheep fed palm kernel cake. Asian-Australas. J. Anim. Sci. 1995, 8, 249–254. [Google Scholar] [CrossRef]
- Carvalho, L.P.F.; Melo, D.S.P.; Pereira, C.R.M.; Rodrigues, M.A.M.; Cabrita, A.R.J.; Fonseca, A.J.M. Chemical composition, in vivo digestibility, N degradability and enzymatic intestinal digestibility of five protein supplements. Anim. Feed Sci. Technol. 2005, 119, 171–178. [Google Scholar] [CrossRef]
- O’Mara, F.P.; Mulligan, F.J.; Cronin, E.J.; Rath, M.; Caffrey, P.J. The nutritive value of palm kernel meal measured in vivo and using rumen fluid and enzymatic techniques. Livest. Prod. Sci. 1999, 60, 305–316. [Google Scholar] [CrossRef]
- Punj, M.L. Coordinated Research Project on Utilization of Agriculture by-Products and Industrial Waste Material for Evolving Economic Rations for Livestock; Annual Progress Report; Kerala Vet College Trichur: Kerala, India, 1981. [Google Scholar]
- Mukendi, G.M.; Mitema, A.; Nelson, K.; Feto, N.A. Bacillus Species of Ruminant Origin as a Major Potential Sources of Diverse Lipolytic Enzymes for Industrial and Therapeutic Applications. Bacilli Agrobiotechnology 2022, 255–283. [Google Scholar] [CrossRef]
- Schlabitz, C.; Lehn, D.N.; de Souza, C.F.V. A review of Saccharomyces cerevisiae and the applications of its byproducts in dairy cattle feed: Trends in the use of residual brewer’s yeast. J. Clean. Prod. 2021, 332, 130059. [Google Scholar] [CrossRef]
- Carpinelli, N.A.; Halfen, J.; Trevisi, E.; Chapman, J.D.; Sharman, E.D.; Anderson, J.L.; Osorio, J.S. Effects of peripartal yeast culture supplementation on lactation performance, blood biomarkers, rumen fermentation, and rumen bacteria species in dairy cows. J. Dairy Sci. 2021, 104, 10727–10743. [Google Scholar] [CrossRef]
- Brossard, L.; Chaucheyras-Durand, F.; Michalet-Doreau, B.; Martin, C. Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: New type of interaction. J. Anim. Sci. 2006, 82, 829–836. [Google Scholar] [CrossRef]
- Acharya, B.R.; Pant, S.R. Feeding regime evaluation for cost-effective milk production technology for crossbred cattle in Chitwan condition. Natl. Workshop Livest. Fish. Res. Nepal. 2021, 3, 152. [Google Scholar]
- Yuan, K.; Liang, T.; Muckey, M.B.; Mendonça, L.G.D.; Hulbert, L.E.; Elrod, C.C.; Bradford, B.J. Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. J. Dairy Sci. 2015, 98, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Zaworski, E.M.; Shriver-Munsch, C.M.; Fadden, N.A.; Sanchez, W.K.; Yoon, I.; Bobe, G. Effects of feeding various dosages of Saccharomyces cerevisiae fermentation product in transition dairy cows. J. Dairy Sci. 2014, 97, 3081–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, C.M.; Goncalves, D.M.; Rodrigues, A.M.; Dias-da-Silva, A. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Anim. Feed Sci. Technol. 2007, 145, 27–40. [Google Scholar] [CrossRef]
- Sheppy, C. The current feed enzymes market and likely trends. In Enzymes in Farm Animal Nutrition; Bedford, M.R., Partridge, G.G., Eds.; CAB Inter: Meerut, India, 2001; pp. 1–10. [Google Scholar]
- Mullins, C.R.; Weber, D.; Block, E.; Smith, J.F.; Brouk, M.J.; Bradford, B.J. Supplementing lysine and methionine in a lactation diet containing a high concentration of wet corn gluten feed did not alter milk protein yield. J. Dairy Sci. 2013, 96, 5300–5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, J.; Benedito, J.L.; Abuelo, A.; Castillo, C. Ruminal acidosis in feedlot: From aetiology to prevention. Sci. World J. 2014, 2014, 702572. [Google Scholar] [CrossRef] [PubMed]
- Antai, S.P. Enrichment of nutrient quality of cassava (Manihot esculenta Crantz) with microbial proteins. Plant Foods Hum. Nutr. 1990, 40, 289–296. [Google Scholar] [CrossRef]
- Oboh, G.; Akindahunsi, A.A. Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisiae solid media fermentation. Food Chem. 2003, 82, 599–606. [Google Scholar] [CrossRef]
- Schneider, B.H.; Flatt, W.P. The Evaluation of Feed through Digestibility Experiment; The University of Georgia Press: Athens, GA, USA, 1975. [Google Scholar]
- Samuel, M.; Sagathewan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. 1967, 33, 361–365. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC: Arlington, VA, USA, 1998. [Google Scholar]
- SAS. SAS/STATTM User’s Guide (Release 6.03); SAS Institute Inc.: Cary, NC, USA, 1990. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometerial Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Saxena, S.K.; Otterby, D.E.; Donker, J.D.; Good, A.L. Effects of feeding alkali-treated oat straw supplemented with soybean meal or nonprotein nitrogen on growth of lambs and on certain blood and rumen liquor parameters. J. Anim. Sci. 1971, 33, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Huntington, G.B.; Archibeque, S.L. Practical aspects of urea and ammonia metabolism in ruminants. Proc. Am. Soc. Anim. Sci. 1999, 77, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.H. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 1986, 69, 2755–2766. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajun, R.; Khejornsart, P. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian-Australas. J. Anim. Sci. 2013, 26, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Polyorach, S.; Wanapat, M.; Cherdthong, A.; Kang, S. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Trop. Anim. Health Prod. 2016, 48, 593–601. [Google Scholar] [CrossRef]
- Forbes, J.M.; France, J. Quantitative Aspects of Ruminant Digestion and Metabolism; The University Press: Northampton, MA, USA; Cambridge, UK, 1993. [Google Scholar]
- Galbraith, H.; Miller, T.B. Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J. Appl. Bacteriol. 1973, 36, 635–642. [Google Scholar] [CrossRef]
- Abdullah, N.; Hutagalung, R.I. Rumen fermentation, urease activity and performance of cattle given palm kernel cake based diet. Anim. Feed Sci. Technol. 1988, 20, 79–86. [Google Scholar] [CrossRef]
- Preston, R.L.; Schnakanberg, D.D.; Pfander, W.H. Protein utilization in ruminants. Blood urea nitrogen as affected by protein intake. J. Nutr. 1965, 86, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J. Appendixes. In Clinical Biochemistry of Domestic Animals, 3rd ed.; Kaneko, J.J., Ed.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Arcos-García, J.L.; Castrejón, F.A.; Mendoz, G.D.; Pérez-Gavilán, E.P. Effect of two commercial yeast cultures with Saccharomyces cerevisiae on ruminal fermentation and digestion in sheep fed sugar cane tops. Livest. Prod. Sci. 2000, 83, 165–176. [Google Scholar] [CrossRef]
- Firat, A.; Ozpinar, A. The study of changes in some blood parameters (glucose, urea, bilirubin AST) during and after pregnancy in association with nutritional conditions and litter size in ewes. Turk. Vet. Anim. Sci. 1996, 20, 387–393. [Google Scholar] [CrossRef]
- Ford, E.J.; Evans, J.; Robinson, I. Cortisol in pregnancy toxemia of sheep. Br. Vet. J. 1990, 146, 539–542. [Google Scholar] [CrossRef]
- Hove, K.; Halse, K. Energy metabolism in ruminants with special reference on ketosis and fertility. In Proceedings of the 5th International Conference on Production Disease in Farm Animals, Uppsata, Sweden, 10–12 August 1983; pp. 115–123. [Google Scholar]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef]
- Mahardika, I.G.; Sastradipradja, D.; Sutardi, T.; Sumadi, I.K. Nutrient requirements of exercising Swamp buffalo, Bubalus bubalis II. Details of work energy of cows and its relation to heart rate. Asian-Australas. J. Anim. Sci. 2000, 13, 1003–1009. [Google Scholar] [CrossRef]
- Rasedee, A.; Zainal, J.A.; Ragavan, K.; Halmi, O. The effect of high and low protein diets on block parameters in lactating Friesian cow. Kajian Vet. Malays. 1982, 14, 5–13. [Google Scholar]
- Cherdthong, A.; Wanapat, M. Manipulation of in vitro ruminal fermentation and digestibility by dried rumen digesta. Livest. Sci. 2013, 153, 94–100. [Google Scholar] [CrossRef]
- Tamminga, S. A review on environmental impacts of nutritional strategies in ruminants. J. Anim. Sci. 1996, 74, 3112–3124. [Google Scholar] [CrossRef]
- Kang-Meznarich, J.H.; Broderick, G.A. Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. J. Anim. Sci. 1981, 51, 422–431. [Google Scholar] [CrossRef]
- Church, D.C. Digestive Physiology and Nutrition of Ruminants; O&B Books Inc.: Corvallis, OR, USA, 1979; Volume I. [Google Scholar]
- Gunun, P.; Gunun, N.; Wanapat, M.; Cherdthong, A.; Polyorach, S.; Sirilaophaisan, S.; Wachirapakorn, C.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan pee powder. J. Appl. Anim. Res. 2018, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Wanapat, M.; Cherdthorng, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fermentation efficiency and nutrient digestibility in dairy steers fed a high-concentrate diet. Anim. Feed Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wongwungchun, W.; Yeekeng, S.; Niltho, T.; Rakwongrit, D.; Khota, W.; Khantharin, S.; Tangmutthapattharakun, G.; Phesatcha, K.; et al. Effect of feeding feed blocks containing different levels of urea calcium sulphate mixture on feed intake, nutrients of digestibility and rumen fermentation in Thai native beef cattle fed on rice straw. Anim. Feed Sci. Technol. 2014, 198, 151–157. [Google Scholar] [CrossRef]
Chemical Composition | YFPKCP | Palm Kernel Cake | Yeast Powder |
---|---|---|---|
DM | 88.61 | 93.88 | 95.90 |
OM | 96.12 | 95.48 | 93.44 |
Ash | 3.88 | 4.52 | 6.56 |
CP | 41.67 | 17.32 | 46.97 |
EE | 5.40 | 5.02 | 3.12 |
NDF | 47.98 | 67.20 | NA |
ADF | 32.50 | 44.63 | NA |
Ca | 0.38 | 0.37 | NA |
P | 0.56 | 0.56 | NA |
Chemical Composition | YFPKCP Substitution SBM in Concentrate (%) | Plicatulum Hay | ||||
---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | ||
DM | 85.92 | 84.17 | 85.81 | 84.48 | 85.67 | 92.35 |
Ash | 6.45 | 6.55 | 6.13 | 6.43 | 6.53 | 8.37 |
OM | 93.55 | 93.45 | 93.87 | 93.57 | 93.47 | 91.63 |
CP | 15.56 | 15.20 | 15.42 | 15.36 | 15.33 | 3.42 |
EE | 3.96 | 4.22 | 4.17 | 4.74 | 5.82 | 0.72 |
NDF | 17.96 | 20.49 | 23.51 | 25.62 | 27.70 | 81.38 |
ADF | 5.97 | 7.03 | 8.00 | 8.69 | 9.44 | 50.02 |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
DMI | ||||||||
Plicatulum hay, kg/d | 0.334 | 0.281 | 0.248 | 0.276 | 0.286 | 0.031 | NS | NS |
%BW | 1.18 | 0.99 | 0.89 | 1.01 | 1.03 | 0.13 | NS | NS |
g/kg BW0.75 | 27.19 | 22.88 | 20.54 | 23.12 | 23.64 | 2.74 | NS | NS |
Concentrate, kg/d | 0.518 | 0.517 | 0.499 | 0.502 | 0.513 | 0.038 | NS | NS |
%BW | 1.83 | 1.82 | 1.78 | 1.83 | 1.83 | 0.22 | NS | NS |
g/kg BW0.75 | 42.25 | 42.09 | 40.83 | 41.88 | 42.12 | 0.09 | NS | NS |
Total DMI, kg/d | 0.852 | 0.798 | 0.747 | 0.778 | 0.799 | 0.06 | NS | NS |
DMI, %BW | 3.01 | 2.82 | 2.67 | 2.84 | 2.86 | 0.20 | NS | NS |
DMI, g/kg BW0.75 | 69.45 | 64.98 | 61.38 | 65.01 | 65.76 | 4.49 | NS | NS |
OMI, kg/d | 0.794 | 0.747 | 0.710 | 0.706 | 0.742 | 0.05 | NS | NS |
CPI, g/d | 97 | 92 | 86 | 87 | 88 | 0.01 | NS | NS |
NDFI, kg/d | 0.439 | 0.425 | 0.417 | 0.489 | 0.497 | 0.03 | NS | NS |
Apparent digestibility, % | ||||||||
DM | 73.15 a | 73.02 a | 74.29 a | 74.78 a | 67.35 b | 1.56 | 0.07 | * |
OM | 74.56 a | 74.19 a | 75.86 a | 76.14 a | 69.09 b | 1.47 | 0.08 | * |
CP | 68.52 a | 70.18 a | 72.71 a | 69.63 a | 61.01 b | 1.97 | * | NS |
NDF | 67.42 b | 66.71 b | 68.32 b | 73.03 a | 62.26 c | 1.41 | NS | * |
ADF | 59.92 ab | 57.22 ab | 61.26 ab | 63.39 a | 53.64 b | 2.40 | NS | NS |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
Temperature, °C | ||||||||
0 h-post feeding | 39.1 | 39.3 | 39.4 | 39.2 | 39.2 | 0.33 | NS | NS |
4 h-post feeding | 39.8 | 39.6 | 39.2 | 39.4 | 39.7 | 0.23 | NS | NS |
Mean | 39.4 | 39.4 | 39.3 | 39.3 | 39.4 | 0.16 | NS | NS |
Ruminal pH | ||||||||
0 h-post feeding | 6.86 | 6.84 | 6.93 | 6.88 | 6.87 | 0.06 | NS | NS |
4 h-post feeding | 6.36 | 6.22 | 6.22 | 6.23 | 6.31 | 0.05 | NS | NS |
Mean | 6.61 | 6.53 | 6.57 | 6.55 | 6.59 | 0.06 | NS | NS |
Ammonia-nitrogen, mg/dL | ||||||||
0 h-post feeding | 18.57 | 17.43 | 14.86 | 17.43 | 16.29 | 1.18 | NS | NS |
4 h-post feeding | 14.86 | 16.00 | 14.00 | 14.29 | 12.00 | 1.48 | NS | NS |
Mean | 16.71 | 16.71 | 14.43 | 15.86 | 14.14 | 1.13 | NS | NS |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
Total volatile fatty acid (VFA), mmol/L | ||||||||
0 h-post feeding | 73.0 | 73.9 | 69.6 | 79.2 | 76.3 | 4.47 | NS | NS |
4 h-post feeding | 78.0 | 82.3 | 80.3 | 79.2 | 76.3 | 4.23 | NS | NS |
Mean | 75.5 | 78.1 | 75.0 | 79.2 | 76.3 | 4.58 | NS | NS |
Molar proportion of VFA, mol/100 mol | ||||||||
Acetate (C2) | ||||||||
0 h-post feeding | 60.2 | 60.6 | 61.1 | 62.1 | 60.4 | 0.44 | NS | NS |
4 h-post feeding | 64.3 | 64 | 63.4 | 63.1 | 63.0 | 1.57 | NS | NS |
Mean | 62.3 | 62.3 | 62.3 | 62.6 | 61.7 | 0.84 | NS | NS |
Propionate (C3) | ||||||||
0 h-post feeding | 29.5 | 29.8 | 28.5 | 28 | 29.3 | 0.47 | NS | NS |
4 h-post feeding | 24.6 | 23.9 | 23.9 | 24.4 | 24.5 | 0.67 | NS | NS |
Mean | 27.1 | 26.9 | 26.2 | 26.2 | 26.9 | 0.41 | NS | NS |
Butyrate (C4) | ||||||||
0 h-post feeding | 10.4 | 9.5 | 10.4 | 10 | 10.3 | 0.62 | NS | NS |
4 h-post feeding | 11 | 11.9 | 12.6 | 12.5 | 12.5 | 0.40 | NS | NS |
Mean | 10.7 | 10.7 | 11.5 | 11.3 | 11.4 | 0.32 | NS | NS |
C2:C3 ratio | ||||||||
0 h-post feeding | 2.0 | 2.0 | 2.1 | 2.2 | 2.1 | 0.12 | NS | NS |
4 h-post feeding | 2.6 | 2.7 | 2.7 | 2.6 | 2.6 | 0.14 | NS | NS |
Mean | 2.3 | 2.3 | 2.4 | 2.4 | 2.3 | 0.10 | NS | NS |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
Total direct count | ||||||||
Bacteria (×1010 cell/mL) | ||||||||
0 h-post feeding | 1.8 b | 2.6 ab | 3.0 a | 3.2 a | 3.5 a | 0.30 | * | NS |
4 h-post feeding | 2.8 b | 3.2 b | 3.7 ab | 4.4 a | 4.5 a | 0.34 | * | NS |
Mean | 2.3 b | 2.9 b | 3.4 ab | 3.8 a | 4.4 a | 0.38 | * | NS |
Total protozoa (×106 cell/mL) | ||||||||
0 h-post feeding | 2.8 | 2.5 | 2.4 | 2.2 | 2.2 | 0.26 | 0.09 | NS |
4 h-post feeding | 3.1 | 3.4 | 3.1 | 2.6 | 2.6 | 0.32 | 0.10 | NS |
Mean | 3.0 | 2.9 | 2.7 | 2.4 | 2.3 | 0.26 | 0.07 | NS |
Fungal zoospores (×105 cell/mL) | ||||||||
0 h-post feeding | 2.3 b | 2.5 b | 3.1 ab | 3.7 b | 3.9 b | 0.28 | * | NS |
4 h-post feeding | 2.7 b | 2.5 b | 3.5 ab | 4.8 a | 4.9 a | 0.44 | * | NS |
Mean | 2.5 b | 2.5 b | 3.3 ab | 4.3 a | 4.4 a | 0.36 | * | NS |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
Glucose, mg/dL | ||||||||
0 h-post feeding | 64.74 | 61.84 | 64.00 | 64.00 | 62.74 | 1.41 | NS | NS |
4 h-post feeding | 64.60 | 66.00 | 66.00 | 67.72 | 65.80 | 1.06 | NS | NS |
Mean | 64.67 | 63.92 | 65.00 | 65.00 | 64.27 | 1.07 | NS | NS |
Packed cell volume (PCV),% | ||||||||
0 h-post feeding | 28.60 | 26.80 | 27.80 | 28.80 | 28.70 | 0.72 | NS | NS |
4 h-post feeding | 29.56 | 30.55 | 28.75 | 29.50 | 29.52 | 0.55 | NS | NS |
Mean | 29.08 | 28.67 | 28.27 | 29.15 | 29.11 | 0.53 | NS | NS |
Blood urea nitrogen (BUN), mg/dL | ||||||||
0 h-post feeding | 20.35 a | 21.20 a | 18.41 b | 19.94 a | 20.22 a | 0.45 | NS | * |
4 h-post feeding | 20.93 | 20.95 | 19.94 | 22.15 | 21.50 | 1.62 | NS | NS |
Attribute | YFPKCP Substitution SBM in Concentrate (%) | Contrast | ||||||
---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | SEM | L | Q | |
Nitrogen (N) balance, g/d | ||||||||
Total N intake | 15.55 | 14.72 | 13.92 | 13.92 | 14.16 | 1.09 | NS | NS |
N excretion, g/d | ||||||||
Fecal N | 4.80 ab | 4.33 bc | 3.74 c | 4.15 bc | 5.50 a | 0.25 | NS | ** |
Urinary N | 2.01 a | 1.41 b | 1.49 b | 1.06 b | 1.33 b | 0.14 | ** | 0.10 |
Absorbed N | 10.70 | 10.38 | 10.18 | 9.80 | 8.66 | 0.96 | NS | NS |
Retained N | 8.69 | 8.97 | 8.69 | 8.74 | 7.32 | 0.86 | NS | NS |
N output (% of N intake) | ||||||||
Absorbed | 68.51 a | 70.18 a | 72.72 a | 69.14 a | 61.02 b | 1.96 | * | ** |
Retained | 55.49 ab | 60.11 a | 62.08 a | 62.17 a | 51.59 b | 2.01 | NS | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanjula, P.; Supapong, C.; Hamchara, P.; Cherdthong, A. Blood Metabolites and Feed Utilization Efficiency in Thai-Native-Anglo-Nubian Goats Fed a Concentrate Diet Including Yeast Fermented Palm Kernel Cake Instead of Soybean Meal. Vet. Sci. 2022, 9, 235. https://doi.org/10.3390/vetsci9050235
Chanjula P, Supapong C, Hamchara P, Cherdthong A. Blood Metabolites and Feed Utilization Efficiency in Thai-Native-Anglo-Nubian Goats Fed a Concentrate Diet Including Yeast Fermented Palm Kernel Cake Instead of Soybean Meal. Veterinary Sciences. 2022; 9(5):235. https://doi.org/10.3390/vetsci9050235
Chicago/Turabian StyleChanjula, Pin, Chanadol Supapong, Puwadon Hamchara, and Anusorn Cherdthong. 2022. "Blood Metabolites and Feed Utilization Efficiency in Thai-Native-Anglo-Nubian Goats Fed a Concentrate Diet Including Yeast Fermented Palm Kernel Cake Instead of Soybean Meal" Veterinary Sciences 9, no. 5: 235. https://doi.org/10.3390/vetsci9050235
APA StyleChanjula, P., Supapong, C., Hamchara, P., & Cherdthong, A. (2022). Blood Metabolites and Feed Utilization Efficiency in Thai-Native-Anglo-Nubian Goats Fed a Concentrate Diet Including Yeast Fermented Palm Kernel Cake Instead of Soybean Meal. Veterinary Sciences, 9(5), 235. https://doi.org/10.3390/vetsci9050235