Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Isolation and Identification
2.2.1. Methicillin-Resistant Staphylococcus (MRS)
2.2.2. Vancomycin-Resistant Enterococcus (VRE)
2.2.3. Extended-Spectrum ß-Lactamase-Producing Enterobacteriaceae (ESBL)
2.2.4. Carbapenemase-Producing Enterobacteriaceae (CPE)
2.2.5. Colistin-Resistant Enterobacteriaceae
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, A.N.; Stewart, J.R.; Evans, J.C.; Gibson, J.M. Risk of Antibiotic-Resistant Staphylococcus aureus Dispersion from Hog Farms: A Critical Review. Risk Anal. 2020, 8, 1645–1665. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spect. 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- De Koster, S.; Ringenier, M.; Lammens, C.; Stegeman, A.; Tobias, T.; Velkers, F.; Vernooij, H.; Kluytmans-van den Bergh, M.; Kluytmans, J.; Dewulf, J.; et al. ESBL-Producing, Carbapenem- and Ciprofloxacin-Resistant Escherichia coli in Belgian and Dutch Broiler and Pig Farms: A Cross-Sectional and Cross-Border Study. Antibiotics 2021, 8, 945. [Google Scholar] [CrossRef]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 2, 12. [Google Scholar] [CrossRef]
- Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics 2021, 6, 676. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report for 2020. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2020 (accessed on 7 February 2022).
- Hernández-Porto, M.; Lecuona, M.; Aguirre-Jaime, A.; Castro, B.; Delgado, T.; Cuervo, M.; Pedroso, Y.; Arias, Á. Antimicrobial resistance and molecular analysis of methicillin-resistant Staphylococcus aureus collected in a Spanish hospital. Microb. Drug. Resist. 2015, 2, 201–208. [Google Scholar] [CrossRef]
- Morcillo, A.; Castro, B.; Rodríguez-Álvarez, C.; González, J.C.; Sierra, A.; Montesinos, M.I.; Abreu, R.; Arias, A. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus in pigs and pig workers in Tenerife, Spain. Foodborne. Pathog. Dis. 2012, 3, 207–210. [Google Scholar] [CrossRef]
- Reynaga, E.; Navarro, M.; Vilamala, A. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect. Dis. 2016, 16, 716. [Google Scholar] [CrossRef] [Green Version]
- Benrabia, I.; Hamdi, T.M.; Shehata, A.A.; Neubauer, H.; Wareth, G. Methicillin-Resistant Staphylococcus aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Vet. Sci. 2020, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Mukherjee, S.; Hsu, C.H.; Davis, J.A.; Tran, T.T.T.; Yang, Q.; Abbott, J.W. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010–2011. Food Microbiol. 2017, 62, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Sergelidis, D.; Angelidis, A.S. Methicillin-resistant Staphylococcus aureus: A controversial food-borne pathogen. Lett. Appl. Microbiol. 2017, 6, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, R.; Rodríguez-Álvarez, C.; Lecuona, M.; Castro-Hernández, B.; González, J.C.; Aguirre-Jaime, A.; Arias, Á. Prevalence and characteristics of methicillin-resistant staphylococci in goats on the island of Tenerife, Spain. Acta Vet. Hung. 2019, 3, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Coleman, D.C. Staphylococcal cassette chromosome mec: Recent advances and new insights. Int. J. Med. Microbiol. 2013, 303, 350–359. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Argudin, M.A.; Haesebrouck, F.; Butaye, P. Molecular epidemiology of methicillin-resistant Staphylococcus sciuri in healthy chickens. Vet. Microbiol. 2014, 171, 357–363. [Google Scholar] [CrossRef]
- Bager, F.; Madsen, M.; Christensen, J.; Aarestrup, F.M. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev. Vet. Med. 1997, 31, 95–112. [Google Scholar] [CrossRef]
- Aarestrup, F.M. Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: Genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J. Clin. Microbiol. 2000, 38, 2774–2777. [Google Scholar] [CrossRef] [Green Version]
- Birkegård, A.C.; Græsbøll, K.; Clasen, J.; Halasa, T.; Toft, N.; Folkesson, A. Continuing occurrence of vancomycin resistance determinants in Danish pig farms 20 years after removing exposure to avoparcin. Vet. Microbiol. 2019, 232, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Xuan, H.; Yao, X.; Pan, R.; Gao, Y.; Wei, J.; Shao, D.; Liu, K.; Li, Z.; Qiu, Y.; Ma, Z.; et al. Antimicrobial resistance in Enterococcus faecium and Enterococcus faecalis isolates of swine origin from eighteen provinces in China. J. Vet. Med. Sci. 2021, 12, 1952–1958. [Google Scholar] [CrossRef]
- Madueño, A.; González, J.; Fernández-Romero, S.; Oteo, J.; Lecuona, M. Dissemination and clinical implications of multidrug-resistant Klebsiella pneumoniae isolates producing OXA-48 in a Spanish hospital. J. Hosp. Infect. 2017, 2, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.; Castro, B.; Espigares, E.; Rodríguez-Álvarez, C.; Lecuona, M.; Moreno, E.; Espigares, M.; Arias, A. Prevalence of CTX-M-Type extended-spectrum β-lactamases in Escherichia coli strains isolated in poultry farms. Foodborne. Pathog. Dis. 2014, 11, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Hille, K.; Ruddat, I.; Mellmann, A.; Köck, R.; Kreienbrock, L. Simultaneous occurrence of MRSA and ESBL-producing Enterobacteriaceae on pig farms and in nasal and stool samples from farmers. Vet Microbiol. 2017, 200, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect Dis. 2016, 2, 161–168. [Google Scholar] [CrossRef]
- Stefaniuk, E.M.; Tyski, S. Colistin Resistance in Enterobacterales Strains—A Current View. Pol. J. Microbiol. 2019, 4, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurostat 2022. Agricultural Production—Livestock and Meat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_livestock_and_meat#Livestock_population (accessed on 7 February 2022).
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 3, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Public Databases for Molecular Typing and Microbial Genome Diversity. Available online: https://pubmlst.org/ (accessed on 15 April 2020).
- Clinical and Laboratory Standards Institute CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020. Available online: http://www.eucast.org (accessed on 25 April 2020).
- Broens, E.M.; Graat, E.A.; Van Der Wolf, P.J.; Van de Giessen, A.W.; De Jong, M.C. Transmission of methicillin resistant Staphylococcus aureus among pigs during transportation from farm to abattoir. Vet. J. 2011, 3, 302–305. [Google Scholar] [CrossRef]
- Jeżak, K.; Kozajda, A. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Environ. Sci. Pollut. Res. Int. 2022, 7, 9533–9559. [Google Scholar] [CrossRef]
- Back, S.H.; Eom, H.S.; Lee, H.H.; Lee, G.Y.; Park, K.T.; Yang, S.J. Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: Antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. J. Vet. Sci. 2020, 1, e2. [Google Scholar] [CrossRef]
- Sahibzada, S.; Pang, S.; Hernández-Jover, M.; Jordan, D.; Abraham, S.; O’Dea, M.; Heller, J. Prevalence and antimicrobial resistance of MRSA across different pig age groups in an intensive pig production system in Australia. Zoonoses Public Health 2020, 5, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Gioffrè, A.; Visaggio, D.; Gherardi, M.; Pavia, G.; Samele, P.; Ciambrone, L.; di Natale, R.; Spatari, G.; Casalinuovo, F.; et al. Prevalence, molecular epidemiology, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus from swine in southern Italy. BMC Microbiol. 2019, 1, 51. [Google Scholar] [CrossRef] [PubMed]
- Dierikx, C.M.; Hengeveld, P.D.; Veldman, K.T.; de Haan, A.; van der Voorde, S.; Dop, P.Y.; Bosch, T.; van Duijkeren, E. Ten years later: Still a high prevalence of MRSA in slaughter pigs despite a significant reduction in antimicrobial usage in pigs the Netherlands. J. Antimicrob. Chemother. 2016, 9, 2414–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinlapasorn, S.; Lulitanond, A.; Angkititrakul, S.; Chanawong, A.; Wilailuckana, C.; Tavichakorntrakool, R.; Chindawong, K.; Seelaget, C.; Krasaesom, M.; Chartchai, S.; et al. SCCmec IX in meticillin-resistant Staphylococcus aureus and meticillin-resistant coagulase-negative staphylococci from pigs and workers at pig farms in Khon Kaen, Thailand. J. Med. Microbiol. 2015, 9, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.W.; Jung, M.; Won, H.G.; Belaynehe, K.M.; Yoon, I.J.; Yoo, H.S. Characteristics of Transmissible CTX-M- and CMY-Type β-Lactamase-Producing Escherichia coli Isolates Collected from Pig and Chicken Farms in South Korea. J. Microbiol. Biotechnol. 2017, 9, 1716–1723. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaeghen, W.; Vandendriessche, S.; Crombé, F.; Dispas, M.; Denis, O.; Hermans, K.; Haesebrouck, F.; Butaye, P. Species and staphylococcal cassette chromosome mec (SCCmec) diversity among methicillin-resistant non-Staphylococcus aureus staphylococci isolated from pigs. Vet. Microbiol. 2012, 158, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, W.; Van Gompel, L.; Schmitt, H.; Liakopoulos, A.; Heres, L.; Urlings, B.A.; Mevius, D.; Bonten, M.J.M.; Heederik, D.J.J. ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol. Infect. 2017, 10, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Misic, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 8, 1676. [Google Scholar] [CrossRef]
- Roschanski, N.; Hadziabdic, S.; Borowiak, M.; Malorny, B.; Tenhagen, B.A.; Projahn, M.; Kaesbohrer, A.; Guenther, S.; Szabo, I.; Roesler, U.; et al. Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production. mSphere 2019, 3, e00089-19. [Google Scholar]
- Badul, S.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa. Microorganisms 2021, 5, 882. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Sanidad. Plan Nacional Frente a la Resistencia a los Antibióticos Medioambiente (PRAN-MA) 2022. INFORME 1.1: Estudio de las Principales Fuentes de Emisión, Rutas de Dispersión y vias de Exposición a los Antimicrobianos, Bacterias Resistentes y Genes de Resistencia Antimicrobiana Para Personas y Animales. Available online: https://resistenciaantibioticos.es/es/system/files/field/files/1.1_informe-pran-ma_fuentes-de-emision.pdf?file=1&type=node&id=785&force=0 (accessed on 11 April 2022).
- ECDC/EFSA/EMA REPORT. Antimicrobial Consumption and Resistance in Bacteria from Humans and Animals JIACRA III 2016–2018. Third Joint Inter-Agency Report on Integrated Analysis of Antimicrobial Agent Consumption and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing Animals in the EU/EEA. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/JIACRA-III-Antimicrobial-Consumption-and-Resistance-in-Bacteria-from-Humans-and-Animals.pdf (accessed on 11 April 2022).
Microorganism | Positive Samples No (%) |
---|---|
Staphylococcus sciuri | 12 (54.5) |
Staphylococcus haemolyticus | 4 (18.2) |
Staphylococcus lentus | 2 (9.1) |
Staphylococcus gallinarum | 2 (9.1) |
Staphylococcus warneri | 2 (9.1) |
Antibiotic | MRSA | MRCoNS |
---|---|---|
Resistant No (%) | Resistant No (%) | |
Benzylpenicillin | 164 (100) | 22 (100) |
Oxacillin | 164 (100) | 22 (100) |
Gentamicin | 98 (59.8) | 0 (0) |
Tobramycin | 102 (62.2) | 0 (0) |
Levofloxacin | 16 (9.8) | 2 (9,1) |
Erythromycin | 30 (18.3) | 0 (0) |
Clindamycin | 130 (79.3) | 16 (72.7) |
Linezolid | 0 (0) | 0 (0) |
Daptomycin | 0 (0) | 0 (0) |
Teicoplanin | 0 (0) | 0 (0) |
Vancomycin | 0 (0) | 0 (0) |
Tigecycline | 22 (13.4) | 0 (0) |
Fosfomycin | 72 (43.9) | 18 (81.8) |
Fusidic acid | 0 (0) | 14 (63.6) |
Mupirocin | 0 (0) | 0 (0) |
Rifampicin | 0 (0) | 0 (0) |
Cotrimoxazole | 100 (60.9) | 5 (22.7) |
Microorganisms | Resistance Pattern * | Number |
---|---|---|
MRSA | PG + OXA + GM + TM + CC + STX | 82 |
MRSA | PG + OXA + CC + FM + NI | 32 |
MRSA | PG + OXA + LV + E + TGC | 12 |
MRSA | PG + OXA + GM + TM + STX | 6 |
MRSA | PG + OXA + GM + TM + CC | 6 |
MRSA | PG + OXA + E + TGC + FM | 6 |
MRSA | PG + OXA + E + CC + FM + STX | 6 |
MRSA | PG + OXA + E + TGC + FM + STX | 4 |
MRSA | PG + OXA + GM + TM | 2 |
MRSA | PG + OXA + GM + TM + CC + FM | 2 |
MRSA | PG + OXA + E + CC + FM | 2 |
MRSA | PG + OXA + TM + LV | 2 |
MRSA | PG + OXA + TM + LV + STX | 2 |
MRCoNS | PG + OXA + E + CC+ FM + STX | 9 |
MRCoNS | PG + OXA + CC + E + FM | 8 |
MRCoNS | PG + OXA + E + CC+ FM + FA + STX | 3 |
MRCoNS | PG + OXA + E + FM | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, R.; Rodríguez-Álvarez, C.; Castro-Hernandez, B.; Lecuona-Fernández, M.; González, J.C.; Rodríguez-Novo, Y.; Arias Rodríguez, M.d.l.A. Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife. Vet. Sci. 2022, 9, 269. https://doi.org/10.3390/vetsci9060269
Abreu R, Rodríguez-Álvarez C, Castro-Hernandez B, Lecuona-Fernández M, González JC, Rodríguez-Novo Y, Arias Rodríguez MdlA. Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife. Veterinary Sciences. 2022; 9(6):269. https://doi.org/10.3390/vetsci9060269
Chicago/Turabian StyleAbreu, Rossana, Cristobalina Rodríguez-Álvarez, Beatriz Castro-Hernandez, Maria Lecuona-Fernández, Juan Carlos González, Yurena Rodríguez-Novo, and Maria de los Angeles Arias Rodríguez. 2022. "Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife" Veterinary Sciences 9, no. 6: 269. https://doi.org/10.3390/vetsci9060269
APA StyleAbreu, R., Rodríguez-Álvarez, C., Castro-Hernandez, B., Lecuona-Fernández, M., González, J. C., Rodríguez-Novo, Y., & Arias Rodríguez, M. d. l. A. (2022). Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife. Veterinary Sciences, 9(6), 269. https://doi.org/10.3390/vetsci9060269