Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Data and Sample Collection
2.3. Biochemical Analysis
2.4. Gene Expression Analysis of Placenta
2.5. Statistical Analysis
3. Results
3.1. Maternal, Placental, Neonatal Characteristics
3.2. Lipids and Lipid-Related Hormones and Adipokines in Maternal and Fetal Serum and Placenta Homogenate
3.3. Oxidant/Antioxidant Status in Maternal and Fetal Serum and Placenta Homogenate
3.4. Pro-Inflammatory Cytokines in Maternal and Fetal Serum and Placenta Homogenate
3.5. Inflammatory Genes’ Expression in Placenta
4. Discussion
4.1. Effects of Backfat Thickness on Reproductive Performance
4.2. Effects of Backfat Thickness on Lipid-Related Hormones and Adipokines
4.3. Effects of Backfat Thickness on Oxidant/Antioxidant Status and Pro-Inflammatory Cytokines
4.4. Effects of Backfat Thickness on Inflammatory Genes’ Expression in Placenta
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.L.; Gu, X.L.; Wang, J.; Liao, S.; Duan, Y.H.; Li, H.; Song, Z.H.; He, X.; Fan, Z.Y. Effects of dietary isomaltooligosaccharide levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring. Front. Microbiol. 2021, 11, 588986. [Google Scholar] [CrossRef] [PubMed]
- Skorjanc, D.; Hohler, M.; Brus, M. Effect of backfat loss during lactation on weaning-to-oestrus interval of sows at gonadotropin application. Arch. Anim. Breed. 2008, 51, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Roongsitthichai, A.; Koonjaenak, S.; Tummaruk, P. Backfat thickness at first insemination affects litter size at birth of the first parity sow. Kasetsart J.—Nat. Sci. 2010, 44, 1128–1136. [Google Scholar]
- Zhou, Y.F.; Xu, T.; Cai, A.L.; Wu, Y.H.; Wei, H.K.; Jiang, S.W.; Peng, J. Excessive backfat of sows at 109 d of gestation induces lipotoxic placental environment and is associated with declining reproductive performance. J. Anim. Sci. 2018, 96, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.L.; Pei, T.J.; Li, Y.J.; Cao, Q.; Fu, J. Androgen levels in the fetal cord blood of children born to women with polycystic ovary syndrome: A meta-analysis. Reprod. Biol. Endocrinol. 2020, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.H.; Liu, S.J.; Liu, H.S.; Mahfuz, S.; Piao, X.H. Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. J. Anim. Sci. Biotechnol. 2021, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Thorsell, A.; Natt, D. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function. Environ. Epigenet. 2016, 2, dvw012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, T.; Tan, B.; Murtaza, G.; Metwally, E.; Yang, H.S.; Kalhoro, M.S.; Kalhoro, D.H.; Chughtai, M.I.; Yin, Y.L. Role of dietary amino acids and nutrient sensing system in pregnancy associated disorders. Front. Pharmacol. 2020, 11, 586979. [Google Scholar] [CrossRef]
- Kim, K.H.; Hosseindoust, A.; Ingale, S.L.; Lee, S.H.; Noh, H.S.; Choi, Y.H.; Jeon, S.M.; Kim, Y.H.; Chae, B.J. Effects of gestational housing on reproductive performance and behavior of sows with different backfat thickness. Asian-Australas. J. Anim. Sci. 2016, 29, 142–148. [Google Scholar] [CrossRef]
- Wilson, M.E.; Biensen, N.J.; Ford, S.P. Novel insight into the control of litter size in pigs, using placental efficiency as a selection tool. J. Anim. Sci. 1999, 77, 1654–1658. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Zhang, S.; Johnston, L.J.; Levesque, C.L.; Yin, J.D.; Bing, D. A systematic review and meta-analysis of dietary fat effects on reproductive performance of sows and growth performance of piglets. J. Anim. Sci. Biotechnol. 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Clowes, E.J.; Aherne, F.X.; Foxcroft, G.R.; Baracos, V.E. Selective protein loss in lactating sows is associated with reduced litter growth and ovarian function. J. Anim. Sci. 2003, 81, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.P.; Long, N.M. Evidence for similar changes in offspring phenotype following either maternal undernutrition or overnutrition: Potential impact on fetal epigenetic mechanisms. Reprod. Fertil. Dev. 2011, 24, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Roongsitthichai, A.; Tummaruk, P. Importance of backfat thickness to reproductive performance in female pigs. Thai. J. Vet. Med. 2014, 44, 171–178. [Google Scholar]
- Tarres, J.; Tibau, J.; Piedrafita, J.; Fabrega, E.; Reixach, J. Factors affecting longevity in maternal Duroc swine lines. Livest. Sci. 2006, 100, 121–131. [Google Scholar] [CrossRef]
- Hu, C.J.; Yang, Y.Y.; Deng, M.; Yang, L.F.; Shu, G.; Jiang, Q.Y.; Zhang, S.; Li, X.Z.; Tan, C.Q.; Wu, G.Y. Placentae for low birth weight piglets are vulnerable to oxidative stress, mitochondrial dysfunction, and impaired angiogenesis. Oxid. Med. Cell. Longev. 2020, 6, 8715412. [Google Scholar] [CrossRef]
- Ying, C.; Mccauley, S.R.; Johnson, S.E.; Rhoads, R.P.; El-Kadi, S.W. Downregulated translation initiation signaling predisposes low-birth-weight neonatal pigs to slower rates of muscle protein synthesis. Front. Physiol. 2017, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Krombeen, S.K.; Bridges, W.C.; Wilson, M.E.; Wilmoth, T.A. Factors contributing to the variation in placental efficiency on days 70, 90, and 110 of gestation in gilts. J. Anim. Sci. 2019, 97, 359–373. [Google Scholar] [CrossRef]
- König, N.L.; Wähner, M.; Seeger, J.; Sigmarsson, H.L.; Kauffold, J. An investigation into uterine capacity based on litter and placental characteristics in two sow lines with different prolificacy (Danish Landrace x Danish Yorkshire versus German Saddleback). Reprod. Dom. Anim. 2021, 56, 34–45. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Hellmuth, C.; Uhl, O.; Buss, C.; Wadhwa, P.D.; Koletzko, B.; Entringer, S. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS ONE 2015, 10, e0145794. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr. Pharm. Biotechnol. 2014, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Miehle, K.; Stepan, H.; Fasshauer, M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin. Endocrinol. 2012, 76, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.M.; Yan, J.Y.; Guo, J.; Tang, Z.L. Identification of ovarian circular rnas and differential expression analysis between meishan and large white pigs. Animals 2020, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Blache, D.; Tellam, R.L.; Chagas, L.M.; Blackberry, M.A.; Vercoe, P.E.; Martin, G.B. Level of nutrition affects leptin concentrations in plasma and cerebrospinal fluid in sheep. J. Endocrinol. 2000, 165, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.F.; Xu, T.; Wu, Y.H.; Wei, H.K.; Peng, J. Oxidative stress and inflammation in sows with excess backfat: Up-regulated cytokine expression and elevated oxidative stress biomarkers in placenta. Animals 2019, 19, 796. [Google Scholar] [CrossRef] [Green Version]
- Cetin, O.; Karaman, E.; Boza, B.; Cim, N.; Alisik, M.; Erel, O.; Alkis, I.; Yildizhan, R.; Kolusari, A.; Sahin, G.H. Relationship between maternal blood ceruloplasmin level, catalase and myeloperoxidase activity and neural tube defects. Ginekol. Pol. 2017, 88, 156–160. [Google Scholar] [CrossRef]
- Laget, J.; Djohan, Y.F.; Jeanson, L.; Muyor, K.; Badia, E.; Cristol, J.P.; Coudray, C.; Feillet-Coudray, C.; Vigor, C.; Oger, C.; et al. Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats. Nutrients 2021, 13, 1134. [Google Scholar] [CrossRef]
- Cicco, P.D.; Maisto, M.; Tenore, G.C.; Ianaro, A. Olive leaf extract, from olea europaea l. reduces palmitate-induced inflammation via regulation of murine macrophages polarization. Nutrients 2020, 2, 3663. [Google Scholar] [CrossRef]
- Shibata, S.; Kobayashi, E.H.; Kobayashi, N.; Oike, A.; Okae, H.; Arima, T. Unique features and emerging in vitro models of human placental development. Reprod. Med. Biol. 2020, 19, 301–313. [Google Scholar] [CrossRef]
- Qi, L.; Jiang, J.; Zhang, J.; Zhang, L.; Wang, T. Maternal curcumin supplementation ameliorates placental function and fetal growth in mice with intrauterine growth retardation. Biol. Reprod. 2020, 102, 1090–1101. [Google Scholar] [CrossRef]
- Sindhu, S.; Thomas, R.; Shihab, P.; Sriraman, D.; Behbehani, K.; Ahmad, R. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: Significance for metabolic inflammation. PLoS ONE 2015, 10, e0133494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbert, M.E.; Langefeld, C.D.; Ziegler, J.; Mychaleckyj, J.C.; Haffner, S.M.; Norris, J.M.; Bowden, D.W. Polymorphisms near SOCS3 are associated with obesity and glucose homeostasis traits in hispanic Americans from the insulin resistance atherosclerosis family study. Hum. Genet. 2009, 125, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuniga, F.A.; Ormazabal, V.; Gutierrez, N.; Aguilera, V.; Radojkovic, C.; Veas, C.; Escudero, C.; Lamperti, L.; Aguayo, C. Role of lectin-like oxidized low density lipoprotein-1 in fetoplacental vascular dysfunction in preeclampsia. BioMed Res. Int. 2014, 2014, 353616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andraweera, P.H.; Dekker, G.A.; Laurence, J.A.; Roberts, C.T. Placental expression of VEGF family mRNA in adverse pregnancy outcomes. Placenta 2012, 33, 467–472. [Google Scholar] [CrossRef]
Characteristics | Group LBF | Group MBF | Group HBF | SEM | p-Value |
---|---|---|---|---|---|
Litter size at birth in sows | |||||
Total number of piglets born per litter (sow) | 13.80 b | 15.14 a | 13.10 b | 0.29 | 0.04 |
Number of piglets born alive per litter (sow) | 11.25 b | 13.01 a | 11.46 b | 0.25 | 0.04 |
Stillbirth piglets per litter (sow) | 3.00 a | 1.51 b | 2.30 a | 0.15 | 0.03 |
Mummified fetuses per litter (sow) | 0.31 | 0.27 | 0.29 | 0.06 | 0.23 |
Stillbirth ratio (%) | 21.73% | 9.97% | 17.56% | ||
Litter birth weight (kg) | 16.60 b | 19.65 a | 17.17 b | 0.40 | <0.01 |
Average birth weight (kg) | 1.35 b | 1.48 a | 1.42 ab | 0.02 | 0.04 |
Placenta | |||||
Placenta weight (kg) | 2.73 | 3.20 | 3.10 | 0.17 | 0.12 |
Placental efficiency | 5.16 b | 6.14 a | 5.22 b | 0.17 | 0.03 |
Characteristic | Group LBF | Group MBF | Group HBF | SEM | p-Value | |
---|---|---|---|---|---|---|
Q 2 | L 3 | |||||
Sow serum | ||||||
GLU (mmol·L−1) | 3.98 | 4.13 | 3.85 | 0.12 | 0.63 | 0.49 |
TG (mmol·L−1) | 0.94 a | 0.60 b | 0.99 a | 0.06 | <0.01 | 0.07 |
FFA (mmol·L−1) | 0.14 ab | 0.11 b | 0.16 a | 0.01 | 0.05 | 0.07 |
CHO (mmol·L−1) | 6.23 | 6.03 | 6.88 | 0.20 | 0.26 | 0.04 |
HDL-c (mmol·L−1) | 1.09 b | 1.27 a | 1.00 b | 0.03 | 0.03 | 0.45 |
LDL-c (mmol·L−1) | 4.03 | 3.87 | 4.39 | 0.15 | 0.06 | 0.21 |
INS (mIU·L−1) | 20.28 | 22.50 | 25.49 | 1.70 | 0.51 | 0.32 |
LEP (ng·mL−1) | 18.34 a | 13.76 ab | 9.69 b | 1.10 | 0.04 | 0.08 |
ADP (mg·L−1) | 8.14 ab | 13.64 a | 7.42 b | 1.32 | 0.05 | 0.37 |
Piglet cord serum | ||||||
GLU (mmol·L−1) | 3.70 | 4.16 | 3.85 | 0.12 | 0.63 | 0.13 |
TG (mmol·L−1) | 0.13 ab | 0.14 a | 0.10 b | 0.01 | 0.03 | <0.01 |
FFA (mmol·L−1) | 0.12 | 0.11 | 0.12 | 0.01 | 0.74 | 0.35 |
CHO (mmol·L−1) | 1.04 | 1.19 | 1.20 | 0.05 | 0.57 | 0.17 |
HDL-c (mmol·L−1) | 0.54 | 0.52 | 0.45 | 0.02 | 0.16 | 0.06 |
LDL-c (mmol·L−1) | 0.11 | 0.18 | 0.16 | 0.03 | 0.79 | 0.33 |
INS (mIU·L−1) | 25.10 | 24.41 | 22.19 | 0.89 | 0.09 | 0.21 |
LEP (ng·mL−1) | 3.53 b | 6.15 a | 6.41 a | 0.35 | 0.01 | <0.01 |
ADP (mg·L−1) | 9.11 | 8.50 | 6.95 | 0.32 | 0.13 | 0.10 |
Placenta homogenate | ||||||
TG (mg·g−1 protein) | 1.83 ab | 1.64 b | 2.23 a | 0.10 | 0.02 | 0.04 |
FFA (mg·g−1 protein) | 1.18 b | 1.21 b | 1.64 a | 0.10 | 0.05 | 0.03 |
CHO (mg·g−1 protein) | 0.92 | 0.80 | 1.08 | 0.06 | 0.17 | 0.11 |
INS (mIU·g−1 protein) | 21.25 ab | 17.79 b | 22.70 a | 0.87 | 0.03 | 0.19 |
LEP (ug·g−1 protein) | 4.64 ab | 3.87 b | 5.00 a | 0.18 | 0.03 | 0.167 |
ADP (mg·g−1 protein) | 5.02 ab | 5.23 a | 4.16 b | 0.19 | 0.05 | 0.281 |
Characteristic | Group LBF | Group MBF | Group HBF | SEM | p-Value | |
---|---|---|---|---|---|---|
Q 2 | L 3 | |||||
Sow serum | ||||||
MDA (nmol·mL−1) | 3.78 b | 3.35 b | 5.29 a | 0.30 | <0.01 | <0.01 |
SOD (U·mL−1) | 39.06 b | 50.93 a | 40.96 b | 1.41 | <0.01 | 0.33 |
OH· inhibition (U·mL−1) | 41.66 a | 45.64 a | 34.75 b | 2.30 | <0.01 | 0.25 |
GSH-Px (U·mL−1) | 238.89 | 203.70 | 199.37 | 11.25 | 0.48 | 0.33 |
CAT (U·mL−1) | 6.28 b | 6.97 a | 6.70 ab | 0.36 | 0.04 | 0.46 |
T-AOC (U·mL−1) | 2.78 b | 4.54 a | 2.56 b | 0.42 | 0.03 | 0.15 |
Piglet cord serum | ||||||
MDA (nmol·mL−1) | 1.84 b | 1.34 b | 2.41 a | 0.21 | 0.03 | <0.01 |
SOD (U·mL−1) | 18.86 | 19.95 | 20.24 | 0.58 | 0.06 | 0.48 |
OH· inhibition (U·mL−1) | 46.67 a | 45.87 a | 38.45 b | 1.65 | <0.01 | <0.01 |
GSH-Px (U·mL−1) | 106.67 | 90.37 | 87.62 | 7.4 | 0.16 | <0.01 |
CAT (U·mL−1) | 4.01 a | 3.18 b | 4.19 a | 0.25 | 0.04 | 0.04 |
T-AOC (U·mL−1) | 2.28 | 2.87 | 2.42 | 0.19 | 0.45 | 0.36 |
Placenta homogenate | ||||||
MDA (nmol·mg−1 protein) | 2.75 b | 3.16 b | 5.49 a | 0.38 | <0.01 | 0.15 |
SOD (U·mg−1 protein) | 11.99 ab | 12.83 a | 10.73 b | 0.45 | 0.04 | 0.02 |
OH· inhibition (U·mg−1 protein) | 18.30 | 21.22 | 19.15 | 0.79 | 0.32 | 0.28 |
GSH-Px (U·mg−1 protein) | 124.07 | 113.35 | 128.80 | 3.99 | 0.21 | 0.13 |
CAT (U·mg−1 protein) | 5.78 b | 5.75 b | 7.12 a | 0.38 | 0.03 | 0.24 |
T-AOC (U·mg−1 protein) | 0.95 a | 0.94 a | 0.65 b | 0.14 | 0.02 | 0.34 |
Characteristic | Group LBF | Group MBF | Group HBF | SEM | p-Value | |
---|---|---|---|---|---|---|
Q 2 | L 3 | |||||
Sow serum | ||||||
TNF-α (ng·L−1) | 57.85 b | 72.26 ab | 90.57 a | 5.02 | 0.04 | <0.01 |
IL-6 (ng·L−1) | 149.10 b | 198.45 b | 267.03 a | 12.55 | 0.03 | 0.02 |
IL-8 (ng·L−1) | 76.86 | 65.34 | 81.90 | 4.33 | 0.29 | 0.24 |
IL-1β (ng·L−1) | 46.83 | 61.34 | 65.90 | 3.33 | 0.44 | 0.28 |
Piglet cord serum | ||||||
TNF-α (ng·L−1) | 73.84 a | 65.42 ab | 58.89 b | 1.99 | 0.03 | 0.04 |
IL-6 (ng·L−1) | 111.82 a | 106.85 a | 98.67 b | 4.20 | 0.04 | 0.10 |
IL-8 (ng·L−1) | 56.83 | 60.34 | 61.90 | 1.33 | 0.20 | 0.25 |
IL-1β (ng·L−1) | 36.63 | 41.34 | 50.91 | 3.43 | 0.07 | 0.08 |
Placenta homogenate | ||||||
TNF-α (ng·g−1 protein) | 22.39 ab | 21.10 b | 25.17 a | 0.77 | 0.04 | 0.20 |
IL-6 (ng·g−1 protein) | 65.03 ab | 58.85 b | 75.11 a | 3.16 | 0.04 | 0.12 |
IL-8 (ng·g−1 protein) | 76.84 | 68.64 | 79.90 | 3.63 | 0.24 | 0.19 |
IL-1β (ng·g−1 protein) | 22.69 ab | 20.39 b | 34.31 a | 2.66 | 0.05 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Yan, P. Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs. Vet. Sci. 2022, 9, 302. https://doi.org/10.3390/vetsci9060302
Hu J, Yan P. Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs. Veterinary Sciences. 2022; 9(6):302. https://doi.org/10.3390/vetsci9060302
Chicago/Turabian StyleHu, Jian, and Peishi Yan. 2022. "Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs" Veterinary Sciences 9, no. 6: 302. https://doi.org/10.3390/vetsci9060302
APA StyleHu, J., & Yan, P. (2022). Effects of Backfat Thickness on Oxidative Stress and Inflammation of Placenta in Large White Pigs. Veterinary Sciences, 9(6), 302. https://doi.org/10.3390/vetsci9060302