Breeding Dairy Cattle for Female Fertility and Production in the Age of Genomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Data Sets and Traits Analyzed
2.2. Statistical Analyses
2.3. Genomic Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falconer, D.S. Introduction to Quantitative Genetics; Oliver and Boyd Ltd.: Edinburgh, UK, 1960. [Google Scholar]
- de Koning, G.J.; Weller, J.I. Efficiency of direct selection on quantitative trait loci for a two-trait breeding objective. Theor. Appl. Genet. 1994, 88, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Weller, J.I.; Ezra, E.; Ron, M. Invited review: A perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017, 100, 8633–8644. [Google Scholar] [CrossRef] [PubMed]
- Weller, J.I. Genomic prediction of complex traits in animal breeding with long breeding history, the dairy cattle case. In Complex Trait Prediction: Methods and Protocols; Ahmadi, N., Bartholomé, J., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2022; pp. 447–467. [Google Scholar]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef] [PubMed]
- Ezra, E.; Weller, J.I. Changes in the breeding index in accordance with the committee for milk components. Meshek Habakar Vehahalav 2001, 295, 22–24. (In Hebrew) [Google Scholar]
- VanRaden, P.M.; Sanders, A.H.; Tooker, M.E.; Miller, R.H.; Norman, H.D.; Kuhn, M.T.; Wiggans, G.R. Development of a national genetic evaluation for cow fertility. J. Dairy Sci. 2004, 87, 2285–2292. [Google Scholar] [CrossRef]
- Miglior, F.; Muir, B.L.; Van Doormaal, B.J. Selection indices in Holstein cattle of various countries. J. Dairy Sci. 2005, 88, 1255–1263. [Google Scholar] [CrossRef]
- Weller, J.I.; Stoop, W.M.; Eding, H.; Schrooten, C.; Ezra, E. Genomic evaluation of a relatively small dairy cattle population by combination with a larger population. J. Dairy Sci. 2015, 98, 4945–4955. [Google Scholar] [CrossRef]
- Lucy, M.C. Reproductive loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef]
- Lucy, M.C. Symposium review: Selection for fertility in the modern dairy cow—Current status and future direction for genetic selection. J. Dairy Sci. 2019, 102, 3706–3721. [Google Scholar] [CrossRef]
- Berry, D.P.; Wall, E.; Pryce, J.E. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 2014, 8 (Suppl. 1), 105–121. [Google Scholar] [CrossRef]
- Weller, J.I. Genetic analysis of fertility traits in the Israeli dairy cattle population. J. Dairy Sci. 1989, 72, 2644–2650. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E. Genetic analysis of somatic cell concentration and female fertility of Israeli Holsteins by the individual animal model. J. Dairy Sci. 1997, 80, 586–593. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E. Genetic analysis of the Israeli Holstein dairy cattle population for production and non-production traits with a multitrait animal model. J. Dairy Sci. 2004, 87, 1519–1527. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E.; Leitner, G. Genetic analysis of persistency in the Israeli Holstein population by the multitrait animal model. J. Dairy Sci. 2006, 89, 2738–2746. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E. Environmental and genetic factors affecting cow survival of Israeli Holsteins. J. Dairy Sci. 2015, 98, 676–684. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E. Genetic analysis of calving traits by the multi-trait individual animal model. J. Dairy Sci. 2016, 99, 427–442. [Google Scholar] [CrossRef]
- Misztal, I.; Wiggans, G.R. Approximation of prediction error variance in large-scale animal models. J. Dairy Sci. 1988, 71, 27–32. [Google Scholar] [CrossRef]
- Misztal, I. Software Packages in Animal Breeding. 1994. Available online: http://nce.ads.uga.edu/~ignacy/numpub/oldpapers/wc94.PDF (accessed on 29 October 2021).
- Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family Programs; University of Georgia: Athens, GA, USA, 2014. [Google Scholar]
- VanRaden, P.M. Invited Review: Selection of dairy cattle for lifetime profit. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 127–130. [Google Scholar]
- Weller, J.I. Economic Aspects of Animal Breeding; Chapman & Hall: London, UK, 1994; 244p. [Google Scholar]
- Gershoni, M.; Ezra, E.; Weller, J.I. Genetic and genomic analysis of long insemination interval in Israeli dairy cattle as an indicator of early abortions. J. Dairy Sci. 2020, 103, 4495–4509. [Google Scholar] [CrossRef]
- Gershoni, M.; Weller, J.I.; Ezra, E. Genetic and genome-wide association analysis of yearling weight gain of Israel Holstein dairy calves. Genes 2021, 12, 708. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef]
- Weller, J.I.; Ezra, E.; Gershoni, M. Genetic and genomic analysis of age at first insemination in Israeli dairy cattle. J. Dairy Sci. 2022, 105, 5192–5205. [Google Scholar] [CrossRef]
- Anon. Form GE: Description of national genetic evaluation systems. In Animal Genomics and Improvement; Laboratory, Agricultural Research Service, USDA: Beltsville, MD, USA, 2008. Available online: https://aipl.arsusda.gov/reference/fertility/Form_GE_FFertility_0809.pdf (accessed on 5 July 2022).
- VanRaden, P.M.; Cole, J.B. Net merit as a measure of lifetime profit: 2014 revision. In Animal Genomics and Improvement; Laboratory, Agricultural Research Service, USDA: Beltsville, MD, USA, 2014. Available online: http://aipl.arsusda.gov/reference/nmcalc-2014.htm (accessed on 3 July 2022).
- García-Ruiz, A.; Cole, J.B.; VanRaden, P.M.; Wiggans, G.R.; Ruiz-López, F.J.; Van Tassell, C.P. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc. Nat. Acad. Sci. USA 2016, 113, E3995–E4004. [Google Scholar] [CrossRef]
- Kennedy, B.W. Selection limits: Have they been reached with the dairy cow? Can. J. Anim. Sci. 1984, 64, 207–215. [Google Scholar] [CrossRef]
- Hill, W.G. Estimation, effectiveness and opportunities of long term genetic improvement in animals and maize. Lohmann Inf. 2008, 43, 3–20. [Google Scholar]
- Hill, W.G. Is continued genetic improvement of livestock sustainable? Genetics 2016, 202, 877–881. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
Year of Change | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Traits | 1985 | 1990 | 1991 | 1996 | 2000 | 2001 | 2004 | 2007 | 2011 | 2016 | 2019 |
Milk (kg) | 0.51 | 0 | −0.274 | −0.274 | −0.274 | −0.22 | 0 | 0 | 0 | 0 | 0 |
Fat (kg) | 14 | 0 | 6.41 | 6.41 | 6.41 | 8.5 | 6.3 | 6.3 | 7.9 | 8.48 | 9.94 |
Protein (kg) | 1.0 | 34.85 | 34.85 | 34.85 | 31.0 | 25.4 | 25.4 | 23.7 | 21.2 | 19.88 | |
SCS 1,2 | −300 | −300 | −300 | −300 | −300 | −300 | −300 | −300 | |||
CS 3 (%) | 26 | 26 | 26 | 26 | 26 | 26 | 26 | ||||
Herd-life (days) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | ||||||
Persistency (%) | 10 | 10 | 10 | 10 | |||||||
Dystocia (%) 2 | −3 | −3 | −3 | −3 | |||||||
Stillbirth (%) 2 | −6 | −6 | −6 | −6 |
Data | Trait | Analysis | Parities | Birth Years | Number of | ||||
---|---|---|---|---|---|---|---|---|---|
Set | Analyzed | Type 1 | Beginning | End | Records | HYS | Animals | Genetic Groups | |
1 | Phenotypic | MVC | 1 | 1988 | 1997 | 177,073 | 14,715 | 290,921 | 2 |
values for the | 1 | 1998 | 2007 | 213,495 | 15,169 | 349,012 | 2 | ||
9 index traits 2 | 1 | 2008 | 2016 | 234,276 | 11,041 | 377,631 | 2 | ||
2 | Phenotypic | MVC 4 | 1 | 2008 | 2015 | 229,036 | 10,634 | 370,999 | 2 |
values for | 2 | 186,687 | 10,558 | ||||||
Protein and CS 3 | 3 | 129,576 | 9887 | ||||||
3 | Phenotypic values for milk production traits | MAM | 1–5 | 1983 | 2018 | 1,070,284 | 50,630 | 1,198,095 | 92 |
4 | Phenotypic values for CS | MAM | 1–5 | 1983 | 2018 | 970,883 | 54,396 | 1,126,063 | 80 |
5 | EBV of cows for 9 index traits | Regression 5 | 1–5 | 2009 | 2018 | 359,202 | - | 359,202 | - |
6 | EBV of bulls for protein | GWAS 6 | 1–5 | 1991 | 2016 | 1663 | - | 1663 | - |
7 | EBV of bulls for CS | GWAS | 1–5 | 1991 | 2016 | 1610 | - | 1610 | - |
Birth Years | Traits | Milk | Fat | Protein | SCS | CS | Herd-Life | Persistency | DC | SB |
---|---|---|---|---|---|---|---|---|---|---|
1988– | Milk | 0.47 | 0.41 | 0.71 | 0.13 | −0.34 | 0.12 | 0.10 | −0.04 | 0.00 |
1997 | Fat | 0.55 | 0.47 | 0.56 | 0.04 | −0.25 | 0.17 | 0.05 | 0.10 | 0.09 |
Protein | 0.84 | 0.63 | 0.41 | 0.17 | −0.38 | 0.14 | 0.05 | 0.02 | 0.05 | |
SCS | −0.02 | −0.02 | 0.02 | 0.23 | −0.21 | −0.33 | −0.06 | 0.00 | 0.05 | |
CS | 0.01 | −0.01 | 0.00 | −0.01 | 0.04 | 0.41 | 0.13 | −0.30 | −0.28 | |
HL | 0.14 | 0.11 | 0.14 | −0.09 | 0.12 | 0.10 | 0.29 | −0.15 | −0.13 | |
Persistency | 0.01 | 0.00 | −0.01 | −0.04 | −0.02 | 0.08 | 0.18 | −0.06 | −0.03 | |
Dystocia | −0.03 | −0.01 | −0.03 | −0.01 | −0.04 | 0.03 | 0.01 | 0.04 | 0.91 | |
Stillbirth | −0.03 | −0.02 | −0.02 | −0.01 | −0.03 | 0.00 | 0.00 | 0.41 | 0.03 | |
1998– | Milk | 0.49 | 0.40 | 0.77 | 0.14 | −0.30 | 0.03 | 0.21 | −0.05 | −0.02 |
2007 | Fat | 0.56 | 0.46 | 0.55 | 0.04 | −0.22 | 0.05 | 0.04 | 0.00 | −0.01 |
Protein | 0.87 | 0.65 | 0.41 | 0.16 | −0.37 | −0.01 | 0.12 | −0.03 | −0.05 | |
SCS | 0.01 | −0.02 | 0.03 | 0.25 | −0.21 | −0.26 | −0.05 | 0.00 | 0.04 | |
CS | 0.01 | −0.02 | 0.00 | 0.00 | 0.05 | 0.66 | 0.12 | −0.17 | −0.25 | |
HL | 0.12 | 0.09 | 0.11 | −0.08 | 0.15 | 0.13 | 0.37 | −0.19 | −0.24 | |
Persistency | 0.05 | 0.00 | 0.01 | −0.04 | 0.00 | 0.08 | 0.19 | −0.05 | −0.09 | |
Dystocia | −0.04 | −0.03 | −0.03 | −0.01 | −0.04 | 0.03 | 0.01 | 0.04 | 0.89 | |
Stillbirth | −0.03 | −0.03 | −0.03 | −0.01 | −0.03 | 0.00 | 0.01 | 0.36 | 0.02 | |
2008– | Milk | 0.51 | 0.45 | 0.85 | 0.19 | −0.31 | 0.09 | 0.23 | −0.07 | 0.00 |
2016 | Fat | 0.58 | 0.50 | 0.61 | 0.08 | −0.26 | 0.09 | 0.08 | 0.00 | 0.04 |
Protein | 0.90 | 0.68 | 0.45 | 0.20 | −0.38 | 0.06 | 0.12 | −0.06 | 0.05 | |
SCS | 0.03 | −0.01 | 0.04 | 0.25 | −0.26 | −0.25 | −0.05 | 0.05 | 0.05 | |
CS | −0.01 | −0.04 | −0.03 | 0.00 | 0.05 | 0.53 | 0.05 | −0.25 | −0.20 | |
HL | 0.12 | 0.09 | 0.11 | −0.06 | 0.14 | 0.13 | 0.40 | −0.19 | −0.19 | |
Persistency | 0.05 | 0.01 | 0.01 | −0.04 | −0.02 | 0.09 | 0.22 | 0.00 | −0.02 | |
Dystocia | −0.03 | −0.02 | −0.03 | −0.01 | −0.04 | 0.03 | 0.01 | 0.04 | 0.73 | |
Stillbirth | −0.03 | −0.02 | −0.03 | −0.01 | −0.02 | −0.01 | 0.01 | 0.29 | 0.02 |
Protein 1 | Protein 2 | Protein 3 | CS 1 | CS 2 | CS 3 | |
---|---|---|---|---|---|---|
Protein 1 | 0.446 ± 0.006 | 0.842 ± 0.007 | 0.684 ± 0.013 | −0.338 ± 0.027 | −0.294 ± 0.030 | −0.305 ± 0.036 |
Protein 2 | 0.392 ± 0.005 | 0.316 ± 0.006 | 0.954 ± 0.004 | −0.163 ± 0.032 | −0.193 ± 0.033 | −0.237 ± 0.039 |
Protein 3 | 0.274 ± 0.006 | 0.434 ± 0.004 | 0.250 ± 0.007 | −0.008 ± 0.034 | −0.049 ± 0.037 | −0.121 ± 0.043 |
CS 1 | 0.053 ± 0.004 | 0.059 ± 0.004 | 0.088 ± 0.004 | 0.054 ± 0.003 | 0.959 ± 0.011 | 0.895 ± 0.022 |
CS 2 | −0.029 ± 0.005 | 0.044 ± 0.005 | 0.063 ± 0.004 | 0.052 ± 0.003 | 0.047 ± 0.003 | 0.992 ± 0.020 |
CS 3 | −0.020 ± 0.006 | −0.016 ± 0.004 | 0.061 ± 0.005 | 0.038 ± 0.004 | 0.062 ± 0.004 | 0.048 ± 0.004 |
Variance Component | Milk | Fat | Protein | SCS | CS | Herd-Life | Persistency | DC | SB | |
---|---|---|---|---|---|---|---|---|---|---|
Genetic | Milk | 1,104,690.4 | 18,187.0 | 24,365.4 | 109.7 | −2604.3 | 20,562.9 | 1428.5 | −397.7 | 13.7 |
Fat | 18,187.0 | 1491.4 | 641.0 | 1.7 | −78.9 | 789.7 | 17.7 | −0.2 | 4.3 | |
Protein | 24,365.4 | 641.0 | 752.4 | 3.0 | −82.3 | 385.9 | 18.8 | −8.8 | 3.9 | |
SCS | 109.7 | 1.7 | 3.0 | 0.3 | −1.1 | −29.5 | −0.2 | 0.1 | 0.1 | |
CS | −2604.3 | −78.9 | −82.3 | −1.1 | 62.1 | 917.6 | 2.4 | −10.3 | −4.7 | |
Herd-life | 20,562.9 | 789.7 | 385.9 | −29.5 | 917.6 | 48,508.9 | 521.4 | −215.0 | −122.3 | |
Persistency | 1428.5 | 17.7 | 18.8 | −0.2 | 2.4 | 521.4 | 34.7 | −0.1 | −0.3 | |
Dystocia | −397.7 | −0.2 | −8.8 | 0.1 | −10.3 | −215.0 | −0.1 | 27.0 | 11.2 | |
Stillbirth | 13.7 | 4.3 | 3.9 | 0.1 | −4.7 | −122.3 | −0.3 | 11.2 | 8.8 | |
Environ- | Milk | 1,072,573.5 | 28,444.7 | 29,929.6 | −67.7 | 2086.5 | 89,681.7 | −481.4 | −767.6 | −885.6 |
mental | Fat | 28,444.7 | 1488.6 | 872.9 | −2.2 | 2.8 | 2376.4 | −10.0 | −26.5 | −26.7 |
Protein | 29,929.6 | 872.9 | 911.2 | −1.3 | 43.1 | 2455.3 | −14.3 | −22.8 | −26.5 | |
SCS | −67.7 | −2.2 | −1.3 | 0.9 | 1.1 | −13.4 | −0.4 | −0.3 | −0.2 | |
CS | 2086.5 | 2.8 | 43.1 | 1.1 | 1101.3 | 2098.0 | −10.3 | −24.7 | −11.8 | |
Herd-life | 89,681.7 | 2376.4 | 2455.3 | −13.4 | 2098.0 | 332,822.6 | 158.0 | 704.8 | 29.6 | |
Persistency | −481.4 | −10.0 | −14.3 | −0.4 | −10.3 | 158.0 | 123.2 | 4.3 | 3.2 | |
Dystocia | −767.6 | −26.5 | −22.8 | −0.3 | −24.7 | 704.8 | 4.3 | 669.1 | 149.5 | |
Stillbirth | −885.6 | −26.7 | −26.5 | −0.2 | −11.8 | 29.6 | 3.2 | 149.5 | 423.0 |
Genetic | Fraction | Genetic Trends | X | ||
---|---|---|---|---|---|
Trait | SD | of Index 2 | Expected | Realized | Genetic SD |
Milk (kg) | 1051 | 0 | 1073.4 | 699.4 ± 3.5 | −0.36 |
Fat (kg) | 38.6 | 0.252 | 46.5 | 40.0 ± 0.1 | −0.17 |
Protein (kg) | 27.4 | 0.358 | 33.9 | 32.5 ± 0.1 | −0.05 |
SCS 1 | 0.55 | 0.108 | −0.12 | −0.194 ± 0.002 | 0.13 |
CS (%) | 7.9 | 0.135 | 0.3 | 1.91 ± 0.02 | 0.2 |
Herd-life (days) | 220 | 0.087 | 152.1 | 209.1 ± 0.6 | 0.26 |
Persistency (%) | 5.9 | 0.039 | 2.4 | 1.00 ± 0.02 | −0.24 |
Dystocia (%) 1 | 5.2 | 0.01 | −1.39 | −0.800 ± 0.014 | −0.11 |
Stillbirth (%) 1 | 3 | 0.012 | −0.34 | 0.233 ± 0.009 | −0.19 |
PD19 | - | 100 | 1300.5 | 1300.7 ± 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weller, J.I.; Gershoni, M.; Ezra, E. Breeding Dairy Cattle for Female Fertility and Production in the Age of Genomics. Vet. Sci. 2022, 9, 434. https://doi.org/10.3390/vetsci9080434
Weller JI, Gershoni M, Ezra E. Breeding Dairy Cattle for Female Fertility and Production in the Age of Genomics. Veterinary Sciences. 2022; 9(8):434. https://doi.org/10.3390/vetsci9080434
Chicago/Turabian StyleWeller, Joel Ira, Moran Gershoni, and Ephraim Ezra. 2022. "Breeding Dairy Cattle for Female Fertility and Production in the Age of Genomics" Veterinary Sciences 9, no. 8: 434. https://doi.org/10.3390/vetsci9080434
APA StyleWeller, J. I., Gershoni, M., & Ezra, E. (2022). Breeding Dairy Cattle for Female Fertility and Production in the Age of Genomics. Veterinary Sciences, 9(8), 434. https://doi.org/10.3390/vetsci9080434