Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Data Analysis
2.3.1. Frequency Domain Analysis
2.3.2. Time Domain Analysis
2.4. Statistical Analysis of COMacc Data
3. Results
3.1. Frequency Domain
3.2. Time Domain
3.3. Correlation Analysis for vCOMacc and apCOMacc
4. Discussion
4.1. Frequency Domain
4.2. Time Domain
Author Contributions
Funding
Conflicts of Interest
References
- Thapa, P.B.; Gideon, P.; Brockman, K.G.; Fought, R.L.; Ray, W.A. Clinical and biomechanical measures of balance as fall predictors in ambulatory nursing home residents. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, M239–M246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, T.L.; Dugan, E.L.; Humphries, B.; Newton, R.U. Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 2004, 1, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafond, D.; Corriveau, H.; Hébert, R.; Prince, F. Intrasession reliability of center of pressure measures of postural steadiness in healthy elderly people. Arch. Phys. Med. Rehabil. 2004, 85, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Corriveau, H.; Hébert, R.; Prince, F.; Raîche, M. Intrasession reliability of the “center of pressure minus center of mass” variable of postural control in the healthy elderly. Arch. Phys. Med. Rehabil. 2000, 81, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Seol, H.; Nussbaum, M.A.; Madigan, M.L. Reliability of COP-based postural sway measures and age-related differences. Gait Posture 2008, 28, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Masani, K.; Vette, A.H.; Kouzaki, M.; Kanehisa, H.; Fukunaga, T.; Popovic, M.R. Larger center of pressure minus center of gravity in the elderly induces larger body acceleration during quiet standing. Neurosci. Lett. 2007, 422, 202–206. [Google Scholar] [CrossRef]
- Oba, N.; Sasagawa, S.; Yamamoto, A.; Nakazawa, K. Difference in postural control during quiet standing between young children and adults: Assessment with center of mass acceleration. PLoS ONE 2015, 10, e0140235. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.; Abe, M.; Masani, K.; Kawashima, N.; Eto, F.; Haga, N.; Nakazawa, K. Evaluation of postural control in quiet standing using center of mass acceleration: Comparison among the young, the elderly, and people with stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1133–1139. [Google Scholar] [CrossRef]
- Vette, A.H.; Sayenko, D.G.; Jones, M.; Abe, M.O.; Nakazawa, K.; Masani, K. Ankle muscle co-contractions during quiet standing are associated with decreased postural steadiness in the elderly. Gait Posture 2017, 55, 31–36. [Google Scholar] [CrossRef]
- Hsiao-Wecksler, E.T.; Katdare, K.; Matson, J.; Liu, W.; Lipsitz, L.A.; Collins, J.J. Predicting the dynamic postural control response from quiet-stance behavior in elderly adults. J. Biomech. 2003, 36, 1327–1333. [Google Scholar] [CrossRef]
- Lauk, M.; Chow, C.C.; Pavlik, A.E.; Collins, J.J. Human balance out of equilibrium: Nonequilibrium statistical mechanics in posture control. Phys. Rev. Lett. 1998, 80, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.J.; De Luca, C.J. Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 1993, 95, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.; Zatsiorsky, V.M. On the fractal properties of natural human standing. Neurosci. Lett. 2000, 14, 173–176. [Google Scholar] [CrossRef]
- Boehm, W.L.; Nichols, K.M.; Gruben, K.G. Frequency-dependent contributions of sagittal-plane foot force to upright human standing. J. Biomech. 2019, 83, 305–309. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.Y.; Guo, L.Y.; Song, R.; Nagurka, M.L.; Sung, J.L.; Yen, C.W. Assessing postural stability via the correlation patterns of vertical ground reaction force components. Biomed. Eng. Online 2016, 15, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, A.; Frykberg, G. Correlations between force plate measures for assessment of balance. Clin. Biomech. 2000, 15, 365–369. [Google Scholar] [CrossRef]
- Onell, A. The vertical ground reaction force for analysis of balance? Gait Posture 2000, 12, 7–13. [Google Scholar] [CrossRef]
- Goldie, P.A.; Bach, T.M.; Evans, O.M. Force platform measures for evaluating postural control: Reliability and validity. Arch. Phys. Med. Rehabil. 1989, 70, 510–517. [Google Scholar]
- Soames, R.W.; Atha, J. The spectral characteristics of postural sway behaviour. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 169–177. [Google Scholar] [CrossRef]
- McClenaghan, B.A.; Williams, H.G.; Dickerson, J.; Dowda, M.; Thombs, L.; Eleazer, P. Spectral characteristics of aging postural control. Gait Posture 1996, 4, 112–121. [Google Scholar] [CrossRef]
- McClenaghan, B.A.; Williams, H.G.; Dickerson, J.; Thombs, L. Spectral signature of forces to discriminate perturbations in standing posture. Clin. Biomech. 1994, 9, 21–27. [Google Scholar] [CrossRef]
- Schumann, T.; Redfern, M.S.; Furman, J.M.; El-Jaroudi, A.; Chaparro, L.F. Time-frequency analysis of postural sway. J. Biomech. 1995, 28, 603–607. [Google Scholar] [CrossRef]
- Loram, I.D.; Maganaris, C.N.; Lakie, M. Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J. Physiol. 2005, 564, 295–311. [Google Scholar] [CrossRef]
- Vieira, T.M.; Loram, I.D.; Muceli, S.; Merletti, R.; Farina, D. Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: Is recruitment intermittent? What triggers recruitment? J. Neurophysiol. 2012, 107, 666–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagdes, J.R.; Rietdyk, S.; Haddad, J.M.; Zelaznik, H.N.; Raman, A.; Rhea, C.K.; Silver, T.A. Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis. Exp. Brain Res. 2009, 197, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Ferdjallah, M.; Harris, G.F.; Wertsch, J.J. Instantaneous postural stability characterization using time-frequency analysis. Gait Posture 1999, 10, 129–134. [Google Scholar] [CrossRef]
- Lodge, D.J.; Behrens, M.M.; Grace, A.A. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J. Neurosci. 2009, 29, 2344–2354. [Google Scholar] [CrossRef]
- Jeong, K.S.; Ahn, J.; Khodursky, A.B. Spatial patterns of transcriptional activity in the chromosome of Escherichia coli. Genome. Biol. 2004, 5, R86. [Google Scholar] [CrossRef] [Green Version]
- Bal, S.; Bose, M.A. climatological study of the relations among solar activity, galactic cosmic ray and precipitation on various regions over the globe. J. Earth. Syst. Sci. 2010, 119, 201–209. [Google Scholar] [CrossRef]
- Kouzaki, M.; Masani, K. Postural sway during quiet standing is related to physiological tremor and muscle volume in young and elderly adults. Gait Posture 2012, 35, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.C.; Gorman, R.B.; Burke, D.; Gandevia, S.C. Postural proprioceptive reflexes in standing human subjects: Bandwidth of response and transmission characteristics. J. Physiol. 1992, 458, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Obata, H.; Abe, M.O.; Masani, K.; Nakazawa, K. Modulation between bilateral legs and within unilateral muscle synergists of postural muscle activity changes with development and aging. Exp. Brain Res. 2014, 232, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.H.; Harwood, B.; Davidson, A.W.; Rice, C.L. Triceps surae contractile properties and firing rates in the soleus of young and old men. J. Appl. Physiol. 2009, 107, 1781–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, C.; Ward, L.M.; Chua, R.; Inglis, J.T. Regional variation and changes with ageing in vibrotactile sensitivity in the human footsole. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.H.; Blouin, J.S.; Allen, M.D.; Rice, C.L.; Inglis, J.T. The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing. Exp. Gerontol. 2014, 60, 120–128. [Google Scholar] [CrossRef]
- Vieira, T.M.; Minetto, M.A.; Hodson-Tole, E.F.; Botter, A. How much does the human medial gastrocnemius muscle contribute to ankle torques outside the sagittal plane? Hum. Mov. Sci. 2013, 32, 753–767. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.M.; Windhorst, U.; Merletti, R. Is the stabilization of quiet upright stance in humans driven by synchronized modulations of the activity of medial and lateral gastrocnemius muscles? J. Appl. Physiol. 2010, 108, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Masani, K.; Popovic, M.R.; Nakazawa, K.; Kouzaki, M.; Nozaki, D. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J. Neurophysiol. 2003, 90, 3774–3782. [Google Scholar] [CrossRef] [Green Version]
- Klass, M.; Baudry, S.; Duchateau, J. Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J. Appl. Physiol. 2008, 104, 739–746. [Google Scholar] [CrossRef]
- Aagaard, P.; Suetta, C.; Caserotti, P.; Magnusson, S.P.; Kjaer, M. Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scand. J. Med. Sci. Sports 2010, 20, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Baudry, S.; Lecoeuvre, G.; Duchateau, J. Age-related changes in the behavior of the muscle-tendon unit of the gastrocnemius medialis during upright stance. J. Appl. Physiol. 2012, 112, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Laughton, C.A.; Slavin, M.; Katdare, K.; Nolan, L.; Bean, J.F.; Kerrigan, D.C.; Phillips, E.; Lipsitz, L.A.; Collins, J.J. Aging, muscle activity, and balance control: Physiologic changes associated with balance impairment. Gait Posture 2003, 18, 101–108. [Google Scholar] [CrossRef]
- Shaffer, S.W.; Harrison, A.L. Aging of the somatosensory system: A translational perspective. Phys. Ther. 2007, 87, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stürm, R.; Nigg, B.; Koller, E.A. The impact of cardiac activity on triaxially recorded endogenous microvibrations of the body. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 44, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Pagnacco, G.; Sorbello, D.; Oggero, E.; Morr, D.; Berme, N. Average power spectral density of physiological tremor in normal subjects. Biomed. Sci. Instrum. 1997, 34, 99–103. [Google Scholar] [PubMed]
- Berme, N.; Oggero, E.; Pagnacco, G. Power spectrum characteristics of physiologic and pathologic tremor. Acta. Bioeng. Biomech. 1999, 1, 71–88. [Google Scholar]
- Bircher, M.; Kohl, J.; Nigg, B.; Koller, E.A. The microvibrations of the body, an index for examination stress. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 39, 99–109. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, Y.; Yue, S.; Wei, N.; Li, K. Analysis of center of mass acceleration and muscle activation in hemiplegic paralysis during quiet standing. PLoS ONE 2019, 20, e0226944. [Google Scholar] [CrossRef]
- Hsu, W.L.; Scholz, J.P.; Schöner, G.; Jeka, J.J.; Kiemel, T. Control and estimation of posture during quiet stance depends on multijoint coordination. J. Neurophysiol. 2007, 97, 3024–3035. [Google Scholar] [CrossRef] [Green Version]
Young Adults | ||||
---|---|---|---|---|
vCOMacc | apCOMacc | |||
Frequency Band (Hz) | MG RMS | So RMS | MG RMS | So RMS |
0–2 | −0.27 | 0.17 | 0.11 | −0.41 |
2–4 | −0.21 | −0.18 | −0.09 | 0.04 |
4–6 | 0.00 | −0.62 ** | −0.04 | 0.46 * |
6–8 | 0.33 | 0.19 | −0.06 | 0.71 ** |
8–10 | −0.13 | 0.75 ** | −0.19 | 0.69 ** |
Older Adults | ||||
---|---|---|---|---|
vCOMacc | apCOMacc | |||
Frequency Band (Hz) | MG RMS | So RMS | MG RMS | So RMS |
0–2 | −0.61 ** | −0.20 | −0.26 | −0.21 |
2–4 | −0.43 | 0.13 | 0.07 | 0.06 |
4–6 | −0.19 | 0.27 | 0.42 | 0.55 * |
6–8 | 0.28 | 0.06 | 0.53 * | 0.27 |
8–10 | 0.35 | −0.27 | 0.34 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minamisawa, T.; Chiba, N.; Inoue, K.; Nakanowatari, T.; Suzuki, E. Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes. Geriatrics 2020, 5, 105. https://doi.org/10.3390/geriatrics5040105
Minamisawa T, Chiba N, Inoue K, Nakanowatari T, Suzuki E. Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes. Geriatrics. 2020; 5(4):105. https://doi.org/10.3390/geriatrics5040105
Chicago/Turabian StyleMinamisawa, Tadayoshi, Noboru Chiba, Kaori Inoue, Tatsuya Nakanowatari, and Eizaburo Suzuki. 2020. "Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes" Geriatrics 5, no. 4: 105. https://doi.org/10.3390/geriatrics5040105
APA StyleMinamisawa, T., Chiba, N., Inoue, K., Nakanowatari, T., & Suzuki, E. (2020). Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes. Geriatrics, 5(4), 105. https://doi.org/10.3390/geriatrics5040105