Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
- Phase 1 (1–2 weeks):
- -
- Active and active-assisted exercises for hip mobilization;
- -
- Hip extension exercises, ankle pumps;
- -
- Active assisted mobilization of the knee, tibiotarsal joint, and contralateral limb;
- -
- Education about correct positioning at home;
- -
- Stretching in the Thomas position.
- Phase 2 (3–6 weeks):
- -
- Maintain previous exercises;
- -
- Global amplitude gain techniques;
- -
- Dynamic strengthening;
- -
- Stretch of the sural triceps, quadriceps, hamstrings, hip flexors
- -
- Start progressive gait training. Crutches were recommended up to 6 weeks.
- Phase 3 (7–12 weeks):
- -
- Continue previous exercises;
- -
- Improve hip range of motion (Objectives: flexion 90°, abduction 30°, extension 0–10°);
- -
- Concentric-eccentric control;
- -
- Improve cardiovascular performance;
- -
- Improve functionality;
- -
- Gait training (progressively without crutches).
- Phase 4 (3–4 months):
- -
- Some patients resumed driving;
- -
- Achieving functional range of motion and good quadriceps control;
- -
- Increase intensity of previous exercises;
- -
- Resistance training with static bicycle.
2.3. Outcome Measures
- -
- Barthel Index (BI), to evaluate the functional independence in ADL (toileting, bathing, eating, dressing, continence, transfers, and ambulation). Each task received a numerical score based on whether the patient required physical assistance to perform it. A patient scoring 0 points would be dependent in all assessed activities of daily living, whereas a score of 100 would reflect independence in all activities [30].
- -
- Functional Ambulation Categories (FAC), to evaluate the independence in ambulation according to six categories ranging from 0 (non-functional ambulation) to 5 (independent walking). Albeit FAC is a general ambulation test, its scores showed a positive linear relationship with gait velocity and step length [31].
- -
- Passive and active range of motion (pROM and aROM) of hip flexion and abduction. Passive range of motion is the movement applied to a joint (by the medical doctor in this case). Active range of motion is movement of a joint provided entirely by the individual performing the exercise, without an outside force aiding in the movement. A goniometer was used to measure all ROMs.
- -
- Medical Research Council (MRC) scale, to evaluate muscle strength in hip flexion, hip abduction, and knee extension [32].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veronese, N.; Maggi, S. Epidemiology and social costs of hip fracture. Injury 2018, 49, 1458–1460. [Google Scholar] [CrossRef]
- Magaziner, J.; Fredman, L.; Hawkes, W.; Hebel, J.R.; Zimmerman, S.; Orwig, D.L.; Wehren, L. Changes in Functional Status Attributable to Hip Fracture: A Comparison of Hip Fracture Patients to Community-dwelling Aged. Am. J. Epidemiol. 2003, 157, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Gimigliano, F.; de Sire, A.; Moretti, A.; Curci, C.; Iolascon, G. Rehabilitation Therapy After Surgery in Osteoporotic Patients. In Multidisciplinary Approach to Osteoporosis: From Assessment to Treatment; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Toro, G.; Calabrò, G.; Toro, A.; de Sire, A.; Iolascon, G. Locking plate fixation of distal femoral fractures is a challenging technique: A retrospective review. Clin. Cases Miner. Bone Metab. 2015, 12, 55–58. [Google Scholar] [CrossRef]
- Peeters, C.M.; Visser, E.; Van de Ree, C.L.; Gosens, T.; Oudsten, B.L.D.; De Vries, J. Quality of life after hip fracture in the elderly: A systematic literature review. Injury 2016, 47, 1369–1382. [Google Scholar] [CrossRef]
- Iolascon, G.; Moretti, A.; Toro, G.; Gimigliano, F.; Liguori, S.; Paoletta, M. Pharmacological Therapy of Osteoporosis: What’s New? Clin. Interv. Aging 2020, 15, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, K.A.; Quinn, C.C. Commentary: Male osteoporosis-policy gaps in prevention and treatment. J. Aging Soc. Policy 2009, 21, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Artaza-Artabe, I.; Sáez-López, P.; Sánchez-Hernández, N.; Fernández-Gutierrez, N.; Malafarina, V. The relationship between nutrition and frailty: Effects of protein intake, nutritional supplementation, vitamin D and exercise on muscle metabolism in the elderly. A systematic review. Maturitas 2016, 93, 89–99. [Google Scholar] [CrossRef]
- Iolascon, G.; Moretti, A.; de Sire, A.; Calafiore, D.; Gimigliano, F. Effectiveness of Calcifediol in Improving Muscle Function in Post-Menopausal Women: A Prospective Cohort Study. Adv. Ther. 2017, 34, 744–752. [Google Scholar] [CrossRef]
- Invernizzi, M.; de Sire, A.; D’Andrea, F.; Carrera, D.; Renò, F.; Migliaccio, S.; Iolascon, G.; Cisari, C. Effects of essential amino acid supplementation and rehabilitation on functioning in hip fracture patients: A pilot randomized controlled trial. Aging Clin. Exp. Res. 2018, 31, 1517–1524. [Google Scholar] [CrossRef]
- de Sire, A.; Baricich, A.; Renò, F.; Cisari, C.; Fusco, N.; Invernizzi, M. Myostatin as a potential biomarker to monitor sarcopenia in hip fracture patients undergoing a multidisciplinary rehabilitation and nutritional treatment: A preliminary study. Aging Clin. Exp. Res. 2020, 32, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.-Y.; Jung, D.-Y.; Kim, Y.; Cho, S.-H.; Yi, C.-H. Effects of ankle exercise combined with deep breathing on blood flow velocity in the femoral vein. Aust. J. Physiother. 2003, 49, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Testa, G.; Vescio, A.; Zuccalà, D.; Petrantoni, V.; Amico, M.; Russo, G.I.; Sessa, G.; Pavone, V. Diagnosis, Treatment and Prevention of Sarcopenia in Hip Fractured Patients: Where We Are and Where We Are Going: A Systematic Review. J. Clin. Med. 2020, 9, 2997. [Google Scholar] [CrossRef] [PubMed]
- Siebens, H.C.; Sharkey, P.; Aronow, H.U.; Deutscher, D.; Roberts, P.; Munin, M.C.; Radnay, C.S.; Horn, S.D. Variation in Rehabilitation Treatment Patterns for Hip Fracture Treated with Arthroplasty. PM&R 2015, 8, 191–207. [Google Scholar] [CrossRef]
- Pryor, G.; Wllliams, D. Rehabilitation after hip fractures: Home and hospital management compared. J. Bone Joint Surg. Br. 1989, 71, 471–474. [Google Scholar] [CrossRef]
- Donohue, K.; Hoevenaars, R.; McEachern, J.; Zeman, E.; Mehta, S. Home-Based Multidisciplinary Rehabilitation following Hip Fracture Surgery: What Is the Evidence? Rehabil. Res. Pract. 2013, 2013, 875968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitzul, K.B.; Wodchis, W.P.; Carter, M.W.; Kreder, H.J.; Voth, J.; Jaglal, S.B. Post-acute pathways among hip fracture patients: A system-level analysis. BMC Health Serv. Res. 2016, 16, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vincentis, A.; Behr, A.U.; Bellelli, G.; Bravi, M.; Castaldo, A.; Cricelli, C.; Galluzzo, L.; Iolascon, G.; Maggi, S.; Martini, E.; et al. Management of hip fracture in the older people: Rationale and design of the Italian consensus on the orthogeriatric co-management. Aging Clin. Exp. Res. 2020, 32, 1393–1399. [Google Scholar] [CrossRef]
- Levy, C.; Ocampo-Chan, S.; Huestis, L.; Renzetti, D. Early Rehabilitation for Patients with Hip Fractures: Spreading Change Across the System. Healthc. Q. 2017, 20, 29–33. [Google Scholar] [CrossRef]
- Cecchi, F.; Pancani, S.; Antonioli, D.; Avila, L.; Barilli, M.; Gambini, M.; Pellegrini, L.L.; Romano, E.; Sarti, C.; Zingoni, M.; et al. Predictors of recovering ambulation after hip fracture inpatient rehabilitation. BMC Geriatr. 2018, 18, 201. [Google Scholar] [CrossRef] [Green Version]
- Binder, E.F.; Brown, M.; Sinacore, D.R.; Steger-May, K.; Yarasheski, K.; Schechtman, K.B. Effects of extended outpatient rehabilitation after hip fracture: A randomized controlled trial. JAMA 2004, 292, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Pan, P.-J.; Lin, P.-H.; Tang, G.-J.; Lan, T.-Y. Comparisons of mortality and rehospitalization between hip-fractured elderly with outpatient rehabilitation and those without. Medicine 2018, 97, e0644. [Google Scholar] [CrossRef]
- Salpakoski, A.; Törmäkangas, T.; Edgren, J.; Kallinen, M.; Sihvonen, S.E.; Pesola, M.; Vanhatalo, J.; Arkela, M.; Rantanen, T.; Sipila, S. Effects of a Multicomponent Home-Based Physical Rehabilitation Program on Mobility Recovery After Hip Fracture: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2014, 15, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Latham, N.K.; Harris, B.A.; Bean, J.F.; Heeren, T.; Goodyear, C.; Zawacki, S.; Heislein, D.M.; Mustafa, J.; Pardasaney, P.; Giorgetti, M.; et al. Effect of a home-based exercise program on functional recovery following rehabilitation after hip fracture: A randomized clinical trial. JAMA 2014, 311, 700–708. [Google Scholar] [CrossRef]
- Mahomed, N.; Davis, A.; Hawker, G.; Badley, E.; Davey, J.R.; Syed, K.A.; Wright, J.G. Inpatient compared with home-based rehabilitation following primary unilateral total hip or knee replacement: A randomized controlled trial. J. Bone Jt. Surg.–Ser. A 2008, 90, 1673–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, C.M.; Harris-Hayes, M.; Kristensen, M.T.; Overgaard, J.A.; Herring, T.B.; Kenny, A.M.; Mangione, K.K. Physical Therapy Management of Older Adults with Hip Fracture. J. Orthop. Sports Phys. Ther. 2021, 51, CPG1–CPG81. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mahoney, F.B.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical Gait Assessment in the Neurologically Impaired. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- John, J. Grading of muscle power: Comparison of MRC and analogue scales by physiotherapists. Medical Research Council. Int. J. Rehabil. Res. 1984, 7, 173–181. [Google Scholar] [CrossRef]
- Cameron, I.D.; Handoll, H.H.; Finnegan, T.P.; Madhok, R.; Langhorne, P. Coordinated multidisciplinary approaches for inpatient rehabilitation of older patients with proximal femoral fractures. Cochrane Database Syst. Rev. 2001, 3, CD000106. [Google Scholar] [CrossRef]
- Hung, W.W.; Egol, K.A.; Zuckerman, J.D.; Siu, A.L. Hip fracture management: Tailoring care for the older patient. JAMA 2012, 307, 2185–2194. [Google Scholar] [CrossRef]
- Daly, N.; Fortin, C.; Jaglal, S.; MacDonald, S.L. Predictors of Exceeding Target Inpatient Rehabilitation Length of Stay After Hip Fracture. Am. J. Phys. Med. Rehabil. 2020, 99, 630–635. [Google Scholar] [CrossRef]
- Kauppila, A.; Kyllönen, E.; Ohtonen, P.; Hämäläinen, M.; Mikkonen, P.; Laine, V.; Arokoski, J.P. Multidisciplinary rehabilitation after primary total knee arthroplasty: A randomized controlled study of its effects on functional capacity and quality of life. Clin. Rehabil. 2010, 24, 398–411. [Google Scholar] [CrossRef]
- Avola, M.; Mangano, G.R.A.; Testa, G.; Mangano, S.; Vescio, A.; Pavone, V.; Vecchio, M. Rehabilitation Strategies for Patients with Femoral Neck Fractures in Sarcopenia: A Narrative Review. J. Clin. Med. 2020, 9, 3115. [Google Scholar] [CrossRef] [PubMed]
- Chatterji, G.; Patel, Y.; Jain, V.; Geevarughese, N.M.; Haq, R.U. Impact of COVID-19 on Orthopaedic Care and Practice: A Rapid Review. Indian J. Orthop. 2021, 55, 839–852. [Google Scholar] [CrossRef]
Total (n = 52) | Outpatient (n = 14) | Inpatient (n = 14) | Home-Based (n = 6) | p Value | |
---|---|---|---|---|---|
Age (years) | 83.12 ± 7.78 | 81.00 ± 2.50 | 84.21 ± 2.20 | 81.17 ± 3.90 | 0.490 |
Sex (male/female) | 12/40 | 3/11 | 2/12 | 3/3 | 0.219 |
MMSE | 27.41 ± 2.06 | 27.86 ± 1.83 | 26.93 ± 2.13 | 27.5 ± 2.51 | 0.502 |
Hypertension | 19 (36.53%) | 8 (57.14%) | 8 (57.14%) | 3 (50.00%) | 0.950 |
Previous myocardial infarction | 7 (13.46%) | 3 (21.42%) | 2 (14.28%) | 2 (33.33%) | 0.624 |
COPD | 5 (9.61%) | 2 (14.28%) | 3 (21.42%) | 0 (0.00%) | 0.280 |
Diabetes | 12 (23.07%) | 4 (28.57%) | 6 (42.85%) | 2 (33.33%) | 0.727 |
Previous fragility fractures | 9 (17.31%) | 3 (21.42%) | 3 (21.42%) | 1 (16.67%) | 0.966 |
Previous hip fractures | 3 (5.77%) | 1 (7.14%) | 1 (7.14%) | 0 (0.00%) | 0.796 |
Vertebral fractures | 4 (7.69%) | 1 (7.14%) | 1 (7.14%) | 0 (0.00%) | 0.796 |
NHNV fractures | 3 (5.77%) | 1 (7.14%) | 1 (7.14%) | 1 (16.67%) | 0.757 |
Anti-osteoporotic drugs or vitamin D or calcium supplementation | 10 (19.23%) | 1 (7.14%) | 4 (28.57%) | 2 (33.33%) | 0.301 |
Bisphosphonates | 8 (15.38%) | 1 (7.14%) | 4 (28.57%) | 1 (16.67%) | 0.330 |
Vitamin D | 9 (17.31%) | 2 (14.29%) | 4 (28.57%) | 1 (16.67%) | 0.624 |
Calcium | 7 (13.46%) | 1 (7.14%) | 3 (21.42%) | 1 (16.67%) | 0.560 |
Outcomes | Groups | T0 Baseline | T1 3 Months | T2 6 Months | p Value T0–T1 | p Value T0–T2 |
---|---|---|---|---|---|---|
Barthel Index | Outpatient (n = 14) | 52.14 ± 8.71 | 82.86 ± 13.26 | 88.00 ± 9.73 * | 0.001 | 0.001 |
Inpatient (n = 14) | 50.36 ± 9.29 | 70.30 ± 19.56 | 68.57 ± 21.70 * | 0.002 | 0.007 | |
Home-based (n = 6) | 54.17 ± 7.36 | 76.67 ± 16.30 | 82.50 ± 12.94 | 0.027 | 0.026 | |
FAC | Outpatient (n = 14) | 0.00 ± 0.00 | 3.71 ± 0.94 | 4.07 ± 0.92 | 0.001 | 0.001 |
Inpatient (n = 14) | 0.00 ± 0.00 | 2.86 ± 1.23 | 3.14 ± 1.41 | 0.001 | 0.001 | |
Home-based (n = 6) | 0.00 ± 0.00 | 3.17 ± 1.17 | 3.33 ± 1.03 | 0.027 | 0.026 | |
Hip flexion | ||||||
pROM (°) | ||||||
Outpatient (n = 14) | 28.93 ± 14.17 | 99.29 ± 10.54 | 107.14 ± 8.48 | 0.001 | 0.001 | |
Inpatient (n = 14) | 31.79 ± 17.17 | 100.36 ± 6.64 * | 106.43 ± 9.08 | 0.001 | 0.001 | |
Home-based (n = 6) | 28.33 ± 16.66 | 92.50 ± 6.89 * | 107.50 ± 4.18 | 0.027 | 0.027 | |
aROM (°) | ||||||
Outpatient (n = 14) | 3.57 ± 3.63 | 93.57 ± 10.64 | 99.29 ± 12.07 | 0.001 | 0.001 | |
Inpatient (n = 14) | 5.00 ± 5.55 | 93.93 ± 7.38 | 98.93 ± 9.44 | 0.001 | 0.001 | |
Home-based (n = 6) | 4.17 ± 4.92 | 90.00 ± 8.94 | 99.17 ± 6.65 | 0.028 | 0.026 | |
Hip abduction | ||||||
pROM (°) | Outpatient (n = 14) | 19.29 ± 10.89 | 35.71 ± 7.81 | 36.07 ± 8.13 | 0.003 | 0.003 |
Inpatient (n = 14) | 13.93 ± 5.94 | 29.29 ± 11.24 | 30.00 ± 12.09 | 0.001 | 0.001 | |
Home-based (n = 6) | 11.67 ± 4.08 | 35.00 ± 8.94 | 35.83 ± 9.70 | 0.027 | 0.027 | |
aROM (°) | Outpatient (n = 14) | 3.21 ± 3.72 | 27.14 ± 8.93 | 29.64 ± 8.43 | 0.001 | 0.001 |
Inpatient (n = 14) | 3.93 ± 4.01 | 20.00 ± 9.81 | 23.57 ± 12.47 | 0.001 | 0.002 | |
Home-based (n = 6) | 4.17 ± 3.76 | 27.50 ± 11.73 | 34.17 ± 8.61 | 0.028 | 0.026 | |
MRC scale | ||||||
Hip flexion | Outpatient (n = 14) | 1.43 ± 0.65 | 4.14 ± 0.66 | 4.71 ± 0.47 | 0.001 | 0.001 |
Inpatient (n = 14) | 1.86 ± 0.86 | 3.86 ± 1.03 | 4.64 ± 0.50 | 0.001 | 0.001 | |
Home-based (n = 6) | 1.33 ± 0.52 | 3.67 ± 0.82 | 4.83 ± 0.41 | 0.026 | 0.024 | |
MRC scale | ||||||
Hip abduction | Outpatient (n = 14) | 0.86 ± 0.36 | 3.50 ± 0.85 | 4.71 ± 0.47 * | 0.001 | 0.001 |
Inpatient (n = 14) | 0.86 ± 0.36 | 3.14 ± 1.10 | 4.00± 0.96 * | 0.001 | 0.001 | |
Home-based (n = 6) | 0.83 ± 0.41 | 3.33 ± 0.52 | 4.33 ± 0.52 | 0.024 | 0.024 | |
Knee extension | Outpatient (n = 14) | 2.64 ± 0.63 | 4.07 ± 0.73 | 4.79 ± 0.43 | 0.001 | 0.001 |
Inpatient (n = 14) | 3.00 ± 0.68 | 3.71 ± 0.73 | 4.21 ± 0.80 | 0.008 | 0.004 | |
Home-based (n = 6) | 3.33 ± 0.82 | 3.83 ± 0.75 | 4.83 ± 0.41 | 0.180 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, M.M.; Antunes, S.; Ascenso, D.; Silveira, A. Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients. Geriatrics 2021, 6, 83. https://doi.org/10.3390/geriatrics6030083
Freitas MM, Antunes S, Ascenso D, Silveira A. Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients. Geriatrics. 2021; 6(3):83. https://doi.org/10.3390/geriatrics6030083
Chicago/Turabian StyleFreitas, Margarida Mota, Sara Antunes, Diana Ascenso, and Alda Silveira. 2021. "Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients" Geriatrics 6, no. 3: 83. https://doi.org/10.3390/geriatrics6030083
APA StyleFreitas, M. M., Antunes, S., Ascenso, D., & Silveira, A. (2021). Outpatient and Home-Based Treatment: Effective Settings for Hip Fracture Rehabilitation in Elderly Patients. Geriatrics, 6(3), 83. https://doi.org/10.3390/geriatrics6030083