Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.M.; Duffy, J.R.; Whitwell, J.L.; Ahlskog, J.E.; Sorenson, E.J.; Josephs, K.A. Clinical and imaging characterization of progressive spastic dysarthria. Eur. J. Neurol. 2014, 21, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santens, P.; Van Borsel, J.; Foncke, E.; Meire, V.; Merkx, H.; De Bleecker, J.; De Reuck, J. Progressive dysarthria. Dement. Geriatr. Cogn. Disord. 1999, 10, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Ihori, N.; Araki, S.; Ishihara, K.; Kawamura, M. A case of frontotemporal lobar degeneration with progressive dysarthria. Behav. Neurol. 2006, 17, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliveri, P.; Piacentini, S.; Carella, F.; Testa, D.; Ciano, C.; Girotti, F. Progressive dysarthria: Definition and clinical follow-up. Neurol. Sci. 2003, 24, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Deramecourt, V.; Lebert, F.; Debachy, B.; Mackowiak-Cordoliani, M.A.; Bombois, S.; Kerdraon, O.; Buee, L.; Maurage, C.-A.; Pasquier, F. Prediction of pathology in primary progressive language and speech disorders. Neurology 2010, 74, 42–49. [Google Scholar] [CrossRef]
- Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Machulda, M.M.; Senjem, M.L.; Master, A.V.; Lowe, V.J.; Jack, C.; Whitwell, J.L. Characterizing a neurodegenerative syndrome: Primary progressive apraxia of speech. Brain 2012, 135, 1522–1536. [Google Scholar] [CrossRef] [Green Version]
- Mora, P.; Ruffini, L.; Ghetti, C.; Ghirardini, S.; Scarlattei, M.; Baldari, G.; Cidda, C.; Rubino, P.; Gandolfi, S.A.; Orsoni, J.G. Altered Brain Glucose Consumption in Cogan’s Syndrome. J. Ophthalmol. 2016, 2016, 3207150. [Google Scholar] [CrossRef]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T. (Eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images; Elsevier: London, UK, 2011. [Google Scholar]
- Talairach, J.; Szikla, G. Application of stereotactic concepts to the surgery of epilepsy. In Advances in Stereotactic and Functional Neurosurgery; Springer: Vienna, Austria, 1980; Volume 4, pp. 35–54. [Google Scholar]
- Luzzatti, C.; Wilmes, K.; Bleser, D. AAT Aachner Aphasie Test. (Edizione italiana); Giunti OS: Firenze, Italy, 1996. [Google Scholar]
- Buckley, C.J.; Sherwin, P.F.; Smith, A.P.; Wolber, J.; Weick, S.M.; Brooks, D.J. Validation of an electronic image reader training programme for interpretation of [18F]flutemetamol β-amyloid PET brain images. Nucl. Med. Commun. 2017, 38, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Thurfjell, L.; Lilja, J.; Lundqvist, R.; Buckley, C.; Smith, A.; Vandenberghe, R.; Sherwin, P. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: Concordance with visual image reads. J. Nucl. Med. 2014, 55, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Baizabal-Carvallo, J.F.; Jankovic, J. Speech and voice disorders in patients with psychogenic movement disorders. J. Neurol. 2015, 262, 2420–2424. [Google Scholar] [CrossRef] [PubMed]
- Koźmin-Burzyńska, A.; Bratek, A.; Zawada, K.; Krysta, K.; Krupka-Matuszczyk, I. Psychogenic speech disorder—A case report. Psychiatr. Danub. 2015, 27, 411–414. [Google Scholar]
- Tate, M.C.; Herbet, G.; Moritz-Gasser, S.; Tate, J.E.; Duffau, H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 2014, 137, 2773–2782. [Google Scholar] [CrossRef] [PubMed]
- Indefrey, P.; Levelt, W.J. The spatial and temporal signatures of word production components. Cognition 2004, 92, 101–144. [Google Scholar] [CrossRef] [Green Version]
- Price, C.J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012, 62, 816–847. [Google Scholar] [CrossRef] [Green Version]
- Grodzinsky, Y.; Santi, A. The battle for Broca’s region. Trends Cogn. Sci. 2008, 12, 474–480. [Google Scholar] [CrossRef]
- DeWitt, I.; Rauschecker, J.P. Wernicke’s area revisited: Parallel streams and word processing. Brain Lang. 2013, 127, 181–191. [Google Scholar] [CrossRef]
- Ardila, A.; Bernal, B.; Rosselli, M. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language. Arch. Clin. Neuropsychol. 2016, 31, 112–122. [Google Scholar] [CrossRef]
- Rosselli, M.; Ardila, A.; Bernal, B. Modelo de conectividad de la circunvolución angular en el lenguaje: Meta-análisis de neuroimágenes funcionales. Rev. De Neurol. 2015, 60, 495–503. [Google Scholar]
- Piai, V.; Roelofs, A.; Acheson, D.J.; Takashima, A. Attention for speaking: Domain-general control from the anterior cingulate cortex in spoken word production. Front. Hum. Neurosci. 2013, 7, 832. [Google Scholar] [CrossRef] [Green Version]
- Flinker, A.; Korzeniewska, A.; Shestyuk, A.Y.; Franaszczuk, P.J.; Dronkers, N.F.; Knight, R.T.; Crone, N.E. Redefining the role of Broca’s area in speech. Proc. Natl. Acad. Sci. USA 2015, 112, 2871–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, J.V.; Nyabwari, S.M.; Lee, J.T.; Alzheimer’s Disease Neuroimaging Initiative. Aging-Related Hypometabolism in the Anterior Cingulate Cortex of Cognitively Intact, Amyloid-Negative Seniors at Rest Mediates the Relationship between Age and Executive Function but Not Memory. Cereb Cortex Commun. 2020, 1, tgaa020. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Onishi, A.; Fujiwara, Y.; Oda, K.; Ishiwata, K.; Ishii, K. Longitudinal effects of aging on 18F-FDG distribution in cognitively normal elderly individuals. Sci Rep. 2018, 8, 11557. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.B.; Laird, A.R.; Maller, J.; Daskalakis, Z.J. A meta-analytic study of changes in brain activation in depression. Hum. Brain Mapp. 2008, 29, 683–695, Erratum in: Hum. Brain Mapp. 2008, 29, 736. [Google Scholar] [CrossRef] [PubMed]
- Tastevin, M.; Boyer, L.; Korchia, T.; Fond, G.; Lançon, C.; Richieri, R.; Guedj, E. Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder. EJNMMI Res. 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
TEST | Raw Score | Results |
---|---|---|
Bucco-facial apraxia (Spinnler and Tognoni, 1987) | 6/20 | Pathological |
Ideomotor apraxia (Spinnler and Tognoni, 1987) | 19/20 | Normal |
Token test (Spinnler and Tognoni, 1987) | 13/36 | Pathological |
CPM47 (Caltagirone et al., 1995) | 23/36 | Normal |
ACE-R (Siciliano et al., 2016) Naming | 9/10 | Normal |
Comprehension (written) | 1/1 | Normal |
Three-stage order | 3/3 | Normal |
Images | 3/3 | Normal |
Writing | 0/1 | Pathological |
Retrograde memory | 4/4 | Normal |
Visuo-spatial abilities Pentagon | 0/1 | Pathological |
Cube | 1/1 | Normal |
Clock | 1/5 | Pathological |
Perceptive abilities Points | 1/4 | Pathological |
Letters | 4/4 | Normal |
2012 | Neuropsychological assessment RMN | Negative Mild dilation of the sulci of the bilateral front parietal convexities |
2013 | FDG-PET | Hypometabolism in the right and left premotor cortex |
2014 | Three neurological assessments and lexical tests | Mild isolated motor speech disorder |
2015 | Neurological assessment FDG-PET | Mild isolated motor speech disorder hypometabolism; more extensive involving left temporal gyrus, frontal gyrus bilaterally, cingulate, caudate, and thalamus bilaterally |
2017 | Neurological assessment Neuropsychological assessment (WAIS-IV) Speech therapist assessment Amyloid PET | Mild isolated motor speech disorder No abnormal β-amyloid deposits |
2021 | Neurological assessment Broad neuropsychological assessment | Mild cognitive impairment Sudden worsening of the condition of the patient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basagni, B.; Martelli, S.; Ruffini, L.; Mazzucchi, A.; Cecchi, F. Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject. Geriatrics 2022, 7, 52. https://doi.org/10.3390/geriatrics7030052
Basagni B, Martelli S, Ruffini L, Mazzucchi A, Cecchi F. Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject. Geriatrics. 2022; 7(3):52. https://doi.org/10.3390/geriatrics7030052
Chicago/Turabian StyleBasagni, Benedetta, Sonia Martelli, Livia Ruffini, Anna Mazzucchi, and Francesca Cecchi. 2022. "Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject" Geriatrics 7, no. 3: 52. https://doi.org/10.3390/geriatrics7030052
APA StyleBasagni, B., Martelli, S., Ruffini, L., Mazzucchi, A., & Cecchi, F. (2022). Progressive Unspecified Motor Speech Disorder: A Longitudinal Single Case Study of an Older Subject. Geriatrics, 7(3), 52. https://doi.org/10.3390/geriatrics7030052