The Prevalence of Low Handgrip Strength and Its Predictors among Outpatient Older Adults in a Tertiary Care Setting: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Muscle Strength
2.3. Tools
2.3.1. Patient Health Questionnaire (PHQ)-9
2.3.2. Montreal Cognitive Assessment (MoCA)
2.3.3. Pittsburgh Sleep Quality Index (PSQI)
2.4. Procedure
2.5. Sample Size Calculation
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
Factors Associated with Low HGS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knuttgen, H.G.; Kraemer, W.J. Terminology and Measurement in Exercise Performance. J. Strength Cond. Res. 1987, 1, 1–10. [Google Scholar]
- Limpawattana, P.; Kotruchin, P.; Pongchaiyakul, C. Sarcopenia in Asia. Osteoporos Sarcopenia 2015, 1, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Serra-Prat, M.; Papiol, M.; Vico, J.; Palomera, E.; Bartolomé, M.; Burdoy, E. Factors Associated with Poor Muscle Mass and Strength in A Community-Dwelling Elderly Population: A Cross-Sectional Study. J. Gerontol. Geriatr. Res. 2017, 6, 2. [Google Scholar]
- Damayanthi, H.D.W.T.; Moy, F.M.; Abdullah, K.L.; Dharmaratne, S.D. Handgrip Strength and Its Associated Factors among Community-dwelling Elderly in Sri Lanka: A Cross-sectional Study. Asian Nurs. Res. 2018, 12, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Pan, P.-J.; Lin, C.-H.; Yang, N.-P.; Chen, H.-C.; Tsao, H.-M.; Chou, P.; Hsu, N.-W. Normative data and associated factors of hand grip strength among elderly individuals: The Yilan Study, Taiwan. Sci. Rep. 2020, 10, 6611. [Google Scholar] [CrossRef]
- Cardoso, A.F.; Barbosa, A.R.; Coqueiro, R.D.S. Muscle strength in the oldest old and associated factors. Rev. Bras. Ciênc. Esporte 2013, 35, 963–981. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ho, M.; Chau, P.H. Prevalence, Incidence, and Associated Factors of Possible Sarcopenia in Community-Dwelling Chinese Older Adults: A Population-Based Longitudinal Study. Front. Med. 2022, 8, 769708. [Google Scholar] [CrossRef]
- Confortin, S.C.; Barbosa, A.R. Factors Associated With Muscle Strength Among Rural Community-Dwelling Older Women in Southern Brazil. J. Geriatr. Phys. Ther. 2015, 38, 162–168. [Google Scholar] [CrossRef]
- Khongsri, N.; Tongsuntud, S.; Limampai, P.; Kuptniratsaikul, V. The prevalence of sarcopenia and related factors in a community-dwelling elders Thai population. Osteoporos Sarcopenia 2016, 2, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, X.; Hou, L.; Lin, X.; Qin, D.; Wang, H.; Hai, S.; Cao, L.; Dong, B. Prevalence and Risk Factors Governing the Loss of Muscle Function in Elderly Sarcopenia Patients: A Longitudinal Study in China with 4 Years of Follow-Up. J. Nutr. Health Aging 2020, 24, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Horpibulsuk, J.; Nutkhum, W.; Jongjol, P. Handgrip strength of community-dwelling elderly in Nakhon Ratchasima Province, Thailand. Chiang Mai Med. J. 2019, 58, 15–22. [Google Scholar]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Lotrakul, M.; Sumrithe, S.; Saipanish, R. Reliability and validity of the Thai version of the PHQ-9. BMC Psychiatry 2008, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangwongchai, S.; Phanasathit, M.; Charernboon, T.; Akkayagorn, L.; Hemrungrojn, S.; Phanthumchinda, K.; Nasreddine, Z. The validity of Thai version of The Montreal Cognitive Assessment (MoCA-T). Dement. Neuropsychol. 2009, 3, 172. [Google Scholar]
- Sitasuwan, T.; Bussaratid, S.; Ruttanaumpawan, P.; Chotinaiwattarakul, W. Reliability and validity of the Thai version of the Pittsburgh Sleep Quality Index. J. Med. Assoc. Thai. 2014, 97 (Suppl. S3), S57–S67. [Google Scholar]
- Katsimpris, A.; Linseisen, J.; Meisinger, C.; Volaklis, K. The Association Between Polypharmacy and Physical Function in Older Adults: A Systematic Review. J. Gen. Intern. Med. 2019, 34, 1865–1873. [Google Scholar] [CrossRef]
- Campins, L.; Camps, M.; Riera, A.; Pleguezuelos, E.; Yebenes, J.C.; Serra-Prat, M. Oral Drugs Related with Muscle Wasting and Sarcopenia. A Review. Pharmacology 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Thorand, B.; Peters, A.; Halle, M.; Heier, M.; Strasser, B.; Amann, U.; Ladwig, K.H.; Schulz, H.; Koenig, W.; et al. Physical activity, muscular strength, and polypharmacy among older multimorbid persons: Results from the KORA-Age study. Scand. J. Med. Sci. Sports 2018, 28, 604–612. [Google Scholar] [CrossRef]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int. J. Mol. Sci. 2020, 22, 255. [Google Scholar] [CrossRef]
- Van Dam, R.; Van Ancum, J.M.; Verlaan, S.; Scheerman, K.; Meskers, C.G.M.; Maier, A.B. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass. Dement. Geriatr. Cogn. Disord. 2018, 45, 243–250. [Google Scholar] [CrossRef] [PubMed]
Variables | N = 198 | |
---|---|---|
Low HGS N = 101 | Normal HGS N = 97 | |
Age (year), med (IQR) | 70 (67, 74) | 66 (62, 69) |
Sex, n (%) | ||
| 64 (51.61) | 60 (48.39) |
| 37 (50) | 37 (50) |
BMI (kg/m2), n (%) | ||
| 41 (40.6) | 40 (41.2) |
| 21 (20.8) | 25 (25.8) |
| 31 (30.7) | 27 (27.8) |
| 8 (7.9) | 5 (5.2) |
Years of education, n (%) | ||
| 81 (80.2) | 61 (62.9) |
| 20 (19.8) | 36 (37.1) |
Marital status, n (%) | ||
| 62 (61.4) | 67 (69.1) |
| 39 (38.6) | 30 (30.9) |
Underlying diseases, n (%) | ||
| 62 (61.4) | 66 (68.0) |
| 37 (36.6) | 36 (37.1) |
| 7 (6.9) | 9 (9.3) |
| 9 (8.9) | 3 (3.1) |
| 17 (16.8) | 17 (17.5) |
Depressive symptoms, n (%) | 3 (2.97) | 1 (1.0) |
MoCA, med (IQR) | 18 (14, 22) | 22 (17, 24) |
No. of medications used, med (IQR) | 5 (1, 7) | 4 (2, 5) |
Admission within 12 months, n (%) | 39 (38.6) | 30 (30.9) |
Falls within 6 months | 15 (14.9) | 13 (13.4) |
Current alcohol consumption, n (%) | 8 (7.9) | 18 (18.6) |
Current/ex-smoker, n (%) | 29 (28.7) | 27 (27.8) |
Poor sleep quality, n (%) | 42 (41.6) | 39 (40.2) |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Crude OR | (95% CI) | p-Value | Adjusted OR | (95% CI) | p-Value | |
Age (years) | 1.1 | 1.1–1.2 | <0.001 | 1.1 | 1.06–1.2 | <0.001 * |
Sex | ||||||
| 1 | - | - | |||
| 0.9 | 0.5–1.7 | 0.8 | |||
BMI (kg/m2) | ||||||
| 0.9 | 0.5–1.8 | 0.7 | |||
| 0.7 | 0.3–1.6 | 0.4 | |||
| 1 | - | - | |||
| 1.4 | 0.4–5.1 | 0.6 | |||
Education ≥ 12 years | 0.4 | 0.2–0.8 | 0.01 | 1.01 | 0.4–2.5 | 0.9 |
Marital status | ||||||
| 1 | - | - | |||
| 1.4 | 0.8–2.5 | 0.3 | |||
Underlying diseases | ||||||
| 0.7 | 0.4–1.3 | 0.3 | |||
| 0.9 | 0.6–1.8 | 0.9 | |||
| 0.7 | 0.3–2.0 | 0.6 | 0.6 | 0.2–1.9 | 0.37 |
| 3.1 | 0.9–14.1 | 0.1 | 1.6 | 0.4–8.4 | 0.5 |
| 0.9 | 0.5–2.0 | 0.9 | |||
Depressive symptoms | 2.9 | 0.4–59.9 | 0.4 | |||
MoCA | 0.9 | 0.8–0.9 | <0.001 | 0.9 | 0.8–0.9 | 0.04 * |
No. of medication used | 1.2 | 1.1–1.4 | <0.001 | 1.3 | 1.1–1.4 | <0.001 * |
Admission within 12 months | 1.4 | 0.8–2.5 | 0.3 | 1.4 | 0.7–2.7 | 0.4 |
Falls within 6 months | 1.1 | 0.5–2.5 | 0.8 | |||
Current alcohol consumption | 0.4 | 0.1–0.9 | 0.03 | 0.7 | 0.2–1.9 | 0.4 |
Current and ex-smoker | 1.0 | 0.6–1.9 | 0.9 | |||
Poor sleep quality | 1.1 | 0.6–1.9 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjavong, M.; So-ngern, A.; Limpawattana, P.; Manomaiwong, N.; Kamsuanjig, T.; Khammak, C.; Chokkhatiwat, P.; Srisuwannakit, K. The Prevalence of Low Handgrip Strength and Its Predictors among Outpatient Older Adults in a Tertiary Care Setting: A Cross-Sectional Study. Geriatrics 2022, 7, 74. https://doi.org/10.3390/geriatrics7040074
Manjavong M, So-ngern A, Limpawattana P, Manomaiwong N, Kamsuanjig T, Khammak C, Chokkhatiwat P, Srisuwannakit K. The Prevalence of Low Handgrip Strength and Its Predictors among Outpatient Older Adults in a Tertiary Care Setting: A Cross-Sectional Study. Geriatrics. 2022; 7(4):74. https://doi.org/10.3390/geriatrics7040074
Chicago/Turabian StyleManjavong, Manchumad, Apichart So-ngern, Panita Limpawattana, Natapong Manomaiwong, Thanisorn Kamsuanjig, Chudapha Khammak, Pongsak Chokkhatiwat, and Kamolthorn Srisuwannakit. 2022. "The Prevalence of Low Handgrip Strength and Its Predictors among Outpatient Older Adults in a Tertiary Care Setting: A Cross-Sectional Study" Geriatrics 7, no. 4: 74. https://doi.org/10.3390/geriatrics7040074
APA StyleManjavong, M., So-ngern, A., Limpawattana, P., Manomaiwong, N., Kamsuanjig, T., Khammak, C., Chokkhatiwat, P., & Srisuwannakit, K. (2022). The Prevalence of Low Handgrip Strength and Its Predictors among Outpatient Older Adults in a Tertiary Care Setting: A Cross-Sectional Study. Geriatrics, 7(4), 74. https://doi.org/10.3390/geriatrics7040074