Comparison of Physical Function among Elderly Japanese Women with and without Low Bone Mass and Low Muscle Mass: A Cross-Sectional Study of Older Women Who Engage in Regular Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Bone and Muscle Mass Measurements
2.3. Measurement of Physical Function
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rubenstein, L.Z. Falls in Older People: Epidemiology, Risk Factors and Strategies for Prevention. Age Ageing 2006, 35 (Suppl. S2), ii37–ii41. [Google Scholar] [CrossRef]
- Kannus, P.; Parkkari, J.; Niemi, S.; Palvanen, M. Fall-Induced Deaths among Elderly People. Am. J. Public Health 2005, 95, 422–424. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A.; Oden, A.; Johansson, H.; De Laet, C.; Delmas, P.; Eisman, J.A.; Fujiwara, S.; Kroger, H.; Mellstrom, D.; et al. Predictive value of BMD for Hip and Other Fractures. J. Bone Miner. Res. 2005, 20, 1185–1194. [Google Scholar] [CrossRef]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef]
- Kim, S.; Won, C.W.; Kim, B.S.; Choi, H.R.; Moon, M.Y. The Association between the Low Muscle Mass and Osteoporosis in Elderly Korean People. J. Korean Med. Sci. 2014, 29, 995–1000. [Google Scholar] [CrossRef]
- Morley, J.E.; Anker, S.D.; von Haehling, S. Prevalence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. J. Cachexia Sarcopenia Muscle 2014, 5, 253–259. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Iidaka, T.; Kodama, R.; Kawaguchi, H.; Nakamura, K.; Tanaka, S.; Akune, T. Is Osteoporosis a Predictor for Future Sarcopenia or Vice Versa? Four-Year Observations between the Second and Third ROAD Study Surveys. Osteoporos. Int. 2017, 28, 189–199. [Google Scholar] [CrossRef]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, Diagnosis, and Treatment-Facts and Numbers. J. Cachexia Sarcopenia Muscle 2020, 11, 609–618. [Google Scholar] [CrossRef]
- Di Monaco, M.; Castiglioni, C.; Bardesono, F.; Milano, E.; Massazza, G. Sarcopenia, Osteoporosis and the Burden of Prevalent Vertebral Fractures: A Cross-Sectional Study of 350 Women with Hip Fracture. Eur. J. Phys. Rehabil. Med. 2020, 56, 184–190. [Google Scholar] [CrossRef]
- Chalhoub, D.; Cawthon, P.M.; Ensrud, K.E.; Stefanick, M.L.; Kado, D.M.; Boudreau, R.; Greenspan, S.; Newman, A.B.; Zmuda, J.; Orwoll, E.S.; et al. Risk of Nonspine Fractures in Older Adults with Sarcopenia, Low Bone Mass, or Both. J. Am. Geriatr. Soc. 2015, 63, 1733–1740. [Google Scholar] [CrossRef] [Green Version]
- Locquet, M.; Beaudart, C.; Durieux, N.; Reginster, J.Y.; Bruyère, O. Relationship between the Changes over Time of Bone Mass and Muscle Health in Children and Adults: A Systematic Review and Meta-analysis. BMC Musculoskelet. Disord. 2019, 20, 429. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B. Muscle Mass, Muscle Strength, and Muscle Fat Infiltration as Predictors of Incident Mobility Limitations in Well-Functioning Older Persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Dufour, A.B.; Hannan, M.T.; Murabito, J.M.; Kiel, D.P.; McLean, R.R. Sarcopenia Definitions Considering Body Size and Fat Mass Are Associated with Mobility Limitations: The Framingham Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 168–174. [Google Scholar] [CrossRef]
- Locquet, M.; Beaudart, C.; Bruyère, O.; Kanis, J.A.; Delandsheere, L.; Reginster, J.Y. Bone Health Assessment in Older People with or without Muscle Health Impairment. Osteoporos. Int. 2018, 29, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Minematsu, A.; Hazaki, K.; Harano, A.; Okamoto, N. Association between Bone Mass as Assessed by Quantitative Ultrasound and Physical Function in Elderly Women: The Fujiwara-Kyo Study. Osteoporos. Sarcopenia 2017, 3, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-I.; Li, T.-C.; Lin, W.-Y.; Liu, C.-S.; Hsu, C.-C.; Hsiung, C.-A.; Chen, C.-Y.; Huang, K.-C.; Wu, C.-H.; Wang, C.-Y.; et al. Combined Association of Chronic Disease and Low Skeletal Muscle Mass with Physical Performance in Older Adults in the Sarcopenia and Translational Aging Research in Taiwan (START) Study. BMC Geriatr. 2015, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, W.; Han, P.; Kohzuki, M.; Guo, Q. Osteosarcopenic Obesity Associated with Poor Physical Performance in the Elderly Chinese Community. Clin. Interv. Aging 2020, 15, 1343–1352. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. Available online: http://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf (accessed on 7 August 2022).
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef]
- Pang, B.W.J.; Wee, S.-L.; Chen, K.K.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Ng, D.H.M.; Tan, Q.L.L.; Jagadish, M.U.; Ng, T.P. Coexistence of osteoporosis, sarcopenia and obesity in community-dwelling adults—The Yishun Study. Osteoporos. Sarcopenia 2021, 7, 17–23. [Google Scholar] [CrossRef]
- Yano, J.; Sakai, K.; Ibayashi, H.; Tanaka, M.; Pham, T.-M.; Nishiyama, T.; Matsuda, S.; Kobayashi, A.; Yakura, N. Analysis of Effect of the Community Based Physical Fitness Program for the Aged in an Isolated Island, Japan—An Application of the “Active Centenarian Physical Fitness Program (Iki-Iki Hyaku-Sai Taiso)”. Asian Pac. J. Dis. Manag. 2007, 1, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Krieg, M.A.; Barkmann, R.; Gonnelli, S.; Stewart, A.; Bauer, D.C.; Del Rio Barquero, L.; Kaufman, J.J.; Lorenc, R.; Miller, P.D.; Olszynski, W.P.; et al. Quantitative Ultrasound in the Management of Osteoporosis: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008, 11, 163–187. [Google Scholar] [CrossRef] [PubMed]
- WHO Scientific Group. Prevention and Management of Osteoporosis. World Health Organ. Tech. Rep. Ser. 2003, 921, 1–164. [Google Scholar]
- Nonaka, K.; Murata, S.; Shiraiwa, K.; Abiko, T.; Nakano, H.; Iwase, H.; Naito, K.; Horie, J. Physical Characteristics Vary According to Body Mass Index in Japanese Community-Dwelling Elderly Women. Geriatrics 2018, 3, 87. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Abe, T.; Yaginuma, Y.; Fujita, E.; Thiebaud, R.S.; Kawanishi, M.; Akamine, T. Associations of Sit-up Ability with Sarcopenia Classification Measures in Japanese Older Women. Interv. Med. Appl. Sci. 2016, 8, 152–157. [Google Scholar] [CrossRef]
- Bohannon, R.W. Test-Retest Reliability of Hand-held Dynamometry during a Single Session of Strength Assessment. Phys. Ther. 1986, 66, 206–209. [Google Scholar] [CrossRef]
- MacRae, P.G.; Lacourse, M.; Moldavon, R. Physical Performance Measures That Predict Faller Status in Community-Dwelling Older Adults. J. Orthop. Sports Phys. Ther. 1992, 16, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Tanaka, S.; Ito, H.; Morikawa, S.; Uchida, S. Quantifying Walking Ability in Japanese Patients with Knee Osteoarthritis: Standard Values Derived from a Multicenter Study. J. Orthop. Sci. 2018, 23, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed Up & Go: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Nakatani, T.; Nadamoto, M.; Mimura, K.-I.; Itoh, M. Validation of a 30-Sec Chair-Stand Test for Evaluating Lower Extremity Muscle Strength in Japanese Elderly Adults. Jpn. Soc. Phys. Educ. 2002, 47, 451–461. [Google Scholar]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Strasser, E.M.; Hofmann, M.; Franzke, B.; Schober-Halper, B.; Oesen, S.; Jandrasits, W.; Graf, A.; Praschak, M.; Horvath-Mechtler, B.; Krammer, C.; et al. Strength Training Increases Skeletal Muscle Quality but Not Muscle Mass in Old Institutionalized Adults: A Randomized, Multi-arm Parallel and Controlled Intervention Study. Eur. J. Phys. Rehabil. Med. 2018, 54, 921–933. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between Muscle Strength and Muscle Mass, and Their Association with Walking Speed, in Community-Dwelling Elderly Japanese Individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Daubney, M.E.; Culham, E.G. Lower-Extremity Muscle Force and Balance Performance in Adults Aged 65 Years and Older. Phys. Ther. 1999, 79, 1177–1185. [Google Scholar] [CrossRef]
- Agergaard, J.; Bülow, J.; Jensen, J.K.; Reitelseder, S.; Drummond, M.J.; Schjerling, P.; Scheike, T.; Serena, A.; Holm, L. Light-Load Resistance Exercise Increases Muscle Protein Synthesis and Hypertrophy Signaling in Elderly Men. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E326–E338. [Google Scholar] [CrossRef]
- Zech, A.; Drey, M.; Freiberger, E.; Hentschke, C.; Bauer, J.M.; Sieber, C.C.; Pfeifer, K. Residual Effects of Muscle Strength and Muscle Power Training and Detraining on Physical Function in Community-Dwelling Prefrail Older Adults: A Randomized Controlled Trial. BMC Geriatr. 2012, 12, 68. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Henwood, T.R.; Nalls, M.A.; Walker, D.G.; Lang, T.F.; Harris, T.B. Alterations in Muscle Attenuation Following Detraining and Retraining in Resistance-Trained Older Adults. Gerontology 2009, 55, 217–223. [Google Scholar] [CrossRef]
A, Normal (n = 143) | B, Low Bone Mass (n = 59) | C, Low Muscle Mass (n = 56) | D, Low Bone and Muscle Mass (n = 41) | p | Multiple Comparison | |
---|---|---|---|---|---|---|
Age (years) | 73.6 ± 5.3 | 73.9 ± 5.1 | 74.6 ± 5.9 | 75.2 ± 5.7 | 0.464 | |
Height (cm) | 152.0 ± 5.5 | 151.3 ± 5.0 | 149.5 ± 4.8 | 149.6 ± 5.8 | 0.002 | A < C |
Weight (kg) | 53.1 ± 6.5 | 52.5 ± 6.3 | 44.7 ± 5.0 | 45.1 ± 4.3 | <0.001 | AB > CD |
Grip strength (kgf/kg, %) | 47.2 ± 8.3 | 47.3 ± 8.0 | 48.2 ± 9.7 | 48.2 ± 7.8 | 0.838 | |
Knee extension strength (kgf/kg, %) | 39.5 ± 8.9 | 40.8 ± 10.4 | 40.7 ± 7.6 | 41.3 ± 9.9 | 0.405 | |
Fastest gait speed (m/s) | 1.88 ± 0.26 | 1.83 ± 0.27 | 1.77 ± 0.29 | 1.81 ± 0.25 | 0.085 | |
TUG (s) | 5.7 ± 0.9 | 5.7 ± 1.2 | 5.9 ± 1.4 | 5.8 ± 0.9 | 0.752 | |
CS-30 (times) | 21.4 ± 5.7 | 21.8 ± 6.4 | 21.5 ± 5.8 | 20.7 ± 4.7 | 0.785 | |
One-leg standing (s) | 39.5 ± 35.8 | 42.3 ± 34.0 | 37.1 ± 41.7 | 33.8 ± 36.7 | 0.099 |
A, Normal (n = 86) | B, Low Bone Mass (n = 35) | C, Low Muscle Mass (n = 31) | D, Low Bone and Muscle Mass (n = 21) | p | Multiple Comparison | |
---|---|---|---|---|---|---|
Grip strength (kgf/kg, %) | 47.9 ± 7.8 | 47.1 ± 6.5 | 49.1 ± 9.0 | 48.4 ± 8.1 | 0.782 | |
Knee extension strength (kgf/kg, %) | 40.0 ± 8.3 | 42.2 ± 1.0 | 41.5 ± 5.3 | 41.7 ± 7.8 | 0.37 | |
Fastest gait speed (m/s) | 1.94 ± 0.24 | 1.92 ± 0.23 | 1.86 ± 0.26 | 1.85 ± 0.21 | 0.284 | |
TUG (s) | 5.5 ± 0.7 | 5.3 ± 0.7 | 5.3 ± 0.8 | 5.6 ± 0.6 | 0.487 | |
CS-30 (times) | 22.2 ± 5.4 | 22.8 ± 6.0 | 22.5 ± 6.3 | 20.6 ± 3.7 | 0.542 | |
One-leg standing (s) | 49.9 ± 38.8 | 54.0 ± 35.3 | 46.9 ± 43.0 | 39.7 ± 39.7 | 0.18 |
A, Normal (n = 57) | B, Low Bone Mass (n = 24) | C, Low Muscle Mass (n = 25) | D, Low Bone and Muscle Mass (n = 20) | p | Multiple Comparison | |
---|---|---|---|---|---|---|
Grip strength (kgf/kg, %) | 46.1 ± 9.0 | 47.7 ± 9.9 | 47.0 ± 10.6 | 48.0 ± 7.6 | 0.838 | |
Knee extension strength (kgf/kg, %) | 38.6 ± 9.7 | 38.9 ± 10.3 | 39.6 ± 9.8 | 40.9 ± 11.9 | 0.833 | |
Fastest gait speed (m/s) | 1.78 ± 0.26 | 1.70 ± 0.28 | 1.66 ± 0.28 | 1.77 ± 0.29 | 0.271 | |
TUG (s) | 6.0 ± 1.1 | 6.4 ± 1.5 | 6.7 ± 1.6 | 6.0 ± 1.2 | 0.242 | |
CS-30 (times) | 20.2 ± 6.3 | 20.7 ± 5.6 | 20.1 ± 4.9 | 20.7 ± 5.6 | 0.985 | |
One-leg standing (s) | 24.0 ± 23.3 | 25.3 ± 23.6 | 25.0 ± 37.3 | 27.5 ± 33.0 | 0.601 |
Low Bone Mass | Low Muscle Mass | Low Bone and Muscle Mass | |
---|---|---|---|
Grip strength | 0.01 | 0.05 | 0.05 |
Knee extension strength | 0.06 | 0.1 | 0.1 |
Fastest gait speed | 0.07 | 0.17 | 0.1 |
TUG | 0.02 | 0.05 | 0.06 |
CS-30 | 0.01 | 0.03 | 0.08 |
One-leg standing | 0.07 | 0.11 | 0.11 |
Low Bone Mass | Low Muscle Mass | Low Bone and Muscle Mass | ||
---|---|---|---|---|
Early elderly | Grip strength | 0.05 | 0.07 | 0.03 |
Knee extension strength | 0.11 | 0.14 | 0.09 | |
Fastest gait speed | 0.04 | 0.14 | 0.15 | |
TUG | 0.01 | 0.07 | 0.05 | |
CS-30 | 0.04 | 0.02 | 0.13 | |
One-leg standing | 0.1 | 0.08 | 0.14 | |
Late elderly | Grip strength | 0.08 | 0.05 | 0.1 |
Knee extension strength | 0.03 | 0.06 | 0.09 | |
Fastest gait speed | 0.13 | 0.2 | 0.02 | |
TUG | 0.11 | 0.2 | 0 | |
CS-30 | 0.02 | 0 | 0.04 | |
One-leg standing | 0.01 | 0.15 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsurasako, T.; Murata, S.; Goda, A.; Nakano, H.; Shiraiwa, K.; Horie, J.; Nonaka, K. Comparison of Physical Function among Elderly Japanese Women with and without Low Bone Mass and Low Muscle Mass: A Cross-Sectional Study of Older Women Who Engage in Regular Physical Activity. Geriatrics 2022, 7, 98. https://doi.org/10.3390/geriatrics7050098
Katsurasako T, Murata S, Goda A, Nakano H, Shiraiwa K, Horie J, Nonaka K. Comparison of Physical Function among Elderly Japanese Women with and without Low Bone Mass and Low Muscle Mass: A Cross-Sectional Study of Older Women Who Engage in Regular Physical Activity. Geriatrics. 2022; 7(5):98. https://doi.org/10.3390/geriatrics7050098
Chicago/Turabian StyleKatsurasako, Tsuyoshi, Shin Murata, Akio Goda, Hideki Nakano, Kayoko Shiraiwa, Jun Horie, and Koji Nonaka. 2022. "Comparison of Physical Function among Elderly Japanese Women with and without Low Bone Mass and Low Muscle Mass: A Cross-Sectional Study of Older Women Who Engage in Regular Physical Activity" Geriatrics 7, no. 5: 98. https://doi.org/10.3390/geriatrics7050098
APA StyleKatsurasako, T., Murata, S., Goda, A., Nakano, H., Shiraiwa, K., Horie, J., & Nonaka, K. (2022). Comparison of Physical Function among Elderly Japanese Women with and without Low Bone Mass and Low Muscle Mass: A Cross-Sectional Study of Older Women Who Engage in Regular Physical Activity. Geriatrics, 7(5), 98. https://doi.org/10.3390/geriatrics7050098