Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Subjects
2.3. Examination of Clinical Measurements
- -
- OHI-S index system developed by Greene and Vermillion (1960). This consists of two main components: debris index (DI) and calculus index (CI). The scores from both indices are added to calculate the OHI-S score for each individual. The overall OHI-S score can range between 0 and 6. Scores of 0–1.2 = good oral hygiene. Scores of 1.3–3 = moderate oral hygiene. Scores of 3.1–6 = poor oral hygiene [27,28].
- -
- PlI index system developed by Löe and Silness (1964). This evaluates the thickness of dysbiotic biofilms at the gingival margin on certain tooth surfaces. Score 0 = no dysbiotic biofilms present. Score 1 = a thin layer of dysbiotic biofilms that can be seen by running a probe across the tooth surface. Score 2 = moderate accumulation of dysbiotic biofilms. Score 3 = abundance of dysbiotic biofilms [25,27].
- -
- PBI index system developed by Muhlemann (1977). This evaluates the bleeding tendency of the gingival tissues when gently probed. The index is scored based on the presence or absence of bleeding. Score 1 = a single bleeding point appears. Score 2 = a fine line of blood or several bleeding points appears. Score 3 = interdental triangle becomes more filled with blood. Score 4 = immediately after probing, blood flows into the interdental area to cover portions of the tooth and/or gingiva [27,29].
2.4. GCF Sample Collection
2.5. IL-1β, TNF-α, and IL-10 Assays
2.6. Statistical Analysis
3. Results
3.1. Data Distribution
3.2. Comparison of Clinical Measurements and Cytokine Levels
3.3. Correlation between Clinical Measurements and Cytokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, M.G.; Takei, H.H.; Klokkevold, P.R.; Carranza, F.A. Newman and Carranza’s Clinical Periodontology, 13th ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 3972–3978. [Google Scholar]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89, S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Feres, M.; Teles, F.; Teles, R.; Figueiredo, L.C.; Faveri, M. The subgingival periodontal microbiota of the aging mouth. Periodontol. 2000 2016, 72, 30–53. [Google Scholar] [CrossRef] [Green Version]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol. 2000 2020, 83, 14–25. [Google Scholar] [CrossRef]
- Abdulaziz, S.; Said, A.; Mustafa, S. The impact of the presence of Porphyromonas gingivalis on periodontal health in a group of patients with periodontitis in Erbil. Zanco J. Med. Sci. 2015, 19, 1069–1074. [Google Scholar] [CrossRef]
- How, K.Y.; Song, K.P.; Chan, K.G. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, E.M.; Reis, C.; Manzanares-Céspedes, M.C. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad. Med. 2018, 130, 98–104. [Google Scholar] [CrossRef]
- Meyle, J.; Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2000 2015, 69, 7–17. [Google Scholar] [CrossRef]
- Duarte, P.M.; Bastos, M.F.; Fermiano, D.; Rabelo, C.C.; Perez-Chaparro, P.J.; Figueiredo, L.C.; Faveri, M.; Feres, M. Do subjects with aggressive and chronic periodontitis exhibit a different cytokine/chemokine profile in the gingival crevicular fluid? A systematic review. J. Periodontal Res. 2015, 50, 18–27. [Google Scholar] [CrossRef]
- Gomes, F.I.F.; Aragão, M.G.B.; Barbosa, F.C.B.; Bezerra, M.M.; de Paulo Teixeira Pinto, V.; Chaves, H.V. Inflammatory Cytokines Interleukin-1β and Tumour Necrosis Factor-α—Novel Biomarkers for the Detection of Periodontal Diseases: A Literature Review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef]
- Noh, M.K.; Jung, M.; Kim, S.H.; Lee, S.R.; Park, K.H.; Kim, D.H.; Kim, H.H.; Park, Y.G. Assessment of IL-6, IL-8 and TNF-α levels in the gingival tissue of patients with periodontitis. Exp. Ther. Med. 2013, 6, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Toker, H.; Gorgun, E.P.; Korkmaz, E.M.; Yüce, H.B.; Poyraz, O. The effects of IL-10 gene polymorphism on serum, and gingival crevicular fluid levels of IL-6 and IL-10 in chronic periodontitis. J. Appl. Oral Sci. 2018, 26, 1–7. [Google Scholar] [CrossRef]
- Oh, H.; Hirano, J.; Takai, H.; Ogata, Y. Effects of initial periodontal therapy on interleukin-1β level in gingival crevicular fluid and clinical periodontal parameters. J. Oral Sci. 2015, 57, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Passoja, A.; Puijola, I.; Knuuttila, M.; Niemelä, O.; Karttunen, R.; Raunio, T.; Tervonen, T. Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. J. Clin. Periodontol. 2010, 37, 881–887. [Google Scholar] [CrossRef]
- Miranda, T.S.; Heluy, S.L.; Cruz, D.F.; da Silva, H.D.P.; Feres, M.; Figueiredo, L.C.; Duarte, P.M. The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit. Clin. Oral Investig. 2019, 23, 641–650. [Google Scholar] [CrossRef]
- Acharya, A.B.; Thakur, S.; Muddapur, M.V. Evaluation of serum interleukin-10 levels as a predictor of glycemic alteration in chronic periodontitis and type 2 diabetes mellitus. J. Indian Soc. Periodontol. 2015, 19, 388. [Google Scholar] [CrossRef]
- Santoro, A.; Bientinesi, E.; Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res. Rev. 2021, 71, 101422. [Google Scholar] [CrossRef]
- Nikolich-Žugich, J. The twilight of immunity: Emerging concepts in aging of the immune system review-article. Nat. Immunol. 2018, 19, 10–19. [Google Scholar] [CrossRef]
- Xu, W.; Wong, G.; Hwang, Y.Y.; Larbi, A. The untwining of immunosenescence and aging. Semin. Immunopathol. 2020, 42, 559–572. [Google Scholar] [CrossRef]
- Hazeldine, J.; Lord, J.M. Innate immunesenescence: Underlying mechanisms and clinical relevance. Biogerontology 2015, 16, 187–201. [Google Scholar] [CrossRef]
- Montgomery, R.R.; Shaw, A.C. Paradoxical changes in innate immunity in aging: Recent progress and new directions. J. Leukoc. Biol. 2015, 98, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 2017, 28, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.; Kotronia, E.; Ramsay, S.E. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol. 2000 2021, 87, 143–156. [Google Scholar] [CrossRef]
- Kanasi, E.; Ayilavarapu, S.; Jones, J. The aging population: Demographics and the biology of aging. Periodontol. 2000 2016, 72, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Giri, D.K. Effectiveness between two tooth brushing methods on removing dental plaque. J. Nobel Med. Coll. 2018, 7, 26–29. [Google Scholar] [CrossRef]
- Tsalikis, L. The Effect of Age on the Gingival Crevicular Fluid Composition During Experimental Gingivitis. A Pilot Study. Open Dent. J. 2010, 4, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummar, D.; Jalaluddin, M.; Kulkarni, P.; Kumar Singh, D.; Jalaluddin, M.; Jayanti, I. Indices in dentistry: Recitation of oral diseases at numerical value. J. Res. Adv. Dent. 2016, 5, 261–268. [Google Scholar]
- Re, P.R.; Purnama, T.; Tauchid, S.N.; Prihatiningsih, N. Knowledge of Oral and Dental Health Impacts the Oral Hygiene Index Simplified (OHI-S) of Primary School Children. Indian J. Forensic Med. Toxicol. 2021, 15, 2179–2183. [Google Scholar] [CrossRef]
- Alfiandini, R.N.; Prahasanti, C.; Wibisono, P.A. Papillary bleeding index in public health service on gingival inflammation. Int. J. Pharm. Res. 2020, 12, 1575–1578. [Google Scholar] [CrossRef]
- Guentsch, A.; Kramesberger, M.; Sroka, A.; Pfister, W.; Potempa, J.; Eick, S. Comparison of Gingival Crevicular Fluid Sampling Methods in Patients With Severe Chronic Periodontitis. J. Periodontol. 2011, 82, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Majeed, Z.N.; Philip, K.; Alabsi, A.M.; Pushparajan, S.; Swaminathan, D. Identification of Gingival Crevicular Fluid Sampling, Analytical Methods, and Oral Biomarkers for the Diagnosis and Monitoring of Periodontal Diseases: A Systematic Review. Dis. Markers 2016, 2016, 1804727. [Google Scholar] [CrossRef] [Green Version]
- Stenken, J.A.; Poschenrieder, A.J. Bioanalytical chemistry of cytokines—A review. Anal. Chim. Acta 2015, 853, 95–115. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. International Migration Report 2015 (ST/ESA/SER.A/384). 2016. Available online: https://www.un.org/en/development/desa/population/migration/publications/migrationreport/docs/MigrationReport2015.pdf (accessed on 28 July 2023).
- Tadjoedin, F.M.; Fitri, A.H.; Kuswandani, S.O.; Sulijaya, B.; Soeroso, Y. The Correlation between Age and Periodontal Diseases. J. Int. Dent. Med. Res. 2017, 10, 327–332. [Google Scholar]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J.; et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S237–S248. [Google Scholar] [CrossRef]
- Costa, A.L.F.; Yasuda, C.L.; Shibasaki, W.; Nahás-Scocate, A.C.R.; De Freitas, C.F.; Carvalho, P.E.G.; Cendes, F. The association between periodontal disease and seizure severity in refractory epilepsy patients. Seizure 2014, 23, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Ryder, M.I.; Xenoudi, P. Alzheimer disease and the periodontal patient: New insights, connections, and therapies. Periodontol. 2000 2021, 87, 32–42. [Google Scholar] [CrossRef]
- Ioannidou, E. The sex and gender intersection in chronic periodontitis. Front. Public Health 2017, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Di Spirito, F.; Amato, A.; Romano, A.; Dipalma, G.; Xhajanka, E.; Baroni, A.; Serpico, R.; Inchingolo, F.; Contaldo, M. Analysis of Risk Factors of Oral Cancer and Periodontitis from a Sex- and Gender-Related Perspective: Gender Dentistry. Appl. Sci. 2022, 12, 9135. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Graves, C.L.; Gonzalez, O.A.; Dawson, D., III; Morford, L.A.; Huja, P.E.; Hartsfield, J.K., Jr.; Huja, S.S.; Pandruvada, S.; Wallet, S.M. Aging, inflammation, immunity and periodontal disease. Periodontol. 2000 2016, 72, 54–75. [Google Scholar] [CrossRef]
- Garg, A.; Bhickta, S.; Gupta, R.; Sharma, A. Aging and Periodontium. Dent. J. Adv. Stud. 2013, 1, 26–29. [Google Scholar] [CrossRef]
- López, R.; Smith, P.C.; Göstemeyer, G.; Schwendicke, F. Ageing, dental caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S145–S152. [Google Scholar] [CrossRef] [Green Version]
- Pera, A.; Campos, C.; López, N.; Hassouneh, F.; Alonso, C.; Tarazona, R.; Solana, R. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas 2015, 82, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Ito, H.; Sekino, S.; Numabe, Y. Correlations between pentraxin 3 or cytokine levels in gingival crevicular fluid and clinical parameters of chronic periodontitis. Odontology 2012, 100, 215–221. [Google Scholar] [CrossRef] [PubMed]
Research Subject (n = 40) | Total (n) | Percentage | Min–Max | Median |
---|---|---|---|---|
Older Group (60–74 years old) | 60–73 | 67 | ||
Female | 12 | 60% | ||
Male | 8 | 40% | ||
Adult Group (35–45 years old) | 35–45 | 39 | ||
Female | 10 | 50% | ||
Male | 10 | 50% |
Periodontitis | Age Group | Min–Max | Median |
---|---|---|---|
Periodontal Status | |||
OHI-S | Older Group | 1.50–6.00 | 5.00 |
Adult Group | 2.17–5.60 | 4.07 | |
PlI | Older Group | 1.50–3.00 | 2.45 |
Adult Group | 1.00–2.60 | 2.18 | |
PBI | Older Group | 1.63–3.37 | 3.00 |
Adult Group | 1.00–3.12 | 2.05 | |
Cytokine Levels (pg/mL) | |||
IL-1β | Older Group | 1.46–3597.87 | 1607.80 |
Adult Group | 0.28–2679.11 | 770.02 | |
TNF-α | Older Group | 0.24–1306.62 | 551.97 |
Adult Group | 0.24–1020.05 | 266.86 | |
IL-10 | Older Group | 0.15–1441.36 | 550.94 |
Adult Group | 0.15–1101.26 | 255.07 |
Cytokine | Clinical Measurement | |||||
---|---|---|---|---|---|---|
OHI-S | PlI | PBI | ||||
r | p | r | p | r | p | |
IL-1β | 0.650 | 0.002 * | 0.566 | 0.009 * | 0.753 | 0.00 * |
TNF-α | 0.685 | 0.001 * | 0.599 | 0.005 * | 0.748 | 0.00 * |
IL-10 | 0.669 | 0.001 * | 0.579 | 0.007 * | 0.748 | 0.00 * |
Cytokine | Clinical Measurement | |||||
---|---|---|---|---|---|---|
OHIS | PlI | PBI | ||||
r | p | r | p | r | p | |
IL-1β | 0.764 | 0.00 * | 0.763 | 0.00 * | 0.799 | 0.00 * |
TNF-α | 0.783 | 0.00 * | 0.771 | 0.00 * | 0.834 | 0.00 * |
IL-10 | 0.784 | 0.00 * | 0.815 | 0.00 * | 0.849 | 0.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumbayak, I.A.; Masulili, S.L.C.; Tadjoedin, F.M.; Sulijaya, B.; Mutiara, A.; Khoirowati, D.; Soeroso, Y.; Bachtiar, B.M. Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis. Geriatrics 2023, 8, 79. https://doi.org/10.3390/geriatrics8040079
Sumbayak IA, Masulili SLC, Tadjoedin FM, Sulijaya B, Mutiara A, Khoirowati D, Soeroso Y, Bachtiar BM. Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis. Geriatrics. 2023; 8(4):79. https://doi.org/10.3390/geriatrics8040079
Chicago/Turabian StyleSumbayak, Ines Augustina, Sri Lelyati C. Masulili, Fatimah Maria Tadjoedin, Benso Sulijaya, Arrum Mutiara, Diana Khoirowati, Yuniarti Soeroso, and Boy M. Bachtiar. 2023. "Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis" Geriatrics 8, no. 4: 79. https://doi.org/10.3390/geriatrics8040079
APA StyleSumbayak, I. A., Masulili, S. L. C., Tadjoedin, F. M., Sulijaya, B., Mutiara, A., Khoirowati, D., Soeroso, Y., & Bachtiar, B. M. (2023). Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis. Geriatrics, 8(4), 79. https://doi.org/10.3390/geriatrics8040079