Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement Items
2.2.1. Acceleration Parameters in STS
Procedures
Data Acquisition
Acceleration Parameters
- Maximal Acceleration (MA): maximum acceleration in STS movement.
- Maximal Velocity (MV): The maximum velocity in the STS maneuver was calculated by integrating the acceleration, assuming that the velocity at the start of STS was 0 m/s.
- Maximal Power (MP): Maximum power during rising motion. First, muscle power (F) was calculated by fitting it to the following formula: , where m indicates the body weight. Next, muscle power (P) was calculated by multiplying the muscle force (F) by velocity (v): , which corresponds to the maximum value obtained by multiplying the solid and dotted lines in Figure 2 (bottom) by body weight.
- Stand -up time (ST): Based on previous studies, the start of the stand-up motion was calculated using the differential acceleration value (Figure 2). The end of the standing motion was defined as the first sample in which acceleration reached the reference value after the minimum value was recorded.
2.2.2. Performance Test
Five-Time Sit-to-Stand Test
Timed up and Go
One-Leg Balance with Eyes Open
Five-Meter Habitual Walk
Grip Strength
2.2.3. Mobility Limitation
2.3. Sample Size
2.4. Statistical Analyses
3. Results
3.1. Descriptive Data of Participants
3.2. Test-Retest Reliability of Acceleration Parameters
3.3. Relationships among Acceleration Parameters and Performance Tests
3.4. Relationships among Acceleration Parameters and Mobility Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, A.W.; Farthing, J.P.; Chilibeck, P.D.; Arnold, C.M.; Davison, K.S.; Olszynski, W.P.; Kontulainen, S.A. Lower leg muscle density is independently associated with fall status in community-dwelling older adults. Osteoporos. Int. 2016, 27, 2231–2240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ferrucci, L.; Culham, E.; Metter, J.; Guralnik, J.; Deshpande, N. Performance on five times STS task as a predictor of subsequent falls and disability in older persons. J. Aging Health 2013, 25, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Grau, G.A.; Carnicero, J.A.; Cabello, A.G.; Avila, G.G.; Humanes, S.; Alegre, L.M.; Castro, M.; Manas, L.R.; Garcia, J. Association of regional muscle strength with mortality and hospitalization in older people. Age Aging 2015, 44, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Le Berre, M.; Apap, D.; Babcock, J.; Bray, S.; Gareau, E.; Chassé, K.; Lévesque, N.; Robbins, S.M. The psychometric properties of a modified STS test with use of the upper extremities in institutionalized older adults. Percept. Mot. Ski. 2016, 123, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Tsunoda, K.; Mitsuishi, Y.; Okura, T. Ground reaction force in STS movement reflects lower limb muscle strength and power in community-dwelling older adults. Int. J. Gerontol. 2015, 9, 111–118. [Google Scholar] [CrossRef]
- Zijlstra, W.; Bisseling, R.W.; Schlumbohm, S.; Baldus, H. A body-fixed-sensor-based analysis of power during STS movements. Gait Posture 2010, 31, 272–278. [Google Scholar] [CrossRef]
- Millor, N.; Lecumberri, P.; Gomez, M.; Martinez-Ramirez, A.; Izquierdo, M. Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: A systematic review. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 926–936. [Google Scholar] [CrossRef]
- Park, C.; Sharafkhaneh, A.; Bryant, M.S.; Nguyen, C.; Torres, I.; Najafi, B. Toward remote assessment of physical frailty using sensor-based sit-to-stand test. J. Surg. Res. 2021, 263, 130–139. [Google Scholar] [CrossRef]
- Lindemann, U.; Claus, H.; Stuber, M.; Augat, P.; Muche, R.; Nikolaus, T.; Becker, C. Measuring power during the STS transfer. Eur. J. Appl. Physiol. 2003, 89, 466–470. [Google Scholar] [CrossRef]
- Neťuková, S.; Klempíř, O.; Krupička, R.; Dušek, P.; Kutílek, P.; Szabó, Z.; Růžička, E. The timed up & go test sit-to-stand transition: Which signals measured by inertial sensors are a viable route for continuous analysis? Gait Posture 2021, 84, 8–10. [Google Scholar] [PubMed]
- Alcazar, J.; Kamper, R.S.; Aagaard, P.; Haddock, B.; Prescott, E.; Ara, I.; Suetta, C. Relation between leg extension power and the 30-s STS muscle power in older adults: Validation and translation to functional performance. Sci. Rep. 2020, 10, 16337. [Google Scholar] [CrossRef] [PubMed]
- Regterschot, G.R.H.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Gait & Posture Sensor-based monitoring of STS performance is indicative of objective and self-reported aspects of functional status in older adults. Gait Posture 2015, 41, 935–940. [Google Scholar] [PubMed]
- Ejupi, A.; Brodie, M.; Lord, S.R.; Annegarn, J.; Redmond, S.J.; Delbaere, K. Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device. IEEE Trans. Biomed. Eng. 2016, 64, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Atrsaei, A.; Paraschiv-Ionescu, A.; Krief, H.; Henchoz, Y.; Santos-Eggimann, B.; Büla, C.; Aminian, K. Instrumented 5-Time STS Test: Parameters Predicting Serious Falls beyond the Duration of the Test. Gerontology 2021, 21, 6831. [Google Scholar]
- Regterschot, G.R.H.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Accuracy and concurrent validity of a sensor-based analysis of STS movements in older adults. Gait Posture 2016, 45, 198–203. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Kivinen, P.; Sulkava, R.; Halonen, P.; Nissinen, A. Self-reported and performance-based functional status and associated factors among elderly men: The Finnish cohorts of the Seven Countries Study. J. Clin. Epidemiol. 1998, 51, 1243–1252. [Google Scholar] [CrossRef]
- Glass, T.A. Conjugating the “tenses” of function: Discordance among hypothetical, experimental and enacted function in older adults. Gerontologist 1998, 38, 101–112. [Google Scholar] [CrossRef]
- Rvan Lummel, C.; Walgaard, S.; Maier, A.B.; Ainsworth, E.; Beek, P.J.; van Dieën, J.H. The instrumented STS test (iSTS) has greater clinical relevance than the manually recorded STS test in older adults. PLoS ONE 2016, 11, e0157968. [Google Scholar]
- Tsuji, T.; Mitsuishi, Y.; Tsunoda, K.; Yoon, J.; Kitano, N.; Yoon, J.; Okura, T. The relationship between ground reaction force in a sit-to-stand movement and physical functioning, history of falls, fear of falling, and mobility limitations in community-dwelling older adults. Jpn. J. Phys. Fit. Sports Med. 2011, 60, 387–399. [Google Scholar]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip strength: An indispensable biomarker for older adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Fujii, Y.; Tateoka, K.; Tsuji, T.; Okura, T. The association of the Japan Science and Technology Agency Index of Competence with physical and cognitive function in community—Dwelling older adults. Geriatr. Gerontol. Int. 2022, 22, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Cerrito, A.; Bichsel, L.; Radlinger, L.; Schmid, S. Reliability, and validity of a smartphone-based application for the quantification of the STS movement in healthy seniors. Gait Posture 2015, 41, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Regterschot, G.R.; Folkersma, M.; Zhang, W.; Baldus, H.; Stevens, M.; Zijlstra, W. Sensitivity of sensor-based STS peak power to the effects of training leg strength, leg power and balance in older adults. Gait Posture 2014, 39, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Okura, T.; Tsuji, T.; Tsunoda, K.; Kitano, N.; Yoon, J.Y.; Saghazadeh, M.; Soma, Y.; Yoon, J.; Kim, M.; Jindo, T.; et al. Study protocol and overview of the Kasama study: Creating a comprehensive, community-based system for preventive nursing care and supporting successful aging. J. Phys. Fit. Sports Med. 2017, 6, 49–57. [Google Scholar] [CrossRef]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Marinho, D.A.; Marques, M.C. Accelerometer data from the performance of STS test by elderly people. Data Brief 2020, 33, 106328. [Google Scholar] [CrossRef]
- Shukla, B.; Bassement, J.; Vijay, V.; Yadav, S.; Hewson, D. Instrumented analysis of the STS movement for geriatric screening: A systematic review. Bioengineering 2020, 7, 139. [Google Scholar] [CrossRef]
- Janssen, W.G.; Bussmann, J.B.; Horemans, H.L.; Stam, H.J. Validity of accelerometry in assessing the duration of the STS movement. Med. Biol. Eng. Comput. 2008, 46, 879–887. [Google Scholar] [CrossRef]
- Dick, E.T. Umbilicoplasty as a treatment for persistent umbilical infection. Aust. N. Z. J. Surg. 1970, 39, 380. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, K.; Soma, Y.; Kitano, N.; Tsuji, T.; Mitsuishi, Y.; Yoon, J.Y.; Okura, T. Age and gender differences in correlations of leisure-time, household, and work-related physical activity with physical performance in older Japanese adults. Geriatr. Gerontol. Int. 2013, 13, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bermejo, L.; Adsuar, J.C.; Mendoza-Muñoz, M.; Barrios-Fernández, S.; Garcia-Gordillo, M.A.; Pérez-Gómez, J.; Carlos-Vivas, J. Test-retest reliability of five times sit to stand test (FTSST) in adults: A systematic review and meta-analysis. Biology 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Seino, S.; Kim, M.K.; Yabushita, N.; Okura, T.; Okuno, J.; Tanaka, K. Validation of lower extremity performance tests for determining the mobility limitation levels in community-dwelling older women. Aging Clin. Exp. Res. 2009, 21, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, M.M.; Harris, B.A.; Jette, A. Reliability of clinical balance outcome measures in the elderly. Physiother. Res. Int. 1998, 3, 274–283. [Google Scholar] [CrossRef]
- Rydwik, E.; Bergland, A.; Forsen, L.; Frändin, K. Investigation into the reliability and validity of the measurement of elderly people’s clinical walking speed: A systematic review. Physiother. Theory Pract. 2012, 28, 238–256. [Google Scholar] [CrossRef]
- Schaubert, K.L.; Bohannon, R.W. Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J. Strength Cond. Res. 2005, 19, 717–720. [Google Scholar]
- Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 324–333. [Google Scholar] [CrossRef]
- Currier, D.P. Elements of Research in Physical Therapy, 3rd ed.; Williams & Wilkins: Baltimore, MD, USA, 1990; pp. 150–171. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum Assoc Inc.: Mahwah, NJ, USA, 1988. [Google Scholar]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Zdravevski, E.; Mihajlov, M.; Garcia, N.M.; Ruiz-Cárdenas, J.D.; Marinho, D.A.; Marques, M.C. An experimental study on the validity and reliability of a smartphone application to acquire temporal variables during the single sit-to-stand test with older adults. Sensors 2021, 21, 2050. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Vincenzo, J.; Paulson, S.; Powers, M. An evaluation of functional sit-to-stand power in cohorts of healthy adults aged 18–97 years. J. Aging Phys. Act. 2017, 25, 305–310. [Google Scholar] [CrossRef]
- Ruiz-Cardenas, J.D.; Rodriguez-Juan, J.J.; Smart, R.R.; Jakobi, J.M.; Jones, G.R. Validity, and reliability of an iPhone App to assess time, velocity and leg power during a STS functional performance test. Gait Posture 2018, 59, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Glenn, J.M.; Gray, M.; Binns, A. Relationship of STS lower-body power with functional fitness measures among older adults with and without sarcopenia. J. Geriatr. Phys. Ther. 2017, 40, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.; Cooper, R.; Nissan, J.; Ginty, A.T.; Khaw, K.-T.; Deary, I.J.; Lord, J.M.; Kuh, D.; Mathers, J.C. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Alley, D.E.; Shardell, M.D.; Harris, T.B.; McLean, R.R.; Kiel, D.P.; Cawthon, P.M.; Dam, T.-T.L.; Ferrucci, L.; Guralnik, J.M.; et al. Comparison of handgrip and leg extension strength in predicting slow gait speed in older adults. J. Am. Geriatr. Soc. 2016, 64, 144–150. [Google Scholar] [CrossRef]
- Samson, M.M.; Meeuwsen, I.B.; Crowe, A.; Dessens, J.A.; Duursma, S.A.; Verhaar, H.J. Relationships between physical performance measures, age, height, and body weight in healthy adults. Age Ageing 2000, 29, 235–242. [Google Scholar] [CrossRef]
- Bean, F.J.; Leveille, S.G.; Kiely, D.K.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. A comparison of leg power and leg strength within the InCHIANTI study: Which influences mobility more? J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M728–M733. [Google Scholar] [CrossRef]
- Puthoff, M.L.; Nielsen, D.H. Relationships among impairments in lower-extremity strength and power, functional limitations, and disability in older adults. Phys. Ther. 2007, 87, 1334–1347. [Google Scholar] [CrossRef]
Men | Women | ||
---|---|---|---|
N (%) | 107 (43.9) | 137 (56.1) | |
<Characteristics> | |||
Age (years), mean ± SD | 77.4 ± 4.7 | 75.6 ± 5.3 | * |
Height (cm), mean ± SD | 163.6 ± 5.6 | 151.6 ± 5.1 | * |
Body weight (kg), mean ± SD | 63.2 ± 8.9 | 51.2 ± 7.5 | * |
BMI (kg/m2) | |||
<18.5 | 5.6% (6) | 9.5% (13) | |
18.5~24.9 | 65.4% (70) | 72.3% (99) | |
≥25 | 29.0% (31) | 18.2% (25) | |
Lower back pain a, yes % (n) | 33.6% (36) | 28.5% (39) | |
Lower limb pain a, yes % (n) | 6.5% (7) | 20.4% (28) | |
<Acceleration parameters> | |||
MA (m/s2), mean ± SD | 10.25 ± 0.17 | 10.21 ± 0.15 | |
MV (m/s), mean ± SD | 0.11 ± 0.02 | 0.09 ± 0.02 | * |
MP (W), mean ± SD | 69.62 ± 17.39 | 45.85 ± 13.91 | * |
ST (s), mean ± SD | 1.09 ± 0.16 | 1.10 ± 0.18 | |
<Physical performance test> | |||
5-time STS (s), mean ± SD | 7.00 ± 2.19 | 6.61 ± 1.81 | |
Timed up and go (s), mean ± SD | 5.71 ± 1.26 | 5.66 ± 1.09 | |
One-leg balance with eyes open (s), mean ± SD | 31.82 ± 22.28 | 36.01 ± 21.74 | |
5-meter habitual walk (s), mean ± SD | 3.59 ± 0.66 | 3.46 ± 0.52 | |
Grip strength (s), mean ± SD | 34.13 ± 6.04 | 22.79 ± 3.93 | * |
<Self-reported mobility limitations> | |||
Climbing 10 steps a, difficult % (n) | 22.4% (24) | 32.8% (45) | |
Rising from chair a, difficult % (n) | 8.4% (9) | 14.6% (20) | |
Walking for 15 minutes a, difficult % (n) | 7.5% (8) | 13.1% (18) | |
Mobility limitations a, incident % (n) | 30.8% (33) | 43.8% (60) |
Participants with Assessment of Reliability (n = 12) | Participants without Assessment of Reliability (n = 232) | p-Value | |
---|---|---|---|
<Characteristics> | |||
Age (years), mean ± SD | 77.0 ± 4.0 | 76.4 ± 5.2 | 0.676 |
Percentage of women a % (n) | 50.0 (6) | 56.5 (131) | 0.768 |
Height (cm), mean ± SD | 156.9 ± 7.1 | 156.8 ± 8.0 | 0.992 |
Body weight (kg), mean ± SD | 54.6 ± 7.6 | 56.6 ± 10.2 | 0.512 |
BMI (kg/m2) a % (n) | |||
<18.5 | 8.3% (1) | 7.8% (18) | |
18.5~24.9 | 83.3% (10) | 68.5% (159) | 0.463 |
≥25 | 8.3% (1) | 23.7% (55) | |
Lower back pain a, yes % (n) | 50.0% (6) | 29.7% (69) | 0.196 |
Lower limb pain a, yes % (n) | 8.3% (1) | 14.7% (34) | 0.465 |
<Acceleration parameters> | |||
MA (m/s2), mean ± SD | 10.26 ± 0.13 | 10.23 ± 0.16 | 0.477 |
MV (m/s), mean ± SD | 0.11 ± 0.02 | 0.11 ± 0.03 | 0.160 |
MP (W), mean ± SD | 59.23 ± 13.87 | 56.12 ± 19.75 | 0.590 |
ST (s), mean ± SD | 1.05 ± 0.10 | 1.10 ± 0.18 | 0.934 |
Test1 | Test2 | ICC | F | p-Value | ||
---|---|---|---|---|---|---|
Mean SD | Mean SD | |||||
MA | (m/s2) | 10.26 ± 0.13 | 10.23 ± 0.12 | 0.761 | 1.523 | 0.243 |
MV | (m/s) | 0.11 ± 0.02 | 0.11 ± 0.02 | 0.772 | 0.353 | 0.565 |
MP | (W) | 59.23 ± 13.87 | 58.06 ± 14.61 | 0.894 | 0.363 | 0.559 |
ST | (s) | 1.05 ± 0.10 | 1.06 ± 0.12 | 0.714 | 0.132 | 0.723 |
Acceleration Parameters | |||||
---|---|---|---|---|---|
MA | MV | MP | ST | ||
<Men> | |||||
5-time STS test | (s) | −0.36 * | −0.43 * | −0.47 * | 0.24 * |
Timed up and go | (s) | −0.39 * | −0.44 * | −0.47 * | 0.27 * |
One-leg balance with eyes open | (s) | 0.29 * | 0.19 | 0.15 | −0.13 |
5-meter habitual walk | (s) | −0.21 * | −0.34 * | −0.39 * | 0.17 |
Grip strength | (kg) | 0.22 * | 0.35 * | 0.48 * | −0.24 * |
<Women> | |||||
5-time STS test | (s) | −0.45 * | −0.44 * | −0.37 * | 0.17 * |
Timed up and go | (s) | −0.43 * | −0.51 * | −0.43 * | 0.10 |
One-leg balance with eyes open | (s) | 0.33 * | 0.25 * | 0.16 | −0.21 * |
5-meter habitual walk | (s) | −0.32 * | −0.36 * | −0.32 * | 0.11 |
Grip strength | (kg) | 0.34 * | 0.29 * | 0.43 * | −0.15 |
No (n = 151) | Yes (n = 93) | p-Value | Effect Size (Cohen’s d) | Adjusted p-Value a | Adjusted p-Value b | ||
---|---|---|---|---|---|---|---|
Mean SD | Mean SD | ||||||
MA | (m/s2) | 10.25 ± 0.16 | 10.19 ± 0.15 | 0.002 | 0.41 | 0.015 | 0.012 |
MV | (m/s) | 0.10 ± 0.02 | 0.09 ± 0.03 | <0.001 | 0.48 | 0.011 | 0.010 |
MP | (W) | 59.63 ± 19.19 | 50.82 ± 18.82 | <0.001 | 0.46 | 0.032 | 0.014 |
ST | (s) | 1.07 ± 0.18 | 1.12 ± 0.16 | 0.027 | 0.30 | 0.063 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tateoka, K.; Tsuji, T.; Shoji, T.; Tokunaga, S.; Okura, T. Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults. Geriatrics 2023, 8, 123. https://doi.org/10.3390/geriatrics8060123
Tateoka K, Tsuji T, Shoji T, Tokunaga S, Okura T. Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults. Geriatrics. 2023; 8(6):123. https://doi.org/10.3390/geriatrics8060123
Chicago/Turabian StyleTateoka, Korin, Taishi Tsuji, Takuro Shoji, Satoshi Tokunaga, and Tomohiro Okura. 2023. "Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults" Geriatrics 8, no. 6: 123. https://doi.org/10.3390/geriatrics8060123
APA StyleTateoka, K., Tsuji, T., Shoji, T., Tokunaga, S., & Okura, T. (2023). Relationship between Acceleration in a Sit-To-Stand Movement and Physical Function in Older Adults. Geriatrics, 8(6), 123. https://doi.org/10.3390/geriatrics8060123