The 2-Minutes Walking Test Is Not Correlated with Aerobic Fitness Indices but with the 5-Times Sit-to-Stand Test Performance in Apparently Healthy Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection and Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solway, S.; Brooks, D.; Lacasse, Y.; Thomas, S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest 2001, 119, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Wang, Y.-C.; Gershon, R.C. Two-minute walk test performance by adults 18 to 85 years: Normative values, reliability, and responsiveness. Arch. Phys. Med. Rehabil. 2015, 96, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Chamari, K.; Padulo, J. ‘Aerobic’ and ‘Anaerobic’ terms used in exercise physiology: A critical terminology reflection. Sports Med.-Open 2015, 1, 9. [Google Scholar] [CrossRef] [PubMed]
- Selman, J.P.; A de Camargo, A.; Santos, J.; Lanza, F.C.; Corso, S.D. Reference Equation for the 2-Minute Walk Test in Adults and the Elderly. Respir. Care 2014, 59, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.S.; Pin, T.W. Reliability, validity and minimal detectable change of 2-min walk test and 10-m walk test in frail older adults receiving day care and residential care. Aging Clin. Exp. Res. 2020, 32, 597–604. [Google Scholar] [CrossRef]
- Connelly, D.; Thomas, B.; Cliffe, S.; Perry, W.; Smith, R. Clinical utility of the 2-minute walk test for older adults living in long-term care. Physiother. Can. 2009, 61, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Butland, R.J.; Pang, J.; Gross, E.R.; Woodcock, A.A.; Geddes, D.M. Two-, six-, and 12-minute walking tests in respiratory disease. Br. Med. J. (Clin. Res. Ed.) 1982, 284, 1607–1608. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, H.; Heine, M.; Van Den Akker, L.E.; De Groot, V. The 2-minute walk test is not a valid method to determine aerobic capacity in persons with Multiple Sclerosis. NeuroRehabilitation 2019, 45, 239–245. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ludin, A.F.M.; Shahar, S.; Hamzah, N.H.; Chin, A.-V.; Singh, D.K.A. Association between maximal oxygen consumption and physical performance tests among older adults with cognitive frailty. Exp. Gerontol. 2023, 184, 112326. [Google Scholar] [CrossRef] [PubMed]
- Baudendistel, S.T.; Schmitt, A.C.; Stone, A.E.; Raffegeau, T.E.; Roper, J.A.; Hass, C.J. Faster or longer steps: Maintaining fast walking in older adults at risk for mobility disability. Gait Posture 2021, 89, 86–91. [Google Scholar] [CrossRef]
- Judge, J.O.; Davis, R.B.; Öunpuu, S. Step Length Reductions in Advanced Age: The Role of Ankle and Hip Kinetics. J. Gerontol. Ser. A 1996, 51A, M303–M312. [Google Scholar] [CrossRef] [PubMed]
- Burnfield, J.M.; Josephson, K.R.; Powers, C.M.; Rubenstein, L.Z. The influence of lower extremity joint torque on gait characteristics in elderly men. Arch. Phys. Med. Rehabil. 2000, 81, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower Extremity Function and Subsequent Disability: Consistency Across Studies, Predictive Models, and Value of Gait Speed Alone Compared with the Short Physical Performance Battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef]
- Swanson, C.W.; Haigh, Z.J.; Fling, B.W. Two-minute walk tests demonstrate similar age-related gait differences as a six-minute walk test. Gait Posture 2019, 69, 36–39. [Google Scholar] [CrossRef]
- Morris, M.E.; Iansek, R.; Matyas, T.A.; Summers, J.J. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 1994, 117, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-F.; Lien, W.-C.; Liu, C.-Y.; Yang, C.-Y. Study on Tripping Risks in Fast Walking through Cadence-Controlled Gait Analysis. J. Healthc. Eng. 2018, 2018, 2723178. [Google Scholar] [CrossRef] [PubMed]
- Martínez De La Iglesia, J.; Herrero, R.D.; Vilches, M.C.O.; Taberné, C.A.; Colomer, C.A.; Luque, R.L. Adaptación y validación al cas-tellano del cuestionario de Pfeiffer (SPMSQ) para detectar la existencia de deterioro cognitivo en personas mayores e 65 años. Med. Clin. 2001, 117, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, U.; Mueller, P.H.; Schmuelling, R.M. Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 1979, 38, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Gröger, I.; Rupprecht, R.; Gaßmann, K.G. Intrasession reliability of force platform parameters in community-dwelling older adults. Arch. Phys. Med. Rehabil. 2008, 89, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Lawton, T.; Harris, N.; Kilding, A.; McMaster, D.T. A Brief Review of Handgrip Strength and Sport Performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Aagaard, P.; Haddock, B.; Kamper, R.S.; Hansen, S.K.; Prescott, E.; Ara, I.; Alegre, L.M.; Frandsen, U.; Suetta, C. Assessment of functional sit-to-stand muscle power: Cross-sectional trajectories across the lifespan. Exp. Gerontol. 2021, 152, 111448. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Trull, A.; Alvarez-Medina, J.; Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Gómez-Trullén, E. Absolute agreement and consistency of the OptoGait system and Freemed platform for measuring walking gait. Med. Eng. Phys. 2022, 110, 103912. [Google Scholar] [CrossRef] [PubMed]
- Rudisch, J.; Jöllenbeck, T.; Vogt, L.; Cordes, T.; Klotzbier, T.J.; Vogel, O.; Wollesen, B. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture 2021, 85, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Baltasar-Fernandez, I.; Alcazar, J.; Losa-Reyna, J.; Soto-Paniagua, H.; Alegre, L.M.; Takai, Y.; Ruiz-Cárdenas, J.D.; Signorile, J.F.; Rodriguez-Mañas, L.; García-García, F.J.; et al. Comparison of available equations to estimate sit-to-stand muscle power and their association with gait speed and frailty in older people: Practical applications for the 5-rep sit-to-stand test. Exp. Gerontol. 2021, 156, 111619. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bermejo, L.; Adsuar, J.C.; Mendoza-Muñoz, M.; Barrios-Fernández, S.; Garcia-Gordillo, M.A.; Pérez-Gómez, J.; Carlos-Vivas, J. Test-Retest Reliability of Five Times Sit to Stand Test (FTSST) in Adults: A Systematic Review and Meta-Analysis. Biology 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef]
Sample (N = 17) | ||
---|---|---|
Mean ± SD | 95%CI | |
Age (years) | 76 ± 6 | (73–78) |
Height (m) | 1.55 ± 0.07 | (1.52–1.58) |
Body mass (kg) | 61.3 ± 9.6 | (57.5–65.1) |
Body Fat (%) | 33.1 ± 9.1 | (29.5–36.7) |
IMC (kg/m2) | 25.9 ± 3.7 | (24.4–27.4) |
Blood sample results | ||
Hemoglobin (g/dL) | 13.9 ± 1.3 | (13.2–14.7) |
Hematocrit (%) | 43.4 ± 3.8 | (41.4–45.5) |
Cholesterol (mg/dL) | 198 ± 21 | (187–209) |
HDL Cholesterol (mg/dL) | 65 ± 18 | (55–74) |
LDL Cholesterol (mg/dL) | 117 ± 21 | (106–128) |
Chol/HDL-Chol | 3.30 ± 0.90 | (2.82–3.77) |
LDL-Chol/HDL-Chol | 2.01 ± 0.82 | (1.57–2.44) |
Triglycerides (mg/dL) | 84 ± 29 | (69–100) |
Glucose (mg/dL) | 88 ± 19 | (78–98) |
HbA1c (%) | 5.8 ± 0.9 | (5.4–6.3) |
HbA1c (mMol/mol) | 40 ± 10 | (35–46) |
IL-6 (pg/mL) | 9.95 ± 4.31 | (7.65–12.24) |
Mean ± SD (95%CI) | Min | Max | Median | Interquartile Range | Correlation with 2-MWT (rho; p-Value) | ||
---|---|---|---|---|---|---|---|
25th | 75th | ||||||
2 min walking test (m) | 189.1 ± 21.6 (178.1–200.3) | 142.5 | 215.0 | 195.0 | 173.5 | 205 | - |
5-times sit to stand test (s) | 8.1 ± 2.2 (7.0–9.3) | 5.6 | 16.0 | 7.7 | 7.1 | 8.4 | −0.488; p = 0.047 * |
Handgrip (kgf) | 24.4 ± 10.1 (19.2–29.6) | 8.8 | 52.0 | 22.0 | 19.0 | 28.0 | 0.11; p = 0.65 |
Incremental Test | |||||||
Max power (W) | 90 ± 21.2 (79.1–100.9) | 60.0 | 135.0 | 90.0 | 75.0 | 105.0 | 0.19; p = 0.45 |
VO2max (mL·kg−1·min−1) | 19.2 ± 3.7 (17.3–21.1) | 11.8 | 27.7 | 18.6 | 17.1 | 20.9 | 0.16; p = 0.54 |
VT1 (mL·kg−1·min−1) | 13.4 ± 3.7 (11.4–15.3) | 6.0 | 22.0 | 13.0 | 10.5 | 15.5 | 0.20; p = 0.44 |
pVT1 (W) | 51.2 ± 21.3 (40.3–62.1) | 15.0 | 105.0 | 45.0 | 37.5 | 60.0 | 0.21; p = 0.41 |
VT2 (mL·kg−1·min−1) | 17.8 ± 3.3 (16.1–19.5) | 11.0 | 24.0 | 17.0 | 16.0 | 20.0 | 0.14; p = 0.58 |
pVT2 (W) | 82.9 ± 22.6 (71.3–94.6) | 30.0 | 135.0 | 90.0 | 67.5 | 90.0 | 0.37; p = 0.14 |
Spatial-temporal Gait Parameters | |||||||
Double Support (%) | 23.5 ± 2.9 (22.0–25.0) | 17.6 | 27.3 | 23.3 | 21.3 | 26.1 | −0.04; p = 0.86 |
Gait Cycle (s) | 0.82 ± 0.05 (0.79–0.84) | 0.73 | 0.89 | 0.82 | 0.78 | 0.85 | −0.05; p = 0.84 |
Stride Length (cm) | 144.6 ± 15.1 (136.8–152.4) | 118.3 | 170.7 | 141.0 | 133.8 | 158.9 | 0.52; p = 0.03 * |
Gait Speed (m/s) | 1.77 ± 0.20 (1.66–1.87) | 1.33 | 1.96 | 1.87 | 1.63 | 1.93 | 0.53; p = 0.03 * |
Gait Frequency (strides/s) | 147.3 ± 9.1 (142.6–151.9) | 135.2 | 164.7 | 146.0 | 140.5 | 153.6 | −0.05; p = 0.84 |
Static Balance Test | |||||||
COP Swept Area ROE (mm2) | 29.0 ± 14.4 (21.6–36.4) | 10.0 | 56.1 | 25.9 | 17.4 | 43 | −0.06; p = 0.81 |
COP Swept Area RCE (mm2) | 35.1 ± 25.3 (22.1–48.1) | 11.1 | 101.1 | 28.0 | 16.7 | 46.1 | −0.30; p = 0.23 |
COP Mean Speed ROE (m/s) | 0.01 ± 0.00 (0.010–0.013) | 0.004 | 0.02 | 0.01 | 0.010 | 0.014 | −0.05; p = 0.85 |
COP Mean Speed RCE (m/s) | 0.02 ± 0.01 (0.013–0.020) | 0.01 | 0.03 | 0.01 | 0.014 | 0.020 | −0.18; p = 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Calvo, M.; de Paz, J.A.; Herrero-Molleda, A.; Zecchin, A.; Gómez-Alonso, M.T.; Alonso-Cortés, B.; Boullosa, D. The 2-Minutes Walking Test Is Not Correlated with Aerobic Fitness Indices but with the 5-Times Sit-to-Stand Test Performance in Apparently Healthy Older Adults. Geriatrics 2024, 9, 43. https://doi.org/10.3390/geriatrics9020043
Gil-Calvo M, de Paz JA, Herrero-Molleda A, Zecchin A, Gómez-Alonso MT, Alonso-Cortés B, Boullosa D. The 2-Minutes Walking Test Is Not Correlated with Aerobic Fitness Indices but with the 5-Times Sit-to-Stand Test Performance in Apparently Healthy Older Adults. Geriatrics. 2024; 9(2):43. https://doi.org/10.3390/geriatrics9020043
Chicago/Turabian StyleGil-Calvo, Marina, José Antonio de Paz, Alba Herrero-Molleda, Arthur Zecchin, María Teresa Gómez-Alonso, Beatriz Alonso-Cortés, and Daniel Boullosa. 2024. "The 2-Minutes Walking Test Is Not Correlated with Aerobic Fitness Indices but with the 5-Times Sit-to-Stand Test Performance in Apparently Healthy Older Adults" Geriatrics 9, no. 2: 43. https://doi.org/10.3390/geriatrics9020043
APA StyleGil-Calvo, M., de Paz, J. A., Herrero-Molleda, A., Zecchin, A., Gómez-Alonso, M. T., Alonso-Cortés, B., & Boullosa, D. (2024). The 2-Minutes Walking Test Is Not Correlated with Aerobic Fitness Indices but with the 5-Times Sit-to-Stand Test Performance in Apparently Healthy Older Adults. Geriatrics, 9(2), 43. https://doi.org/10.3390/geriatrics9020043