The Presence, Location, and Degree of Late Gadolinium Enhancement in Relation to Myocardial Dysfunction and Poor Prognosis in Patients with Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Data
2.3. Cardiac Magnetic Resonance Imaging Analysis
2.4. Echocardiography and Non-Invasive Pressure-Strain Loop Analysis
2.5. Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Study Population and Clinical Characteristics
3.2. Presence, Location, and Degree of LGE and Myocardial Dysfunction
3.3. Presence, Location, and Degree of LGE and Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.; et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef]
- Winau, L.; Hinojar Baydes, R.; Braner, A.; Drott, U.; Burkhardt, H.; Sangle, S.; D’Cruz, D.P.; Carr-White, G.; Marber, M.; Schnoes, K.; et al. High-sensitive troponin is associated with subclinical imaging biosignature of inflammatory cardiovascular involvement in systemic lupus erythematosus. Ann. Rheum. Dis. 2018, 77, 1590–1598. [Google Scholar] [CrossRef]
- Kwong, R.Y.; Chan, A.K.; Brown, K.A.; Chan, C.W.; Reynolds, H.G.; Tsang, S.; Davis, R.B. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 2006, 113, 2733–2743. [Google Scholar] [CrossRef] [PubMed]
- Halliday, B.P.; Baksi, A.J.; Gulati, A.; Ali, A.; Newsome, S.; Izgi, C.; Arzanauskaite, M.; Lota, A.; Tayal, U.; Vassiliou, V.S.; et al. Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC Cardiovasc. Imaging 2019, 12, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.; Adler, A.; Fardfini, K.; Hoss, S.; Hanneman, K.; Rowin, E.J.; Maron, M.S.; Maron, B.J.; Rakowski, H.; Chan, R.H. Progression of Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Cardiac Magnetic Resonance Study. JACC Cardiovasc. Imaging 2021, 14, 947–958. [Google Scholar] [CrossRef]
- du Toit, R.; Reuter, H.; Walzl, G.; Snyders, C.; Chegou, N.N.; Herbst, P.G.; Doubell, A.F. Serum cytokine levels associated with myocardial injury in systemic lupus erythematosus. Rheumatology 2021, 60, 2010–2021. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef]
- Ilardi, F.; D’Andrea, A.; D’Ascenzi, F.; Bandera, F.; Benfari, G.; Esposito, R.; Malagoli, A.; Mandoli, G.E.; Santoro, C.; Russo, V.; et al. Myocardial Work by Echocardiography: Principles and Applications in Clinical Practice. J. Clin. Med. 2021, 10, 4521. [Google Scholar] [CrossRef]
- Prihadi, E.A.; Vollema, E.M.; Ng, A.C.T.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 740–748. [Google Scholar] [CrossRef]
- Cui, C.; Li, Y.; Liu, Y.; Huang, D.; Hu, Y.; Wang, Y.; Ma, L.; Liu, L. Association between Echocardiographic Non-invasive Myocardial Work Indices and Myocardial Fibrosis in Patients With Dilated Cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 704251. [Google Scholar] [CrossRef]
- Patel, A.R.; Kramer, C.M. Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc. Imaging 2017, 10, 1180–1193. [Google Scholar] [CrossRef] [PubMed]
- Grani, C.; Eichhorn, C.; Biere, L.; Murthy, V.L.; Agarwal, V.; Kaneko, K.; Cuddy, S.; Aghayev, A.; Steigner, M.; Blankstein, R.; et al. Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients with Suspected Myocarditis. J. Am. Coll. Cardiol. 2017, 70, 1964–1976. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Sun, R.; Liu, W.; Xu, R.; Zhou, Z.; Bai, W.; Hou, R.; Xu, H.; Guo, Y.; Yu, L.; et al. Prognostic Value of Late Gadolinium Enhancement in Left Ventricular Noncompaction: A Multicenter Study. Diagnostics 2022, 12, 2457. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Gladman, D.; Ginzler, E.; Goldsmith, C.; Fortin, P.; Liang, M.; Urowitz, M.; Bacon, P.; Bombardieri, S.; Hanly, J.; Hay, E.; et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 363–369. [Google Scholar] [CrossRef]
- Claver, E.; Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Ruiz-Majoral, A.; Dallaglio, P.D.; Rodriguez, M.; Comin-Colet, J.; Anguera, I.; et al. Prognostic impact of late gadolinium enhancement at the right ventricular insertion points in non-ischaemic dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 346–353. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Seneviratne, M.G.; Grieve, S.M.; Figtree, G.A.; Garsia, R.; Celermajer, D.S.; Adelstein, S.; Puranik, R. Prevalence, distribution and clinical correlates of myocardial fibrosis in systemic lupus erythematosus: A cardiac magnetic resonance study. Lupus 2016, 25, 573–581. [Google Scholar] [CrossRef]
- Lazou, A.; Ikonomidis, I.; Bartekova, M.; Benedek, T.; Makavos, G.; Palioura, D.; Cabrera Fuentes, H.; Andreadou, I. Chronic inflammatory diseases, myocardial function and cardioprotection. Br. J. Pharmacol. 2020, 177, 5357–5374. [Google Scholar] [CrossRef]
- Myhr, K.A.; Zinglersen, A.H.; Hermansen, M.F.; Jepsen, M.M.; Iversen, K.K.; Ngo, A.T.; Pecini, R.; Jacobsen, S. Left ventricular size and function in patients with systemic lupus erythematosus associate with lupus anticoagulant: An echocardiographic follow-up study. J. Autoimmun. 2022, 132, 102884. [Google Scholar] [CrossRef] [PubMed]
- Mahdiui, M.E.; van der Bijl, P.; Abou, R.; de Paula Lustosa, R.; van der Geest, R.; Ajmone Marsan, N.; Delgado, V.; Bax, J.J. Myocardial Work, an Echocardiographic Measure of Post Myocardial Infarct Scar on Contrast-Enhanced Cardiac Magnetic Resonance. Am. J. Cardiol. 2021, 151, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ebata, R.; Fujioka, T.; Diab, S.G.; Pieles, G.; Ishii, R.; Ide, H.; Sun, M.; Slorach, C.; Liu, K.; Honjo, O.; et al. Asymmetric Regional Work Contributes to Right Ventricular Fibrosis, Inefficiency, and Dysfunction in Pulmonary Hypertension versus Regurgitation. J. Am. Soc. Echocardiogr. 2021, 34, 537–550.e3. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Q.; Kong, W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018, 68–69, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Edwards, N.F.A.; Scalia, G.M.; Khandheria, B.K. Myocardial Work: A New Type of Strain Imaging? J. Am. Soc. Echocardiogr. 2020, 33, 1209–1211. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Z.; Chen, Z.; Yu, E.; Fang, C. Layer-specific strain and dyssynchrony index alteration in new-onset systemic lupus erythematosus patients without cardiac symptoms. Quant. Imaging Med. Surg. 2021, 11, 1271–1283. [Google Scholar] [CrossRef]
- Keil, L.; Chevalier, C.; Kirchhof, P.; Blankenberg, S.; Lund, G.; Müllerleile, K.; Magnussen, C. CMR-Based Risk Stratification of Sudden Cardiac Death and Use of Implantable Cardioverter-Defibrillator in Non-Ischemic Cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 7115. [Google Scholar] [CrossRef]
- Alba, A.C.; Gaztañaga, J.; Foroutan, F.; Thavendiranathan, P.; Merlo, M.; Alonso-Rodriguez, D.; Vallejo-García, V.; Vidal-Perez, R.; Corros-Vicente, C.; Barreiro-Pérez, M.; et al. Prognostic Value of Late Gadolinium Enhancement for the Prediction of Cardiovascular Outcomes in Dilated Cardiomyopathy: An International, Multi-Institutional Study of the MINICOR Group. Circ. Cardiovasc. Imaging 2020, 13, e010105. [Google Scholar] [CrossRef]
- Mahrholdt, H.; Seitz, A. Refining the Prognostic Value of LGE in Hypertrophic Cardiomyopathy. JACC Cardiovasc. Imaging 2023, 16, 1178–1180. [Google Scholar] [CrossRef]
- Hiemstra, Y.L.; van der Bijl, P.; El Mahdiui, M.; Bax, J.J.; Delgado, V.; Marsan, N.A. Myocardial Work in Nonobstructive Hypertrophic Cardiomyopathy: Implications for Outcome. J. Am. Soc. Echocardiogr. 2020, 33, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.F.; Schmidt, I.M.; Verma, A.; Palsson, R.; Adam, D.; Shah, A.M.; Srivastava, A.; Waikar, S.S. Associations Between Kidney Histopathologic Lesions and Incident Cardiovascular Disease in Adults With Chronic Kidney Disease. JAMA Cardiol. 2023, 8, 357–365. [Google Scholar] [CrossRef]
- Qian, J.; Li, M.; Zhang, X.; Wang, Q.; Zhao, J.; Tian, Z.; Wei, W.; Zuo, X.; Zhang, M.; Zhu, P.; et al. Long-term prognosis of patients with systemic lupus erythematosus-associated pulmonary arterial hypertension: CSTAR-PAH cohort study. Eur. Respir. J. 2019, 53, 1800081. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.R. Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 2007, 157, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Shalmon, T.; Thavendiranathan, P.; Seidman, M.A.; Wald, R.M.; Karur, G.R.; Harvey, P.J.; Akhtari, S.; Osuntokun, T.; Tselios, K.; Gladman, D.D.; et al. Cardiac Magnetic Resonance Imaging T1 and T2 Mapping in Systemic Lupus Erythematosus in Relation to Antimalarial Treatment. J. Thorac. Imaging 2023, 38, W33–W42. [Google Scholar] [CrossRef]
- Li, X.; Lai, L.; Luo, R.; Yang, H.; Ma, H.; Yang, Z.; Zhao, S.; Su, W.; Hua, W. The Clinical Prognosis of Presence and Location of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy: A Single-Center Cohort Study. J. Cardiovasc. Transl. Res. 2021, 14, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Claver, E.; de Frutos, F.; Dallaglio, P.D.; Comin-Colet, J.; Anguera, I.; Miller, C.A.; et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients with Nonischemic Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 77, 2890–2905. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Yu, S.; Wu, G.; Wang, D.; Liu, L.; Song, J.; Zhu, Y.; Kang, L.; Wang, J.; et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy. Radiology 2022, 302, 298–306. [Google Scholar] [CrossRef]
- Golukhova, E.Z.; Bulaeva, N.I.; Alexandrova, S.A.; Mrikaev, D.V.; Gromova, O.I.; Ruzina, E.V.; Berdibekov, B.S. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: A systematic review and meta-analysis. Clin. Radiol. 2023, 78, e342–e349. [Google Scholar] [CrossRef]
Variables | Total (N = 74) | LGE+ (N = 39) | LGE− (N = 35) | p Value |
---|---|---|---|---|
Age, years | 35 ± 12 | 37 ± 13 | 32 ± 9 | 0.101 |
Female gender, n (%) | 70 (95) | 36 (92) | 34 (97) | 0.687 |
Hypertension, n (%) | 22 (30) | 12 (31) | 10 (29) | 0.836 |
Diabetes, n (%) | 9 (12) | 5 (13) | 4 (11) | >0.999 |
Hyperlipidemia, n (%) | 7 (10) | 3 (8) | 4 (11) | 0.583 |
Smoking, n (%) | 6 (8) | 5 (13) | 1 (3) | 0.254 |
SLE detail | ||||
Disease duration, months, median (IQR) | 37 (3–99) | 37 (4–96) | 36 (2–120) | 0.653 |
Antiphospholipid syndrome, n (%) | 14 (19) | 11 (28) | 3 (9) | 0.031 |
Pulmonary hypertension, n (%) | 20 (27) | 9 (23) | 11 (31) | 0.419 |
SLEDAI-2K score, median (IQR) | 10 (6–18) | 10 (5–19) | 12 (6–19) | 0.786 |
SDI, median (IQR) | 1 (0–2) | 1 (0–2) | 1 (0–2) | 0.448 |
Cardiac manifestation | ||||
Cardiac symptom, n (%) | 57 (77) | 35 (90) | 22 (63) | 0.006 |
Arrhythmia, n (%) | 21 (28) | 14 (36) | 7 (20) | 0.13 |
NT-proBNP, pg/mL, median (IQR) | 840 (251–3040) | 2440 (601–6771) | 385 (146–1119) | <0.001 |
cTnI, µg/L, median (IQR) | 0.02 (0–0.18) | 0.08 (0.01–0.47) | 0.02 (0–0.04) | 0.002 |
Medication | ||||
Glucocorticoid, n (%) | 69 (93) | 35 (90) | 34 (97) | 0.422 |
Immunosuppressive agent, n (%) | 68 (92) | 33 (85) | 35 (100) | 0.046 |
Antiplatelet agents or anticoagulants, n (%) | 22 (30) | 17 (44) | 5 (14) | 0.006 |
ACEI/ARB, n (%) | 28 (38) | 18 (46) | 10 (29) | 0.119 |
Beta blockers, n (%) | 34 (46) | 23 (59) | 11 (31) | 0.018 |
MRA, n (%) | 18 (24) | 13 (33) | 5 (14) | 0.057 |
Variables | Healthy Controls (N = 37) | Total (N = 74) | LGE+ (N = 39) | LGE− (N = 35) | p Value |
---|---|---|---|---|---|
Conventional echocardiographic parameter | |||||
IVSD, mm | 8.9 ± 1.8 | 8.3 ± 1.6 | 8.9 ± 1.5 | 7.7 ± 1.6 * | 0.003 |
LVPWD, mm | 8.9 ± 1.8 | 8.4 ± 1.4 | 8.7 ± 1.3 | 8.0 ± 1.6 * | 0.039 |
LVEDD, mm | 43 ± 4 | 47 ± 6 * | 47 ± 8 * | 46 ± 5 * | 0.477 |
LVESD, mm | 28 ± 5 | 31 ± 7 * | 32 ± 8 * | 30 ± 5 | 0.136 |
LVEF, % | 67 ± 7 | 61 ± 10 * | 59 ± 11 * | 64 ± 9 | 0.089 |
LVFS, % | 38 ± 4 | 33 ± 7 * | 32 ± 8 * | 35 ± 6 | 0.039 |
E/A radio | 1.6 ± 0.3 | 1.2 ± 0.4 * | 1.2 ± 0.4 * | 1.2 ± 0.4 * | 0.979 |
LA diameter, mm | 33 ± 3 | 33 ± 6 | 34 ± 6 | 32 ± 5 | 0.068 |
PASP, mmHg, median (IQR) | 21 (19–24) | 28 (23–56) * | 28 (24–35) * | 26 (22–43) * | 0.419 |
TAPSE, mm | 19 ± 2 | 18 ± 5 * | 17 ± 4 * | 19 ± 5 | 0.123 |
TRV, m/s | 1.7 ± 0.5 | 2.6 ± 0.7 * | 2.6 ± 0.7 * | 2.6 ± 0.6 * | 0.818 |
RV diameter, mm | 22 ± 4 | 22 ± 4 | 22 ± 5 | 22 ± 3 | 0.606 |
STE parameter | |||||
GWI, mmHg% | 1750 ± 258 | 1323 ± 339 * | 1289 ± 360 * | 1360 ± 315 * | 0.372 |
GCW, mmHg% | 2113 ± 264 | 1609 ± 351 * | 1572 ± 383 * | 1650 ± 312 * | 0.345 |
GWW, mmHg%, median (IQR) | 67 (50–99) | 143 (95–180) * | 156 (117–178)* | 119 (82–183) * | 0.213 |
GWE, % | 95.7 ± 1.8 | 90 ± 4.9 * | 88.9 ± 5.4* | 91.2 ± 4.1 * | 0.047 |
GLS, % | −20.2 ± 2.0 | −15.2 ± 3.4 * | −14.7 ± 3.8* | −15.8 ± 2.8 * | 0.167 |
PSD, ms | 37 ± 9 | 60 ± 19 * | 64 ± 23* | 56 ± 13 * | 0.09 |
CMR parameter | |||||
Native T1, ms | 1266 ± 30 | 1388 ± 71 * | 1392 ± 76 * | 1383 ± 64 * | 0.583 |
ECV, % | 26 ± 2 | 33 ± 6 * | 33 ± 6 * | 33 ± 5 * | 0.803 |
T2, ms | 38 ± 1 | 42 ± 3 * | 42 ± 3 * | 42 ± 3 * | 0.459 |
Variables | Univariable Analysis | |
---|---|---|
HR (95% CI) | p Value | |
Clinical variables | ||
Age | 1.021 (0.991–1.053) | 0.169 |
Female sex | 0.889 (0.120–6.607) | 0.908 |
Hypertension | 1.061 (0.459–2.451) | 0.89 |
Diabetes | 1.049 (0.246–4.480) | 0.948 |
Hyperlipidemia | 1.935 (0.719–5.203) | 0.191 |
NYHA functional class | 1.445 (0.973–2.146) | 0.068 |
NT-proBNP, pg/mL | 1.000 (1.000–1.000) | 0.416 |
cTnI, µg/L | 1.020 (0.877–1.187) | 0.793 |
SLEDAI-2K score | 0.991 (0.954–1.029) | 0.624 |
SDI > 0 | 2.647 (1.147–6.106) | 0.023 |
Glucocorticoid | 1.124 (0.264–4.781) | 0.874 |
Immunosuppressive treatment | 1.320 (0.310–5.624) | 0.708 |
Antiplatelet agents or anticoagulants | 1.406 (0.59–3.349) | 0.442 |
ACEI/ARB | 1.322 (0.606–2.882) | 0.483 |
Beta blockers | 0.916 (0.429–1.958) | 0.821 |
MRA | 0.965 (0.407–2.288) | 0.935 |
Imaging parameter | ||
LVEF, % | 0.987 (0.952–1.023) | 0.476 |
PASP, mmHg | 1.000 (0.980–1.020) | 0.978 |
GLS, % | 1.041 (0.933–1.161) | 0.474 |
PSD, ms | 1.007 (0.988–1.027) | 0.475 |
GWI, mmHg% | 1.001 (1.000–1.002) | 0.269 |
GCW, mmHg% | 1.000 (0.999–1.002) | 0.471 |
GWW, mmHg% | 0.996 (0.989–1.002) | 0.19 |
GWE, % | 1.038 (0.950–1.134) | 0.406 |
LGE presence | 3.251 (1.295–8.159) | 0.012 |
LGE degree, % | 1.093 (1.019–1.172) | 0.013 |
LGE degree (tertiles) | ||
>0 and ≤1.94% | 1.499 (0.37–6.071) | 0.57 |
>1.94% and ≤4.94% | 4.725 (1.714–13.026) | 0.003 |
>4.94% | 3.282 (1.115–9.663) | 0.031 |
LGE location | ||
LVFW LGE | 2.475 (1.134–5.399) | 0.023 |
Septal LGE | 1.097 (0.499–2.411) | 0.817 |
Native T1, ms | 1.004 (0.999–1.009) | 0.112 |
ECV, % | 1.027 (0.963–1.095) | 0.416 |
T2, ms | 1.064 (0.928–1.220) | 0.375 |
Variables | LGE Presence Plus Covariables | LGE Location Plus Covariables | LGE Degree Plus Covariables | |||
---|---|---|---|---|---|---|
Adjusted HR (95% CI) | p Value | Adjusted HR (95% CI) | p Value | Adjusted HR (95% CI) | p Value | |
Age | 0.999 (0.969–1.031) | 0.97 | 1.003 (0.973–1.035) | 0.826 | 0.998 (0.966–1.031) | 0.901 |
Female sex | 1.082 (0.141–8.3) | 0.94 | 0.711 (0.093–5.465) | 0.743 | 0.613 (0.07–5.36) | 0.658 |
cTnI, µg/L | 0.981 (0.842–1.143) | 0.807 | 0.974 (0.834–1.138) | 0.744 | 0.963 (0.82–1.13) | 0.64 |
SDI > 0 | 3.125 (1.27–7.688) | 0.013 | 2.515 (1.068–5.923) | 0.035 | 2.828 (1.167–6.852) | 0.021 |
LGE presence | 3.746 (1.434–9.79) | 0.007 | ||||
LVFW LGE | 2.395 (1.023–5.606) | 0.044 | ||||
LGE degree | ||||||
>0 and ≤1.94% | 1.778 (0.405–7.798) | 0.446 | ||||
>1.94% and ≤4.94% | 5.258 (1.817–15.214) | 0.002 | ||||
>4.94% | 3.739 (1.241–11.266) | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Liu, P.; Liu, X.; Guo, T.; Li, X.; Yang, H.; Chen, W.; Wang, Y.; Zhang, S. The Presence, Location, and Degree of Late Gadolinium Enhancement in Relation to Myocardial Dysfunction and Poor Prognosis in Patients with Systemic Lupus Erythematosus. J. Cardiovasc. Dev. Dis. 2023, 10, 451. https://doi.org/10.3390/jcdd10110451
Feng X, Liu P, Liu X, Guo T, Li X, Yang H, Chen W, Wang Y, Zhang S. The Presence, Location, and Degree of Late Gadolinium Enhancement in Relation to Myocardial Dysfunction and Poor Prognosis in Patients with Systemic Lupus Erythematosus. Journal of Cardiovascular Development and Disease. 2023; 10(11):451. https://doi.org/10.3390/jcdd10110451
Chicago/Turabian StyleFeng, Xiaojin, Peijun Liu, Xiaohang Liu, Tianchen Guo, Xinhao Li, Huaxia Yang, Wei Chen, Yining Wang, and Shuyang Zhang. 2023. "The Presence, Location, and Degree of Late Gadolinium Enhancement in Relation to Myocardial Dysfunction and Poor Prognosis in Patients with Systemic Lupus Erythematosus" Journal of Cardiovascular Development and Disease 10, no. 11: 451. https://doi.org/10.3390/jcdd10110451
APA StyleFeng, X., Liu, P., Liu, X., Guo, T., Li, X., Yang, H., Chen, W., Wang, Y., & Zhang, S. (2023). The Presence, Location, and Degree of Late Gadolinium Enhancement in Relation to Myocardial Dysfunction and Poor Prognosis in Patients with Systemic Lupus Erythematosus. Journal of Cardiovascular Development and Disease, 10(11), 451. https://doi.org/10.3390/jcdd10110451