Use of Frogs as a Model to Study the Etiology of HLHS
Abstract
:1. Highly Conserved Heart Development in Vertebrates
2. The Frog Is a Powerful Model for Studying Congenital Heart Diseases
3. Hypoplastic Left Heart Syndrome
4. The Frog as a Model for HLHS
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gessert, S.; Kuhl, M. Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. Dev. Biol. 2009, 334, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Yan, W.; Mohun, T.J.; Evans, S.M. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 1998, 125, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
- Grow, M.W.; Krieg, P.A. Tinman function is essential for vertebrate heart development: Elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 1998, 204, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, F.; Bundschu, K.; Kuhl, S.J.; Kuhl, M. Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos. Dev. Dyn. 2011, 240, 2634–2645. [Google Scholar] [CrossRef]
- Pandur, P.; Sirbu, I.O.; Kuhl, S.J.; Philipp, M.; Kuhl, M. Islet1-expressing cardiac progenitor cells: A comparison across species. Dev. Genes Evol. 2013, 223, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruneau, B.G. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ. Res. 2002, 90, 509–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, E.N. Gene regulatory networks in the evolution and development of the heart. Science 2006, 313, 1922–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Showell, C.; Conlon, F.L. Decoding development in Xenopus tropicalis. Genesis 2007, 45, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Hellsten, U.; Harland, R.M.; Gilchrist, M.J.; Hendrix, D.; Jurka, J.; Kapitonov, V.; Ovcharenko, I.; Putnam, N.H.; Shu, S.; Taher, L.; et al. The genome of the Western clawed frog Xenopus tropicalis. Science 2010, 328, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Khokha, M.K. Xenopus white papers and resources: Folding functional genomics and genetics into the frog. Genesis 2012, 50, 133–142. [Google Scholar] [CrossRef]
- Federspiel, J.D.; Tandon, P.; Wilczewski, C.M.; Wasson, L.; Herring, L.E.; Venkatesh, S.S.; Cristea, I.M.; Conlon, F.L. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol. 2019, 17, e3000437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, L.; Slack, J.M. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 1987, 100, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Moody, S.A. Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev. Biol. 1987, 122, 300–319. [Google Scholar] [CrossRef] [PubMed]
- Raffin, M.; Leong, L.M.; Rones, M.S.; Sparrow, D.; Mohun, T.; Mercola, M. Subdivision of the cardiac Nkx2.5 expression domain into myogenic and nonmyogenic compartments. Dev. Biol. 2000, 218, 326–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langdon, Y.G.; Goetz, S.C.; Berg, A.E.; Swanik, J.T.; Conlon, F.L. SHP-2 is required for the maintenance of cardiac progenitors. Development 2007, 134, 4119–4130. [Google Scholar] [CrossRef] [Green Version]
- Afouda, B.A.; Hoppler, S. Xenopus explants as an experimental model system for studying heart development. Trends Cardiovasc. Med. 2009, 19, 220–226. [Google Scholar] [CrossRef]
- Logan, M.; Mohun, T. Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos. Development 1993, 118, 865–875. [Google Scholar] [CrossRef]
- Ariizumi, T.; Kinoshita, M.; Yokota, C.; Takano, K.; Fukuda, K.; Moriyama, N.; Malacinski, G.M.; Asashima, M. Amphibian in vitro heart induction: A simple and reliable model for the study of vertebrate cardiac development. Int. J. Dev. Biol. 2003, 47, 405–410. [Google Scholar]
- Kinoshita, M.; Ariizumi, T.; Yuasa, S.; Miyoshi, S.; Komazaki, S.; Fukuda, K.; Asashima, M. Creating frog heart as an organ: In vitro-induced heart functions as a circulatory organ in vivo. Int. J. Dev. Biol. 2010, 54, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Afouda, B.A. Stem-cell-like embryonic explants to study cardiac development. Methods Mol. Biol. 2012, 917, 515–523. [Google Scholar] [PubMed]
- Bartlett, H.L.; Scholz, T.D.; Lamb, F.S.; Weeks, D.L. Characterization of embryonic cardiac pacemaker and atrioventricular conduction physiology in Xenopus laevis using noninvasive imaging. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H2035–H2041. [Google Scholar] [CrossRef] [PubMed]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.J.; Ataliotis, P.; Kotecha, S.; Towers, N.; Sparrow, D.B.; Mohun, T.J. The MLC1v gene provides a transgenic marker of myocardium formation within developing chambers of the Xenopus heart. Dev. Dyn. 2005, 232, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.R.; Hamlet, M.R.J.; Kuliyev, E.; Mead, P.E. A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: An in vivo model for vascular studies. Dev. Dyn. 2007, 236, 2808–2817. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Fish, M.B.; Fisher, M.; Oomen-Hajagos, J.; Thomsen, G.H.; Grainger, R.M. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 2013, 51, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, D.; Marfo, C.A.; Li, D.; Lane, M.; Khokha, M.K. CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev. Biol. 2015, 408, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.; Conlon, F.; Furlow, J.D.; Horb, M.E. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev. Biol. 2017, 426, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Aslan, Y.; Tadjuidje, E.; Zorn, A.M.; Cha, S.W. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 2017, 144, 2852–2858. [Google Scholar]
- Deniz, E.; Mis, E.K.; Lane, M.; Khokha, M.K. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods Mol. Biol. 2018, 1865, 163–174. [Google Scholar]
- Horb, M.; Wlizla, M.; Abu-Daya, A.; McNamara, S.; Gajdasik, D.; Igawa, T.; Suzuki, A.; Ogino, H.; Noble, A.; Centre de Ressource Biologique Xenope team in France; et al. Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities; Web-Based Support. Front. Physiol. 2019, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.B. The relation of temperature to the heart rate of the south african frog (Xenopus dactylethra). J. Physiol. 1931, 71, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Nieuwkoop, P.D. Investigations on the regional determination of the central nervous system. J. Exp. Biol. 1947, 24, 145–183. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.H.; Tseng, M.P. An experimental analysis of the determination and differentiation of the mesodermal structures of neurula in urodeles. Sci. Sin. 1957, 6, 669–708. [Google Scholar]
- Jacobson, A.G. Influences of ectoderm and endoderm on heart differentiation in the newt. Dev. Biol. 1960, 2, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.G. Heart determination in the newt. J. Exp. Zool. 1961, 146, 139–151. [Google Scholar] [CrossRef]
- Monnickendam, M.A.; Balls, M. Amphibian organ culture. Experientia 1973, 29, 1–17. [Google Scholar] [CrossRef]
- Kaltenbrun, E.; Tandon, P.; Amin, N.M.; Waldron, L.; Showell, C.; Conlon, F.L. Xenopus: An emerging model for studying congenital heart disease. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 495–510. [Google Scholar] [CrossRef] [Green Version]
- Hempel, A.; Kuhl, M. A Matter of the Heart: The African Clawed Frog Xenopus as a Model for Studying Vertebrate Cardiogenesis and Congenital Heart Defects. J. Cardiovasc. Dev. Dis. 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, A.M.; Khokha, M.K. An interspecies heart-to-heart: Using Xenopus to uncover the genetic basis of congenital heart disease. Curr. Pathobiol. Rep. 2017, 5, 187–196. [Google Scholar] [CrossRef]
- Schott, J.J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Bartlett, H.L.; Sutherland, L.; Kolker, S.J.; Welp, C.; Tajchman, U.; Desmarais, V.; Weeks, D.L. Transient early embryonic expression of Nkx2-5 mutations linked to congenital heart defects in human causes heart defects in Xenopus laevis. Dev. Dyn. 2007, 236, 2475–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haworth, K.E.; Kotecha, S.; Mohun, T.J.; Latinkic, B.V. GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. BMC Dev. Biol. 2008, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataliotis, P.; Ivins, S.; Mohun, T.J.; Scambler, P.J. XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev. Dyn. 2005, 232, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Horb, M.E.; Thomsen, G.H. Tbx5 is essential for heart development. Development 1999, 126, 1739–1751. [Google Scholar] [CrossRef]
- Brown, D.D.; Martz, S.N.; Binder, O.; Goetz, S.C.; Price, B.M.; Smith, J.C.; Conlon, F.L. Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 2005, 132, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.C.; Brown, D.D.; Conlon, F.L. TBX5 is required for embryonic cardiac cell cycle progression. Development 2006, 133, 2575–2584. [Google Scholar] [CrossRef] [Green Version]
- Kitaguchi, T.; Nagai, T.; Nakata, K.; Aruga, J.; Mikoshiba, K. Zic3 is involved in the left-right specification of the Xenopus embryo. Development 2000, 127, 4787–4795. [Google Scholar] [CrossRef]
- Kitaguchi, T.; Mizugishi, K.; Hatayama, M.; Aruga, J.; Mikoshiba, K. Xenopus Brachyury regulates mesodermal expression of Zic3, a gene controlling left-right asymmetry. Dev. Growth Differ. 2002, 44, 55–61. [Google Scholar] [CrossRef]
- Fakhro, K.A.; Choi, M.; Ware, S.M.; Belmont, J.W.; Towbin, J.A.; Lifton, R.P.; Khokha, M.K.; Brueckner, M. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc. Natl. Acad. Sci. USA 2011, 108, 2915–2920. [Google Scholar] [CrossRef] [Green Version]
- Boskovski, M.T.; Yuan, S.; Pedersen, N.B.; Goth, C.K.; Makova, S.; Clausen, H.; Brueckner, M.; Khokha, M.K. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 2013, 504, 456–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endicott, S.J.; Basu, B.; Khokha, M.; Brueckner, M. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry. Development 2015, 142, 4068–4079. [Google Scholar]
- Del Viso, F.; Huang, F.; Myers, J.; Chalfant, M.; Zhang, Y.; Reza, N.; Bewersdorf, J.; Lusk, C.P.; Khokha, M.K. Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia. Dev. Cell 2016, 38, 478–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, J.N.; Del Viso, F.; Duncan, A.R.; Robson, A.; Hwang, W.; Kulkarni, S.; Liu, K.J.; Khokha, M.K. RAPGEF5 Regulates Nuclear Translocation of beta-Catenin. Dev. Cell 2018, 44, 248–260 e244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajpai, R.; Chen, D.A.; Rada-Iglesias, A.; Zhang, J.; Xiong, Y.; Helms, J.; Chang, C.P.; Zhao, Y.; Swigut, T.; Wysocka, J. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 2010, 463, 958–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, Y.; Wehner, P.; Opitz, L.; Salinas-Riester, G.; Bongers, E.M.; van Ravenswaaij-Arts, C.M.; Wincent, J.; Schoumans, J.; Kohlhase, J.; Borchers, A.; et al. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum. Genet. 2014, 133, 997–1009. [Google Scholar] [CrossRef]
- Nie, S.; Bronner, M.E. Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm. Cardiovasc. Res. 2015, 106, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Fruitman, D.S. Hypoplastic left heart syndrome: Prognosis and management options. Paediatr. Child. Health 2000, 5, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.A.; Kirk, E.P.; Yeoh, T.; Chandar, S.; McKenzie, F.; Taylor, P.; Grossfeld, P.; Fatkin, D.; Jones, O.; Hayes, P.; et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: Associations with atrial septal defect and hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 2003, 41, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, J.; Yoshida, M.; Tarui, S.; Hirata, M.; Nagai, Y.; Kasahara, S.; Naruse, K.; Ito, H.; Sano, S.; Oh, H. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS ONE 2014, 9, e102796. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.; Muth, A.N.; Ransom, J.F.; Schluterman, M.K.; Barnes, R.; King, I.N.; Grossfeld, P.D.; Srivastava, D. Mutations in NOTCH1 cause aortic valve disease. Nature 2005, 437, 270–274. [Google Scholar] [CrossRef]
- Theis, J.L.; Hrstka, S.C.; Evans, J.M.; O’Byrne, M.M.; de Andrade, M.; O’Leary, P.W.; Nelson, T.J.; Olson, T.M. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum. Genet. 2015, 134, 1003–1011. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Y.; Yu, M.; Lee, D.; Alharti, S.; Hellen, N.; Shaik, N.A.; Banaganapalli, B.; Mohamoud, H.S.A.; Elango, R.; et al. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum. Mol. Genet. 2017, 26, 3031–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, D.; Gottlieb, P.D.; Olson, E.N. Molecular mechanisms of ventricular hypoplasia. Cold Spring Harb. Symp. Quant. Biol. 2002, 67, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glessner, J.T.; Bick, A.G.; Ito, K.; Homsy, J.; Rodriguez-Murillo, L.; Fromer, M.; Mazaika, E.; Vardarajan, B.; Italia, M.; Leipzig, J.; et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ. Res. 2014, 115, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Sifrim, A.; Hitz, M.P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef]
- Grossfeld, P.; Nie, S.; Lin, L.; Wang, L.; Anderson, R.H. Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J. Cardiovasc. Dev. Dis. 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Bejjani, A.T.; Wary, N.; Gu, M. Hypoplastic left heart syndrome (HLHS): Molecular pathogenesis and emerging drug targets for cardiac repair and regeneration. Expert Opin. Ther. Targets 2021, 25, 621–632. [Google Scholar] [CrossRef]
- Boselli, F.; Freund, J.B.; Vermot, J. Blood flow mechanics in cardiovascular development. Cell. Mol. Life Sci. 2015, 72, 2545–2559. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, C.; Martinez, A.M.; Zuppan, C.W.; Shah, M.M.; Bailey, L.L.; Fletcher, W.H. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat. Res. 2001, 479, 173–186. [Google Scholar] [CrossRef]
- Reaume, A.G.; de Sousa, P.A.; Kulkarni, S.; Langille, B.L.; Zhu, D.; Davies, T.C.; Juneja, S.C.; Kidder, G.M.; Rossant, J. Cardiac malformation in neonatal mice lacking connexin43. Science 1995, 267, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
- Ya, J.; Erdtsieck-Ernste, E.B.; de Boer, P.A.; van Kempen, M.J.; Jongsma, H.; Gros, D.; Moorman, A.F.; Lamers, W.H. Heart defects in connexin43-deficient mice. Circ. Res. 1998, 82, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.Y.; Wessels, A.; Smith, B.R.; Linask, K.K.; Ewart, J.L.; Lo, C.W. Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development. Dev. Biol. 1998, 198, 32–44. [Google Scholar] [CrossRef]
- Sullivan, R.; Huang, G.Y.; Meyer, R.A.; Wessels, A.; Linask, K.K.; Lo, C.W. Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells. Dev. Biol. 1998, 204, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Kotini, M.; Barriga, E.H.; Leslie, J.; Gentzel, M.; Rauschenberger, V.; Schambony, A.; Mayor, R. Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo. Nat. Commun. 2018, 9, 3846. [Google Scholar] [CrossRef] [PubMed]
- Mahtab, E.A.; Gittenberger-de Groot, A.C.; Vicente-Steijn, R.; Lie-Venema, H.; Rijlaarsdam, M.E.; Hazekamp, M.G.; Bartelings, M.M. Disturbed myocardial connexin 43 and N-cadherin expressions in hypoplastic left heart syndrome and borderline left ventricle. J. Thorac. Cardiovasc. Surg. 2012, 144, 1315–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalani, S.R.; Ware, S.M.; Wang, X.; Zapata, G.; Tian, Q.; Franco, L.M.; Jiang, Z.; Bucasas, K.; Scott, D.A.; Campeau, P.M.; et al. MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development. Hum. Mol. Genet. 2013, 22, 4339–4348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, L.A.; Grego-Bessa, J.; Raya, A.; Bertran, E.; Perez-Pomares, J.M.; Diez, J.; Aranda, S.; Palomo, S.; McCormick, F.; Izpisua-Belmonte, J.C.; et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004, 18, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Rones, M.S.; McLaughlin, K.A.; Raffin, M.; Mercola, M. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development 2000, 127, 3865–3876. [Google Scholar] [CrossRef]
- Dorn, T.; Goedel, A.; Lam, J.T.; Haas, J.; Tian, Q.; Herrmann, F.; Bundschu, K.; Dobreva, G.; Schiemann, M.; Dirschinger, R.; et al. Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 2015, 33, 1113–1129. [Google Scholar] [CrossRef]
- Doherty, J.T.; Conlon, F.L.; Mack, C.P.; Taylor, J.M. Focal adhesion kinase is essential for cardiac looping and multichamber heart formation. Genesis 2010, 48, 492–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagishi, M.; Ito, Y.; Ariizumi, T.; Komazaki, S.; Danno, H.; Michiue, T.; Asashima, M. Claudin5 genes encoding tight junction proteins are required for Xenopus heart formation. Dev. Growth Differ. 2010, 52, 665–675. [Google Scholar] [CrossRef]
- Hempel, A.; Kuhl, S.J.; Rothe, M.; Tata, P.R.; Sirbu, I.O.; Vainio, S.J.; Kuhl, M. The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis. Dev. Biol. 2017, 424, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Towers, N.; Saldanha, J.W.; Shang, C.A.; Mahmood, S.R.; Taylor, W.R.; Mohun, T.J. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. Dev. Biol. 2016, 416, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.J.; Towers, N.; Demetriou, K.; Mohun, T.J. Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site. PLoS ONE 2020, 15, e0235433. [Google Scholar] [CrossRef] [PubMed]
- Baltzinger, M.; Mager-Heckel, A.M.; Remy, P. Xl erg: Expression pattern and overexpression during development plead for a role in endothelial cell differentiation. Dev. Dyn. 1999, 216, 420–433. [Google Scholar] [CrossRef]
- Howell, M.; Mohun, T.J.; Hill, C.S. Xenopus Smad3 is specifically expressed in the chordoneural hinge, notochord and in the endocardium of the developing heart. Mech. Dev. 2001, 104, 147–150. [Google Scholar] [CrossRef]
- Kelley, C.; Blumberg, H.; Zon, L.I.; Evans, T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 1993, 118, 817–827. [Google Scholar] [CrossRef]
- Grossfeld, P.D.; Mattina, T.; Lai, Z.; Favier, R.; Jones, K.L.; Cotter, F.; Jones, C. The 11q terminal deletion disorder: A prospective study of 110 cases. Am. J. Med. Genet. Part A 2004, 129A, 51–61. [Google Scholar] [CrossRef]
- Favier, R.; Akshoomoff, N.; Mattson, S.; Grossfeld, P. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am. J. Med. Genet. Part C Semin. Med. Genet. 2015, 169, 239–250. [Google Scholar] [CrossRef]
- Ye, M.; Coldren, C.; Liang, X.; Mattina, T.; Goldmuntz, E.; Benson, D.W.; Ivy, D.; Perryman, M.B.; Garrett-Sinha, L.A.; Grossfeld, P. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum. Mol. Genet. 2010, 19, 648–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lin, L.; Qi, H.; Chen, J.; Grossfeld, P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ. Res. 2022, 131, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Pinto, A.; Wang, L.; Fukatsu, K.; Yin, Y.; Bamforth, S.D.; Bronner, M.E.; Evans, S.M.; Nie, S.; Anderson, R.H.; et al. ETS1 loss in mice impairs cardiac outflow tract septation via a cell migration defect autonomous to the neural crest. Hum. Mol. Genet. 2022, 31, 4217–4227. [Google Scholar] [CrossRef]
- Miao, Y.; Tian, L.; Martin, M.; Paige, S.L.; Galdos, F.X.; Li, J.; Klein, A.; Zhang, H.; Ma, N.; Wei, Y.; et al. Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell 2020, 27, 574–589 e578. [Google Scholar] [CrossRef]
- Hornberger, L.K.; Singhroy, S.; Cavalle-Garrido, T.; Tsang, W.; Keeley, F.; Rabinovitch, M. Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ. Res. 2000, 87, 508–515. [Google Scholar] [CrossRef]
- Ieda, M.; Tsuchihashi, T.; Ivey, K.N.; Ross, R.S.; Hong, T.T.; Shaw, R.M.; Srivastava, D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell 2009, 16, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Corno, A.F.; Zhou, Z.; Uppu, S.C.; Huang, S.; Marino, B.; Milewicz, D.M.; Salazar, J.D. The Secrets of the Frogs Heart. Pediatr. Cardiol. 2022, 43, 1471–1480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S. Use of Frogs as a Model to Study the Etiology of HLHS. J. Cardiovasc. Dev. Dis. 2023, 10, 51. https://doi.org/10.3390/jcdd10020051
Nie S. Use of Frogs as a Model to Study the Etiology of HLHS. Journal of Cardiovascular Development and Disease. 2023; 10(2):51. https://doi.org/10.3390/jcdd10020051
Chicago/Turabian StyleNie, Shuyi. 2023. "Use of Frogs as a Model to Study the Etiology of HLHS" Journal of Cardiovascular Development and Disease 10, no. 2: 51. https://doi.org/10.3390/jcdd10020051
APA StyleNie, S. (2023). Use of Frogs as a Model to Study the Etiology of HLHS. Journal of Cardiovascular Development and Disease, 10(2), 51. https://doi.org/10.3390/jcdd10020051