Acute and Chronic Changes in Myocardial Work Parameters in Patients with Severe Primary Mitral Regurgitation Undergoing Transcatheter Edge-to-Edge Repair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Echocardiography
Assessment of Myocardial Work
2.3. Percutaneous Mitral Valve Repair
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Acute and Chronic Impact of TEER on Left Ventricular Size and Function
3.3. Predictors of Left Ventricular Remodeling
4. Discussion
4.1. Assessment of Left Ventricular Performance in Mitral Regurgitation
4.2. Acute Changes in Left Ventricular Performance after TEER
4.3. Left Ventricular Reverse Remodeling after TEER
4.4. Clinical Implications Acute Changes in Left Ventricular Performance after TEER
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Sabbagh, A.; Reddy, Y.N.V.; Nishimura, R.A. Mitral Valve Regurgitation in the Contemporary Era. JACC Cardiovasc. Imaging 2018, 11, 628–643. [Google Scholar] [CrossRef] [PubMed]
- Donal, E.; Mascle, S.; Brunet, A.; Thebault, C.; Corbineau, H.; Laurent, M.; Leguerrier, A.; Mabo, P. Prediction of left ventricular ejection fraction 6 months after surgical correction of organic mitral regurgitation: The value of exercise echocardiography and deformation imaging. Eur. Heart J.—Cardiovasc. Imaging 2012, 13, 922–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, T.G.; Thomas, J.D.; Debonnaire, P.J.M.R.; Delgado, V.; Hoke, U.; Ewe, S.H.; Versteegh, M.I.M.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur. Heart J.—Cardiovasc. Imaging 2013, 14, 69–76. [Google Scholar] [CrossRef]
- Galli, E.; Lancellotti, P.; Sengupta, P.P.; Donal, E. LV mechanics in mitral and aortic valve diseases: Value of functional assessment beyond ejection fraction. JACC Cardiovasc. Imaging 2014, 7, 1151–1166. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.—Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; La Canna, G.; Pepi, M.; Dulgheru, R.; Dweck, M.; Delgado, V.; Garbi, M.; Vannan, M.A.; et al. Scientific Document Committee of the European Association of Cardiovascular Imaging. Multi-modality imaging assessment of native valvular regurgitation: An EACVI and ESC council of valvular heart disease position paper. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e171–e232. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T.; Foster, E.; Glower, D.D.; Kar, S.; Rinaldi, M.J.; Fail, P.S.; Smalling, R.W.; Siegel, R.; Rose, G.A.; Engerin, E.; et al. Percutaneous Repair or Surgery for Mitral Regurgitation. N. Engl. J. Med. 2011, 364, 1395–1406. [Google Scholar] [CrossRef] [Green Version]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Industry representatives; Reviewers: This document was reviewed by members of the 2016–2018 EACVI Scientific Documents Committee. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J.—Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef]
- Aalen, J.M.; Donal, E.; Larsen, C.K.; Duchenne, J.; Lederlin, M.; Cvijic, M.; Hubert, A.; Voros, G.; Leclercq, C.; Bogaert, J.; et al. Imaging predictors of response to cardiac resynchronization therapy: Left ventricular work asymmetry by echocardiography and septal viability by cardiac magnetic resonance. Eur. Heart J. 2020, 41, 3813–3823. [Google Scholar] [CrossRef]
- Sugimoto, T.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Akhaladze, N.; Athanassopoulos, G.D.; Barone, D.; et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 833–840. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Goebel, B.; Dahlslett, T.; Meyer, K.; Jung, C.; Lauten, A.; Figulla, H.R.; Poerner, T.C.; Edvardsen, T. Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. J. Am. Soc. Echocardiogr. 2012, 25, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Galli, E.; John-Matthwes, B.; Rousseau, C.; Schnell, F.; Leclercq, C.; Donal, E. Echocardiographic reference ranges for myocardial work in healthy subjects: A preliminary study. Echocardiography 2019, 36, 1814–1824. [Google Scholar] [CrossRef]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Ilardi, F.; Sugimoto, T.; Robinet, S.; Cimino, S.; Go, Y.Y.; Bernard, A.; Kacharava, G.; et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Gaasch, W.H.; Meyer, T.E. Left Ventricular Response to Mitral Regurgitation: Implications for Management. Circulation 2008, 118, 2298–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.J.; Biner, S.; Rafique, A.M.; Rinaldi, M.; Lim, S.; Fail, P.; Hermiller, J.; Smalling, R.; Whitlow, P.L.; Herrmann, H.C.; et al. The Acute Hemodynamic Effects of MitraClip Therapy. J. Am. Coll. Cardiol. 2011, 57, 1658–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerçek, M.; Faber, L.; Rudolph, V.; Fox, H.; Puehler, T.; Omran, H.; Wolf, L.K.; Paluszkiewicz, L.; Zeiher, A.M.; Hakim-Meibodi, K.; et al. Myocardial adaptation as assessed by speckle tracking echocardiography after isolated mitral valve surgery for primary mitral regurgitation. Int. J. Cardiovasc. Imaging. 2021, 37, 913–920. [Google Scholar] [CrossRef]
- Galli, E.; Leclercq, C.; Fournet, M.; Hubert, A.; Bernard, A.; Smiseth, O.A.; Mabo, P.; Samset, E.; Hernandez, A.; Donal, E. Value of Myocardial Work Estimation in the Prediction of Response to Cardiac Resynchronization Therapy. J. Am. Soc. Echocardiogr. 2018, 31, 220–230. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Gjesdal, O.; Edvardsen, T.; Smiseth, O.A. Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H996–H1003. [Google Scholar] [CrossRef]
- Constant Dit Beaufils, A.-L.; Huttin, O.; Jobbe-Duval, A.; Senage, T.; Filippetti, L.; Piriou, N.; Cueff, C.; Venner, C.; Mandry, D.; Sellal, J.-M.; et al. Replacement Myocardial Fibrosis in Patients With Mitral Valve Prolapse: Relation to Mitral Regurgitation, Ventricular Remodeling, and Arrhythmia. Circulation 2021, 143, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Kitkungvan, D.; Yang, E.Y.; El Tallawi, K.C.; Nagueh, S.F.; Nabi, F.; Khan, M.A.; Nguyen, D.T.; Graviss, E.A.; Lawrie, G.M.; Zoghbi, W.A.; et al. Extracellular Volume in Primary Mitral Regurgitation. JACC Cardiovasc. Imaging 2021, 14, 1146–1160. [Google Scholar] [CrossRef]
- Brouwer, H.J.; Den Heijer, M.C.; Paelinck, B.P.; Debonnaire, P.; Vanderheyden, M.; Van De Heyning, C.M.; De Bock, D.; Coussement, P.; Saad, G.; Ferdinande, B.; et al. Left ventricular remodelling patterns after MitraClip implantation in patients with severe mitral valve regurgitation: Mechanistic insights and prognostic implications. Eur. Heart J.—Cardiovasc. Imaging 2019, 20, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Cimino, S.; Maestrini, V.; Cantisani, D.; Petronilli, V.; Filomena, D.; Mancone, M.; Sardella, G.; Fedele, F.; Lancellotti, P.; Agati, L. 2D/3D echocardiographic determinants of left ventricular reverse remodelling after MitraClip implantation. Eur. Heart J.—Cardiovasc. Imaging 2019, 20, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.; Ikonomidis, I.; Chrissoheris, M.; Chalapas, A.; Kourkoveli, P.; Parissis, J.; Spargias, K. MitraClip and left ventricular reverse remodelling: A strain imaging study. ESC Heart Fail. 2020, 7, 1409–1418. [Google Scholar] [CrossRef]
- Hubert, A.; Galli, E.; Leurent, G.; Corbineau, H.; Auriane, B.; Guillaume, L.; Leclercq, C.; Donal, E. Left ventricular function after correction of mitral regurgitation: Impact of the clipping approach. Echocardiography 2019, 36, 2010–2018. [Google Scholar] [CrossRef]
- Şaylık, F.; Çınar, T.; Akbulut, T.; Hayıroğlu, M.İ. Comparison of catheter ablation and medical therapy for atrial fibrillation in heart failure patients: A meta-analysis of randomized controlled trials. Heart Lung 2023, 57, 69–74. [Google Scholar] [CrossRef]
- Hubert, A.; Le Rolle, V.; Leclercq, C.; Galli, E.; Samset, E.; Casset, C.; Mabo, P.; Hernandez, A.; Donal, E. Estimation of myocardial work from pressure-strain loops analysis: An experimental evaluation. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
N = 71 | |
---|---|
Age, years | 77 ± 9 |
Females, n (%) | 31 (44%) |
NYHA | 2.7 ± 0.7 |
Arterial hypertension, n (%) | 41 (58) |
Diabetes, n (%) | 5 (7) |
Dyslipidemia, n (%) | 33 (47) |
Ischemic heart disease, n (%) | 23 (32) |
Chronic kidney failure, n (%) | 18 (25) |
Atrial fibrillation, n (%) | 35 (49) |
ACE-I/ARA-2, n (%) | 33 (47) |
Beta-blockers, n (%) | 50 (70) |
MRA, n (%) | 11 (16) |
Sacubitril/valsartan, n (%) | 5 (7) |
Diuretics, n (%) | 62 (87) |
Effective regurgitant orifice, cm2 | 0.57 ± 0.31 |
Regurgitant volume, mL | 80 ± 34 |
LV end-diastolic diameter, mm | 56 ± 9 |
LV end-systolic diameter, mm | 42 ± 12 |
LVEF, % | 60 ± 11 |
LVEF ≥ 60% | 42 (59) |
Baseline | GWI | GCW | GWW | GWE | ||||
r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
LVEDVi | −0.11 | 0.35 | −0.16 | 0.18 | −0.03 | 0.79 | −0.15 | 0.22 |
LVESVi | −0.40 | 0.001 | −0.40 | 0.001 | 0.12 | 0.32 | −0.45 | <0.001 |
GLS | 0.83 | <0.001 | 0.74 | <0.001 | −0.35 | 0.004 | 0.67 | <0.001 |
ERO | −0.14 | 0.25 | −0.21 | 0.09 | −0.19 | 0.14 | 0.03 | 0.81 |
RV | 0.06 | 0.63 | 0.04 | 0.76 | −0.15 | 0.25 | 0.07 | 0.57 |
RF | 0.03 | 0.80 | −0.15 | 0.23 | −0.39 | 0.002 | 0.13 | 0.29 |
SVtot | 0.25 | 0.04 | 0.28 | 0.02 | 0.05 | 0.72 | 0.07 | 0.61 |
SBP | 0.44 | <0.001 | 0.56 | <0.001 | 0.34 | 0.005 | −0.03 | 0.78 |
DBP | 0.08 | 0.47 | 0.009 | 0.94 | 0.29 | 0.02 | −0.26 | 0.03 |
GCW | 0.92 | <0.001 | - | - | −0.02 | 0.89 | 0.50 | <0.001 |
GWW | −0.23 | 0.05 | −0.02 | 0.89 | - | - | −0.73 | <0.001 |
GWE | 0.62 | <0.001 | 0.50 | <0.001 | −0.73 | <0.001 | - | - |
MD | −0.17 | 0.16 | −0.10 | 0.41 | 0.37 | 0.02 | −0.52 | <0.001 |
Discharge | GWI | GCW | GWW | GWE | ||||
r | p-Value | r | p-Value | p-Value | p-Value | |||
LVEDVi | −0.22 | 0.08 | −0.26 | 0.04 | −0.08 | 0.52 | −0.03 | 0.79 |
LVESVi | −0.51 | <0.001 | −0.53 | <0.001 | 0.1 | 0.42 | −0.33 | 0.006 |
GLS | 0.83 | <0.001 | 0.78 | <0.001 | −0.46 | <0.0001 | 0.64 | <0.001 |
SBP | 0.50 | <0.001 | 0.63 | <0.001 | 0.22 | 0.06 | 0.15 | 0.22 |
DBP | 0.17 | 0.17 | 0.22 | 0.08 | 0.08 | 0.54 | −0.01 | 0.91 |
GCW | 0.94 | <0.001 | - | - | −0.12 | 0.34 | 0.51 | <0.001 |
GWW | −0.36 | 0.002 | 0.12 | 0.34 | - | - | −0.61 | <0.001 |
GWE | 0.65 | <0.001 | 0.51 | <0.001 | −0.61 | <0.001 | - | - |
MD | −0.32 | 0.005 | −0.20 | 0.11 | 0.64 | <0.001 | −0.39 | 0.001 |
1-Year FU | GWI | GCW | GWW | GWE | ||||
r | p-Value | r | p-Value | p-Value | p-Value | |||
LVEDVi | −0.07 | 0.59 | −0.15 | 0.27 | −0.11 | 0.41 | 0.006 | 0.97 |
LVESVi | −0.24 | 0.05 | −0.31 | 0.02 | −0.09 | 0.51 | 0.07 | 0.61 |
GLS | 0.72 | <0.001 | 0.70 | <0.001 | −0.29 | 0.03 | 0.52 | <0.001 |
SBP | 0.26 | 0.04 | 0.25 | 0.05 | 0.14 | 0.32 | 0.02 | 0.91 |
DBP | 0.26 | 0.05 | 0.27 | 0.04 | 0.12 | 0.37 | 0.01 | 0.92 |
GCW | 0.95 | <0.001 | - | - | −0.09 | 0.48 | 0.49 | <0.001 |
GWW | −0.28 | 0.03 | −0.09 | 0.48 | - | - | −0.86 | <0.001 |
GWE | 0.63 | <0.001 | 0.49 | <0.001 | −0.86 | <0.001 | - | - |
MD | −0.26 | 0.05 | −0.19 | 0.16 | 0.48 | <0.001 | −0.53 | <0.001 |
Baseline | Hospital Discharge | 1-Year FU | |
---|---|---|---|
LVEF, % | 62 (54–66) | 43 (35–61) * | 56 (50–63) *,** |
GLS, % | 16 ± 5 | 12 ± 5 * | 15 ± 4 ** |
LVEDVi, mL/m2 | 73 ± 24 | 70 ± 22 | 64 ± 22 *,** |
LVESVi, mL/m2 | 27 (21–35) | 36 (25–44) * | 26 (19–36) ** |
SV, mL | 53 (42–64) | 60 (46–83) * | 59 (40–69) * |
LAVi, mL/m2 | 73 (55–87) | 74 (54–85) | 67 (55–89) |
E/e’ | 13 ± 4 | 16 ± 7 | 15 ± 11 |
PAPs, mmHg | 54 ± 12 | 44 ± 12 * | 44 ± 19 * |
TAPSE, mm | 20 ± 5 | 20 ± 5 | 20 ± 4 |
SBP, mmHg | 119 (103–136) | 118 (104–132) | 124 (111–137) *,** |
DBP, mmHg | 77 ± 11 | 66 ± 16 * | 75 ± 11 ** |
GWI, mmHg% | 1677 ± 551 | 1308 ± 524 * | 1707 ± 527 ** |
GCW, mmHg% | 1985 ± 562 | 1696 ± 567 * | 2112 ± 555 *,** |
GWW, mmHg% | 150 (93–185) | 208 (148–312) * | 202 (116–267) * |
GWE, mmHg% | 91 (88–94) | 87 (80–92) * | 90 (86–93) ** |
MD, msec | 57 (49–71) | 72 (58–93) * | 59 (52–72) ** |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
β | p-Value | β | p-Value | |
LVEDVi, mL/m2 | −0.23 | 0.09 | ||
LVESVi, mL/m2 | −0.06 | 0.65 | ||
LVEDV, mm | 0.18 | 0.19 | ||
LVESV, mm | 0.05 | 0.72 | ||
LVEF, % | −0.20 | 0.14 | ||
GLS, % | −0.15 | 0.25 | ||
LAVi, mL/m2 | −0.26 | 0.05 | −0.24 | 0.07 |
E/e’ | 0.10 | 0.58 | ||
ERO, cm2 | −0.19 | 0.17 | ||
RV, mL | −0.23 | 0.09 | ||
GWI, mmHg% | −0.09 | 0.48 | ||
GCW, mmHg% | −0.04 | 0.76 | ||
GWW, mmHg% | 0.31 | 0.02 | 0.29 | 0.03 |
GWE, mmHg% | −0.19 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, E.; Hubert, P.; Leurent, G.; Auffret, V.; Panis, V.; L’Official, G.; Donal, E. Acute and Chronic Changes in Myocardial Work Parameters in Patients with Severe Primary Mitral Regurgitation Undergoing Transcatheter Edge-to-Edge Repair. J. Cardiovasc. Dev. Dis. 2023, 10, 100. https://doi.org/10.3390/jcdd10030100
Galli E, Hubert P, Leurent G, Auffret V, Panis V, L’Official G, Donal E. Acute and Chronic Changes in Myocardial Work Parameters in Patients with Severe Primary Mitral Regurgitation Undergoing Transcatheter Edge-to-Edge Repair. Journal of Cardiovascular Development and Disease. 2023; 10(3):100. https://doi.org/10.3390/jcdd10030100
Chicago/Turabian StyleGalli, Elena, Pierre Hubert, Guillaume Leurent, Vincent Auffret, Vasileios Panis, Guillaume L’Official, and Erwan Donal. 2023. "Acute and Chronic Changes in Myocardial Work Parameters in Patients with Severe Primary Mitral Regurgitation Undergoing Transcatheter Edge-to-Edge Repair" Journal of Cardiovascular Development and Disease 10, no. 3: 100. https://doi.org/10.3390/jcdd10030100
APA StyleGalli, E., Hubert, P., Leurent, G., Auffret, V., Panis, V., L’Official, G., & Donal, E. (2023). Acute and Chronic Changes in Myocardial Work Parameters in Patients with Severe Primary Mitral Regurgitation Undergoing Transcatheter Edge-to-Edge Repair. Journal of Cardiovascular Development and Disease, 10(3), 100. https://doi.org/10.3390/jcdd10030100