Genetic Basis of Early Onset Atrial Fibrillation in Patients without Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genetic Analysis
3. Results
3.1. Patient Analysis of the Latvian Study Population
3.2. UK Biobank Data Analysis
3.3. Imaging in Monogenic AF Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, F.; Kwan, G.F.; Benjamin, E.J. Global epidemiology of atrial fibrillation. Nat. Rev. Cardiol. 2014, 11, 639–654. [Google Scholar] [CrossRef]
- Anumonwo, J.M.B.; Kalifa, J. Risk Factors and Genetics of Atrial Fibrillation. Cardiol. Clin. 2014, 32, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, M.; Oldgren, J.; Conen, D.; Wong, J.A.; Connolly, S.J.; Avezum, A.; Yusuf, S.; Ezekowitz, M.D.; Wallentin, L.; Ntep-Gweth, M.; et al. Characteristics and outcomes of atrial fibrillation in patients without traditional risk factors: An RE-LY AF registry analysis. EP Eur. 2020, 22, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Wyse, D.G.; Van Gelder, I.C.; Ellinor, P.T.; Go, A.S.; Kalman, J.M.; Narayan, S.M.; Nattel, S.; Schotten, U.; Rienstra, M. Lone atrial fibrillation: Does it exist? J. Am. Coll. Cardiol. 2014, 63, 1715–1723. [Google Scholar] [CrossRef] [Green Version]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.H.; Jurgens, S.J.; Weng, L.C.; Pirruccello, J.P.; Roselli, C.; Chaffin, M.; Lee, C.J.; Hall, A.W.; Khera, A.V.; Lunetta, K.L.; et al. Monogenic and Polygenic Contributions to Atrial Fibrillation Risk: Results from a National Biobank. Circ. Res. 2020, 126, 200–209. [Google Scholar] [CrossRef]
- Vad, O.B.; Paludan-Müller, C.; Ahlberg, G.; Kalstø, S.M.; Ghouse, J.; Andreasen, L.; Haunsø, S.; Tveit, A.; Sajadieh, A.; Christophersen, I.E.; et al. Loss-of-Function Variants in Cytoskeletal Genes Are Associated with Early-Onset Atrial Fibrillation. J. Clin. Med. 2020, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Lu-Chen, W.; Roselli, C.; Lin, H.; Haggerty, C.M.; Shoemaker, M.B.; Barnard, J.; Arking, D.E.; Chasman, D.I.; Albert, C.M.; et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA 2018, 320, 2354–2364. [Google Scholar] [CrossRef]
- Ahlberg, G.; Refsgaard, L.; Lundegaard, P.R.; Andreasen, L.; Ranthe, M.F.; Linscheid, N.; Nielsen, J.B.; Melbye, M.; Haunsø, S.; Sajadieh, A.; et al. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat. Commun. 2018, 9, 4316. [Google Scholar] [CrossRef] [Green Version]
- Goodyer, W.R.; Dunn, K.; Caleshu, C.; Jackson, M.; Wylie, J.; Moscarello, T.; Platt, J.; Reuter, C.; Smith, A.; Trela, A.; et al. Broad Genetic Testing in a Clinical Setting Uncovers a High Prevalence of Titin Loss-of-Function Variants in Very Early Onset Atrial Fibrillation. Circ. Genom. Precis. Med. 2019, 12, e002713. [Google Scholar] [CrossRef] [PubMed]
- Crotti, L.; Odening, K.E.; Sanguinetti, M.C. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc. Res. 2020, 116, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, A.N.; Agre, K.E.; Pereira, N.L. Genetics of dilated cardiomyopathy: Practical implications for heart failure management. Nat. Rev. Cardiol. 2020, 17, 286–297. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UK Biobank-UK Biobank. Available online: https://www.ukbiobank.ac.uk/ (accessed on 19 October 2022).
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef] [Green Version]
- Poplin, R.; Chang, P.C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef]
- Kim, S.; Scheffler, K.; Halpern, A.L.; Bekritsky, M.A.; Noh, E.; Källberg, M.; Chen, X.; Kim, Y.; Beyter, D.; Krusche, P.; et al. Strelka2: Fast and accurate calling of germline and somatic variants. Nat. Methods 2018, 15, 591–594. [Google Scholar] [CrossRef]
- Plagnol, V.; Curtis, J.; Epstein, M.; Mok, K.Y.; Stebbings, E.; Grigoriadou, S.; Wood, N.W.; Hambleton, S.; Burns, S.O.; Thrasher, A.J.; et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 2012, 28, 2747–2754. [Google Scholar] [CrossRef] [Green Version]
- Sadedin, S.P.; Ellis, J.A.; Masters, S.L.; Oshlack, A. Ximmer: A system for improving accuracy and consistency of CNV calling from exome data. GigaScience 2018, 7, giy112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titin Variation in Dilated Cardiomyopathy—Cardiovascular Genetics & Genomics, Imperial College London. Available online: https://www.cardiodb.org/titin/titin_transcripts.php (accessed on 19 October 2022).
- Parnell, L.D.; Lindenbaum, P.; Shameer, K.; Dall’Olio, G.M.; Swan, D.C.; Jensen, L.J.; Cockell, S.J.; Pedersen, B.S.; Mangan, M.E.; Miller, C.A.; et al. BioStar: An online question & answer resource for the bioinformatics community. PLoS Comput. Biol. 2011, 7, e1002216. [Google Scholar]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Captur, G.; Arbustini, E.; Bonne, G.; Syrris, P.; Mills, K.; Wahbi, K.; Mohiddin, S.A.; McKenna, W.J.; Pettit, S.; Ho, C.Y.; et al. Lamin and the heart. Heart 2018, 104, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Gigli, M.; Begay, R.L.; Morea, G.; Graw, S.L.; Sinagra, G.; Taylor, M.R.; Granzier, H.; Mestroni, L. A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Front. Cardiovasc. Med. 2016, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelemen, J.; Gotthardt, M.; Steinmetz, L.M.; Meder, B. RBM20-Related Cardiomyopathy: Current Understanding and Future Options. J. Clin. Med. 2021, 10, 4101. [Google Scholar] [CrossRef]
- Lin, H.; Koren, S.A.; Cvetojevic, G.; Girardi, P.; Johnson, G.V.W. The role of BAG3 in health and disease: A “Magic BAG of Tricks”. J. Cell. Biochem. 2022, 123, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Rajakumar, G. Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes 2016, 7, 6. [Google Scholar] [CrossRef]
- Yoneda, Z.T.; Anderson, K.C.; Quintana, J.A.; O’Neill, M.J.; Sims, R.A.; Glazer, A.M.; Shaffer, C.M.; Crawford, D.M.; Stricker, T.; Ye, F.; et al. Early-Onset Atrial Fibrillation and the Prevalence of Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiol. 2021, 6, 1371–1379. [Google Scholar] [CrossRef]
- Jordan, E.; Peterson, L.; Ai, T.; Asatryan, B.; Bronicki, L.; Brown, E.; Celeghin, R.; Edwards, M.; Fan, J.; Ingles, J.; et al. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation 2021, 144, 7–19. [Google Scholar] [CrossRef]
- van Waning, J.I.; Caliskan, K.; Hoedemaekers, Y.M.; van Spaendonck-Zwarts, K.Y.; Baas, A.F.; Boekholdt, S.M.; van Melle, J.P.; Teske, A.J.; Asselbergs, F.W.; Backx, A.P.; et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 71, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Peled, Y.; Gramlich, M.; Yoskovitz, G.; Feinberg, M.S.; Afek, A.; Polak-Charcon, S.; Pras, E.; Sela, B.A.; Konen, E.; Weissbrod, O.; et al. Titin mutation in familial restrictive cardiomyopathy. Int. J. Cardiol. 2014, 171, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Chalazan, B.; Mol, D.; Darbar, F.A.; Ornelas-Loredo, A.; Al-Azzam, B.; Chen, Y.; Chen, Y.; Tofovic, D.; Sridhar, A.; Alzahrani, Z.; et al. Association of Rare Genetic Variants and Early-Onset Atrial Fibrillation in Ethnic Minority Individuals. JAMA Cardiol. 2021, 6, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Lazarte, J.; Laksman, Z.W.; Wang, J.; Robinson, J.F.; Dron, J.S.; Leach, E.; Liew, J.; McIntyre, A.D.; Skanes, A.C.; Gula, L.J.; et al. Enrichment of loss-of-function and copy number variants in ventricular cardiomyopathy genes in ‘lone’ atrial fibrillation. EP Eur. 2021, 23, 844–850. [Google Scholar] [CrossRef]
- Nelis, M.; Esko, T.; Mägi, R.; Zimprich, F.; Zimprich, A.; Toncheva, D.; Karachanak, S.; Piskáčková, T.; Balaščák, I.; Peltonen, L.; et al. Genetic structure of Europeans: A view from the North-East. PLoS ONE 2009, 4, e5472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoorntje, E.T.; van Spaendonck-Zwarts, K.Y.; te Rijdt, W.P.; Boven, L.; Vink, A.; van der Smagt, J.J.; Asselbergs, F.W.; van Wijngaarden, J.; Hennekam, E.A.; Pinto, Y.M.; et al. The first titin (c.59926 + 1G > A) founder mutation associated with dilated cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 803–806. [Google Scholar] [CrossRef]
- Andreasen, L.; Bertelsen, L.; Ghouse, J.; Lundegaard, P.R.; Ahlberg, G.; Refsgaard, L.; Rasmussen, T.B.; Eiskjær, H.; Haunsø, S.; Vejlstrup, N.; et al. Early-onset atrial fibrillation patients show reduced left ventricular ejection fraction and increased atrial fibrosis. Sci Rep. 2020, 10, 10039. [Google Scholar] [CrossRef]
- Haggerty, C.M.; Damrauer, S.M.; Levin, M.G.; Birtwell, D.; Carey, D.J.; Golden, A.M.; Hartzel, D.N.; Hu, Y.; Judy, R.; Kelly, M.A.; et al. Genomics-First Evaluation of Heart Disease Associated with Titin-Truncating Variants. Circulation 2019, 140, 42–54. [Google Scholar] [CrossRef]
- Yoneda, Z.T.; Anderson, K.C.; Ye, F.; Quintana, J.A.; O’Neill, M.J.; Sims, R.A.; Sun, L.; Glazer, A.M.; Davogustto, G.; El-Harasis, M.; et al. Mortality Among Patients with Early-Onset Atrial Fibrillation and Rare Variants in Cardiomyopathy and Arrhythmia Genes. JAMA Cardiol. 2022, 7, 733–741. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Semsarian, C.; Márquez, M.F.; Sepehri Shamloo, A.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. EP Eur. 2022, 24, 1307–1367. [Google Scholar]
No. | Sex | Age at Examination | AaO † | Family History of AF | P/LP Variant Identified in This Study | Imaging Follow-Up ‡ | Time to Follow-Up ∇, Months |
---|---|---|---|---|---|---|---|
1. | Male | 63 | 60 | No | No | NA | NA |
2. | Male | 32 | 27 | No | No | NA | NA |
3. | Male | 55 | 53 | Mother | LMNA NM_170707.4 c.976T>A p.(Ser326Thr) | Left ventricular dilation | 39 |
4. | Male | 46 | 46 | No | No | NA | NA |
5. | Male | 48 | 48 | No | No | NA | NA |
6. | Male | 56 | 48 | No | No | NA | NA |
7. | Male | 49 | 44 | No | No | NA | NA |
8. | Female | 53 | 45 | No | TTN NM_001267550.2 c.13696C>T p.(Gln4566Ter) | Biventricular dilation | 23 |
9. | Male | 62 | 61 | No | No | NA | NA |
10. | Male | 43 | 37 | No | TTN NM_001267550.2 c.13696C>T p.(Gln4566Ter) | Biventricular dilation | 35 |
11. | Male | 32 | 30 | No | TTN NM_001267550.2 c.13696C>T p.(Gln4566Ter) | No structural or morphological abnormalities | 5 |
12. | Male | 43 | 43 | Mother | No | NA | NA |
13. | Male | 28 | 18 | Father, paternal grandmother, maternal grandmother | TTN NM_001267550.2: c.13696C>T p.(Gln4566Ter) | Left ventricular dilation | 10 |
14. | Male | 44 | 39 | Brother | No | NA | NA |
15. | Male | 55 | 39 | Mother and maternal grandmother | TTN NM_001267550.2: c.13696C>T p.(Gln4566Ter) | Biventricular and biatrial dilation | 12 |
16. | Female | 57 | 55 | Mother | TTN NM_001267550.2: c.85223C>Gp.(Ser28408Ter) | No structural or morphological abnormalities | 51 |
17. | Female | 65 | 58 | No | TTN NM_001267550.2: c.82240C>T p.(Arg27414Ter) | No structural or morphological abnormalities | 15 |
18. | Female | 53 | 52 | Mother | TTN NM_001267550.2: c.3034C>T p.(Arg1012Ter) | No structural or morphological abnormalities | 10 |
19. | Male | 50 | 41 | Son | TTN NM_001267550.2: c.95561G>A p.(Trp31854Ter) | No structural or morphological abnormalities | 12 |
20. | Female | 58 | 56 | No | No | NA | NA |
21. | Male | 44 | 41 | Mother | No | NA | NA |
22. | Male | 56 | 55 | No | No | NA | NA |
23. | Male | 47 | 44 | Mother | No | NA | NA |
24. | Male | 55 | 55 | Father | No | NA | NA |
25. | Male | 48 | 45 | No | No | NA | NA |
26. | Male | 65 | 64 | No | No | NA | NA |
27. | Male | 65 | 64 | No | No | NA | NA |
28. | Female | 64 | 64 | No | No | NA | NA |
29. | Male | 61 | 61 | Brother | No | NA | NA |
30. | Male | 32 | 30 | Father | No | NA | NA |
31. | Male | 38 | 35 | No | No | NA | NA |
32. | Male | 49 | 35 | Mother and maternal grandmother | No | NA | NA |
33. | Male | 49 | 37 | Mother | No | NA | NA |
34. | Male | 46 | 46 | Mother | No | NA | NA |
35. | Female | 52 | 43 | Father | No | NA | NA |
36. | Male | 46 | 45 | No | No | NA | NA |
37. | Male | 50 | 48 | No | No | NA | NA |
38. | Male | 35 | 31 | No | No | NA | NA |
39. | Female | 47 | 41 | Mother | No | NA | NA |
40. | Male | 40 | 39 | Maternal mother | No | NA | NA |
41. | Male | 28 | 25 | No | RBM20 NM_001134363.3: c.1898C>T p.(Pro633Leu) | No structural or morphological abnormalities | 6 |
42. | Male | 31 | 21 | Sister | BAG3 NM_004281.4: c.870dupC p.(Ser291LeufsTer28) | Increased T1 mapping intensity of S8 and S9 segments of septal wall | 4 |
43. | Female | 48 | 43 | No | NKX2-5 NM_004387.4: c.325G>T p.(Glu109Ter) | No structural or morphological abnormalities | 8 |
44. | Male | 45 | 42 | No | No | NA | NA |
45. | Male | 32 | 31 | No | No | NA | NA |
46. | Male | 34 | 33 | No | No | NA | NA |
47. | Male | 48 | 47 | No | No | NA | NA |
48. | Male | 61 | 60 | No | No | NA | NA |
49. | Male | 26 | 14 | Father | No | NA | NA |
50. | Male | 24 | 23 | No | No | NA | NA |
51. | Female | 49 | 47 | No | No | NA | NA |
52. | Male | 37 | 37 | No | No | NA | NA |
53. | Male | 39 | 29 | No | No | NA | NA |
54. | Male | 50 | 41 | No | No | NA | NA |
No. | Variant | Sex | Age at AF Onset |
---|---|---|---|
1. | TNNT2 NM_001276345.2: c.838G>A p.(Asp280Asn) | Female | 45 |
2. | TTN NM_001267550.2: c.72223_72224insG p.(Lys24075ArgfsTer12) | Male | 62 |
3. | GATA5 NM_001276345.2: c.781G>A p.(Glu261Lys) | Female | 58 |
4. | TNNI3 NM_000363.5: c.454G>A p.(Asp152Asn) | Female | 62 |
5. | ACTN2 NM_001103.4: c.2368-2A>G p.? | Male | 58 |
6. | TTN NM_001267550.2: c.37543+1G>A p.? | Male | 62 |
7. | PKP2 NM_001005242.3: c.1177C>T p.(Gln393Ter) | Male | 52 |
8. | MYH7 NM_000257.4: c.427C>T p.(Arg143Trp) | Female | 60 |
9. | MYBPC3 NM_000256.3: c.1484G>A p.(Arg495Gln) | Female | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudaka, I.; Vilne, B.; Isakova, J.; Kalejs, O.; Gailite, L.; Rots, D. Genetic Basis of Early Onset Atrial Fibrillation in Patients without Risk Factors. J. Cardiovasc. Dev. Dis. 2023, 10, 104. https://doi.org/10.3390/jcdd10030104
Rudaka I, Vilne B, Isakova J, Kalejs O, Gailite L, Rots D. Genetic Basis of Early Onset Atrial Fibrillation in Patients without Risk Factors. Journal of Cardiovascular Development and Disease. 2023; 10(3):104. https://doi.org/10.3390/jcdd10030104
Chicago/Turabian StyleRudaka, Irina, Baiba Vilne, Jekaterina Isakova, Oskars Kalejs, Linda Gailite, and Dmitrijs Rots. 2023. "Genetic Basis of Early Onset Atrial Fibrillation in Patients without Risk Factors" Journal of Cardiovascular Development and Disease 10, no. 3: 104. https://doi.org/10.3390/jcdd10030104
APA StyleRudaka, I., Vilne, B., Isakova, J., Kalejs, O., Gailite, L., & Rots, D. (2023). Genetic Basis of Early Onset Atrial Fibrillation in Patients without Risk Factors. Journal of Cardiovascular Development and Disease, 10(3), 104. https://doi.org/10.3390/jcdd10030104