Minimal Access Tricuspid Valve Surgery
Abstract
:1. Introduction
2. Preoperative Planning
3. Intraoperative Procedure
3.1. Anesthetic Consideration
3.2. Surgical Technique
4. Postoperative Course
5. Outcomes of MATVS
Potential Additional Benefits of MATVS
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef]
- Topilsky, Y.; Maltais, S.; Medina-Inojosa, J.; Oguz, D.; Michelena, H.; Maalouf, J.; Mahoney, D.W.; Enriquez-Sarano, M. Burden of Tricuspid Regurgitation in Patients Diagnosed in the Community Setting. JACC Cardiovasc. Imaging 2019, 12, 433–442. [Google Scholar] [CrossRef]
- Chorin, E.; Rozenbaum, Z.; Topilsky, Y.; Konigstein, M.; Ziv-Balran, T.; Richert, E.; Keren, G.; Banai, S. Tricuspid regurgitation and long-term clinical outcomes. Eur. Heart J. -Cardiovasc. Imaging 2020, 21, 157–165. [Google Scholar] [CrossRef]
- Axtell, A.L.; Bhambhani, V.; Moonsamy, P.; Het aly, E.W.; Picard, M.H.; Sundt, T.M.; Wasfy, J.H. Surgery Does Not Improve Survival in Patients with Isolated Severe Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2019, 74, 715–725. [Google Scholar] [CrossRef]
- Tagliari, A.P.; Perez-Camargo, D.; Taramasso, M. Tricuspid regurgitation: When is it time for surgery? Expert Rev. Cardiovasc. Ther. 2021, 19, 47–59. [Google Scholar] [CrossRef]
- Kilic, A.; Saha-Chaudhuri, P.; Rankin, J.S.; Contet, J.V. Trends and outcomes of tricuspid valve surgery in North America: An analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann. Thorac. Surg. 2013, 96, 1546–1552, discussion 1552. [Google Scholar] [CrossRef]
- Dreyfus, J.; Audureau, E.; Bohbot, Y.; Coisne, A.; Lavie-Badie, Y.; Bouchery, M.; Flagiello, M.; Bazire, B.; Eggenspieler, F.; Viau, F.; et al. TRI-SCORE: A new risk score for in-hospital mortality prediction after isolated tricuspid valve surgery. Eur. Heart J. 2021, 43, 654–662. [Google Scholar] [CrossRef]
- Hamandi, M.; George, T.J.; Smith, R.L.; Malck, M.J. Current outcomes of tricuspid valve surgery. Prog. Cardiovasc. Dis. 2019, 62, 463–466. [Google Scholar] [CrossRef]
- Dreyfus, G.D.; Corbi, P.J.; Chan, K.M.J.; Bahrami, T. Secondary tricuspid regurgitation or dilatation: Which should be the criteria for surgical repair? Ann. Thorac. Surg. 2005, 79, 127–132. [Google Scholar] [CrossRef]
- Abdelbar, A.; Kenawy, A.; Zacharias, J. Minimally invasive tricuspid valve surgery. J. Thorac. Dis. 2020, 13, 1982–1992. [Google Scholar] [CrossRef]
- Ramchandani, M.; Al Jabbari, O.; Abu Saleh, W.K.; Ramlawi, B. Cannulation Strategies and Pitfalls in Minimally Invasive Cardiac Surgery. Methodist Debakey Cardiovasc. J. 2016, 12, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Lamelas, J. Minimal access tricuspid valve surgery. Ann. Cardiothorac. Surg. 2017, 6, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Abdelbar, A.; Niranjan, G.; Tetnnyson, C.; Saravanan, P.; Knowles, A.; Laskawski, G.; Zacharias, J. Endoscopic Tricuspid Valve Surgery is a Safe and Effective Option. Innovations 2020, 15, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, V.; Giroletti, L.; Graniero, A.; Albano, G.; Mazzoni, M.; Panisi, P.G.; Gerometta, P.; Anselmi, A.; Agnino, A. Comparative myocardial protection of endoaortic balloon versus external clamp in minimally invasive mitral valve surgery. J. Cardiovasc. Med. 2022, 24, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Lebon, J.-S.; Couture, P.; Rochon, A.G.; Laliberté, É.; Harvey, J.; Aubé, N.; Cossette, M.; Bouchard, D.; Jeanmart, H.; Pellerin, M. The endovascular coronary sinus catheter in minimally invasive mitral and tricuspid valve surgery: A case series. J. Cardiothorac. Vasc. Anesth. 2010, 24, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Misfeld, M.; Daviet rwala, P.; Banusch, J.; Ender, J.; Mohr, F.-W.; Pfannmüller, B. Minimally invasive, beating heart tricuspid valve surgery in a redo case. Ann. Cardiothorac. Surg. 2017, 6, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Robin, J.; Tronc, F.; Vetdrinne, C.; Chalmpsaur, G. Video-assisted tricuspid valve surgery: A new surgical option in endocarditis on pacemaker. Eur. J. Cardiothorac. Surg. 1999, 16, 243–245. [Google Scholar] [CrossRef] [Green Version]
- White, A.; Patvardhan, C.; Falter, F. Anesthesia for minimally invasive cardiac surgery. J. Thorac. Dis. 2021, 13, 1886–1898. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, J.; Li, M.; Jiang, W.; Pan, Y.; Song, Z.; Shi, C.; Fan, W.; Pan, Z. Bronchial blocker versus double-lumen endobronchial tube in minimally invasive cardiac surgery. BMC Pulm. Med. 2019, 19, 207. [Google Scholar] [CrossRef]
- Poffo, R.; Montanhesi, P.K.; Toschi, A.P.; Pope, R.B.; Mokross, C.A. Periareolar Access for Minimally Invasive Cardiac Surgery: The Brazilian Technique. Innovations 2018, 13, 65–69. [Google Scholar] [CrossRef]
- Van Praet, K.M.; Kofletr, M.; Akansel, S.; Montagner, M.; Meyer, A.; Sündermann, S.H.; Falk, V.; Kempfert, J. Periareolar endoscopic minimally invasive cardiac surgery: Postoperative scar assessment analysis. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac200. [Google Scholar] [CrossRef] [PubMed]
- Durdu, M.S.; Baran, C.; Gümüş, F.; Deniz, G.; Çakıcı, M.; Özçınar, E.; Bermede, A.O.; Uçanok, K.; Akar, A.R. Comparison of minimally invasive cardiac surgery incisions: Periareolar approach in female patients. Anatol. J. Cardiol. 2018, 20, 283–288. [Google Scholar] [PubMed] [Green Version]
- Castillo-Sang, M.; Konys, J.; Burkhard, B.; Voetller, R. First Dedicated Minimally Invasive Right Atrial Retractor. Surg. Technol. Int. 2022, 41, sti41-1584. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.L.; Hill, A.; Horswill, M.S.; Grove, P.M.; Stevenson, A.R.L. Laparoscopic skills training: The effects of viewing mode (2D vs. 3D) on skill acquisition and transfer. Surg. Endosc. 2021, 35, 4332–4344. [Google Scholar] [CrossRef] [PubMed]
- Amabile, A.; LaLonde, M.R.; Mullan, C.W.; Hameed, I.; Degife, E.; Krane, M.; Geirsson, A.; Agrawal, A. Totally endoscopic, robotic-assisted tricuspid valve repair with neochords. Multimed. Man. Cardiothorac. Surg. 2022, 2022. [Google Scholar]
- Kandakure, P.R.; Batra, M.; Garre, S.; Banovath, S.N.; Shalikh, F.; Pani, K. Direct Cannulation in Minimally Invasive Cardiac Surgery with Limited Resources. Ann. Thorac. Surg. 2020, 109, 512–516. [Google Scholar] [CrossRef]
- Peng, R.; Shi, H.; Ba, J.; Wang, C.S. Single Femoral Venous Drainage Versus Both Vena Cava Drainage in Isolated Repeat Tricuspid Valve Surgery. Int. Heart J. 2018, 59, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Ma, aL.; Li, C.; Ni, Y. Optimizing Venous Drainage for Minimal Access Right Atrial Procedures. Ann. Thorac. Surg. 2019, 108, e337–e338. [Google Scholar] [CrossRef]
- Pfannmuüller, B.; Misfeld, M.; Borger, M.A.; Etz, C.D.; Funkat, A.-K.; Garbade, J.; Mohr, F.W. Isolated reoperative minimally invasive tricuspid valve operations. Ann. Thorac. Surg. 2012, 94, 2005–2010. [Google Scholar] [CrossRef]
- Yamani, N.E.; Lebon, J.-S.; Laliberté, E.; Couture, P.; Desjardins, G.; Coddens, J.; Bouchard, D. Endovascular Vena Cavae Occlusion Technique in Minimally Invasive Tricuspid Valve Surgery in Patients with Previous Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1334–1340. [Google Scholar] [CrossRef]
- Margari, V.; Malvindi, P.G.; De Santis, A.; Kounakis, G.; Visicchio, G.; Ccp, G.M.; Dambruoso, P.; Carbone, C.; Paparella, D. Minimally invasive tricuspid valve surgery without caval occlusion: Short and midterm results. J. Card. Surg. 2021, 36, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Bonaros, N.; Höfetr, aD.; Holfeld, J.; Grimm, M.; Müller, L. Cannulation of the Carotid Artery for Minimally Invasive Mitral or Tricuspid Valve Surgery. Ann. Thorac. Surg. 2020, 110, e517–e519. [Google Scholar] [CrossRef] [PubMed]
- der Merwe, J.V.; Casselman, F.; Van Praet, F. The principles of minimally invasive atrioventricular valve repair surgery utilizing endoaortic balloon occlusion technology: How to start and sustain a safe and effective program. J. Vis. Surg. 2019, 5, 72. [Google Scholar] [CrossRef]
- Lu, S.; eSong, K.; Yao, W.; Xia, L.; Dong, L.; Sun, Y.; Hong, T.; Yalng, S.; Wang, C. Simplified, minimally invasive, beating-heart technique for redo isolated tricuspid valve surgery. J. Cardiothorac. Surg. 2020, 15, 146. [Google Scholar] [CrossRef]
- Jenkin, I.; Prachete, I.; Sokal, P.A.; Harky, A. The role of Cor-Knot in the future of cardiac surgery: A systematic review. J. Card. Surg. 2020, 35, 2987–2994. [Google Scholar] [CrossRef] [PubMed]
- Hamid, U.I.; Aksoy, R.; Nia, P.S. Suture map for endoscopic tricuspid valve repair. Multimed. Man. Cardiothorac. Surg. 2022, 2022. [Google Scholar] [CrossRef]
- Lei, Q.; Wei, X.-C.; Huang, K.-L.; Yu, T.; Zhang, X.-S.; Huang, H.-L.; Guo, H.-M. Intraoperative Implantation of Temporary Endocardial Pacing Catheter During Thoracoscopic Redo Tricuspid Surgery. Heart Lung Circ. 2019, 28, 1121–1126. [Google Scholar] [CrossRef]
- Noori, V.J.; Eldrup-Jørgensen, J. A systematic review of vascular closure devices for femoral artery puncture sites. J. Vasc. Surg. 2018, 68, 887–899. [Google Scholar] [CrossRef]
- Lamelas, J.; Williams, R.F.; Mawad, M.; LaPietra, A. Complications Associated with Femoral Cannulation During Minimally Invasive Cardiac Surgery. Ann. Thorac. Surg. 2017, 103, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Maimaiti, A.; Weti, L.; Yang, Y.; Liu, H.; Wang, C. Benefits of a right anterolateral minithoracotomy rather than a median sternotomy in isolated tricuspid redo procedures. J. Thorac. Dis. 2017, 9, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, J.; Gan, T.J.; Qin, G.; Wang, L.; Zhu, M.; Zhang, Z.; Pan, Y.; Ye, Z.; Zhang, F.; et al. Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: A randomized clinical trial. Eur. J. Cardiothorac. Surg. 2018, 54, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, N.; Watanabe, G. Robot-assisted cardiac surgery. Ann. Thorac. Cardiovasc. Surg. 2015, 21, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Iribarne, A.; Easterwood, R.; Chan, E.Y.; Yang, J.; Soni, L.; Russo, M.J.; Smith, C.R.; Alrgenziano, M. The golden age of minimally invasive cardiothoracic surgery: Current and future perspectives. Future Cardiol. 2011, 7, 333–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, S.W.; Hickey, G.L.; Modi, P.; Hunter, S.; Alkowuah, E.; Zacharias, J. Propensity-matched analysis of minimally invasive approach versus sternotomy for mitral valve surgery. Heart 2019, 105, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Doenst, T.; Diab, M.; Sponholz, C.; Bauetr, M.; Färber, G. The Opportunities and Limitations of Minimally Invasive Cardiac Surgery. Dtsch. Arztebl. Int. 2017, 114, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Ricci, D.; Boffini, M.; Barbero, C.; El Qarra, S.; Marchetto, G.; Rinaldi, M. Minimally invasive tricuspid valve surgery in patients at high risk. J. Thorac. Cardiovasc. Surg. 2014, 147, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Färber, G.; Tkebuchava, S.; Dawson, R.S.; Kirov, H.; Diab, M.; Schlattmann, P.; Doenst, T. Minimally Invasive, Isolated Tricuspid Valve Redo Surgery: A Safety and Outcome Analysis. Thorac. Cardiovasc. Surg. 2018, 66, 564–571. [Google Scholar] [CrossRef]
- Chen, J.; Hu, K.; Ma, W.; Lv, M.; Shi, Y.; Liu, J.; Wei, L.; Lin, Y.; Hong, T.; Walng, C. Isolated reoperation for tricuspid regurgitation after left-sided valve surgery: Technique evolution. Eur. J. Cardiothorac. Surg. 2020, 57, 142–150. [Google Scholar] [CrossRef]
- Murzi, M.; Cerillo, A.G.; Miceli, A.; Bevilacqua, S.; Kallushi, E.; Farneti, P.; Solinas, M.; Glauber, M. Antegrade and retrograde arterial perfusion strategy in minimally invasive mitral-valve surgery: A propensity score analysis on 1280 patients. Eur. J. Cardiothorac. Surg. 2013, 43, e167–e172. [Google Scholar] [CrossRef] [Green Version]
- Modi, P.; Hassan, A.; Chitwood, W.R., Jr. Minimally invasive mitral valve surgery: A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2008, 34, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.K.M.; Griffin, B.P.; Miyasaka, R.; Xu, B.; Popovic, Z.B.; Pettersson, G.B.; Gillinov, A.M.; Desai, M.Y. Isolated surgical tricuspid repair versus replacement: Metaanalysis of 15 069 patients. Open. Heart 2020, 7, e001227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarris-Michopoulos, P.; Macias, A.E.; Sarris-Michopoulos, C.; Woodhouse, P.; Buitrago, D.; Salerno, T.A.; Magarakis, M. Isolated tricuspid valve surgery—Repair versus replacement: A meta-analysis. J. Card. Surg. 2022, 37, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Moutakiallah, Y.; Aithoussa, M.; Atmani, N.; Seghrouchni, A.; Moujahid, A.; Hatim, A.; Asfalou, I.; Lakhal, Z.; Boulahya, A. Reoperation for isolated rheumatic tricuspid regurgitation. J. Cardiothorac. Surg. 2018, 13, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Chen, J.M.; Wang, W.S.; Lu, Y.T.; aMing, Y.; Wei, L.; Wang, C.S. Short-term outcomes of minimally invasive reoperation for tricuspid regurgitation after left-sided valve surgery. Zhonghua Wai Ke Za Zhi 2019, 57, 898–901. [Google Scholar]
- Patlolla, S.H.; Schaff, H.V.; Nishimura, R.A.; Stulak, J.M.; Chambetrlain, A.M.; Pislaru, S.V.; Nkomo, V.T. Incidence and Burden of Tricuspid Regurgitation in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 80, 2289–2298. [Google Scholar] [CrossRef]
- Khoshbin, E.; Abdetlbar, A.; Allen, S.; Hasan, R. The mechanism of endocardial lead-induced tricuspid regurgitation. BMJ Case Rep. 2013, 2013, bcr2012008191. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.J.; Yang, L.; Zhou, K.; Yang, Y.-C.; He, B.-C.; Chen, Z.-R.; Huang, H.-R. Endoscopic repeat isolated tricuspid valve surgery after left-sided valve replacement: Valvuloplasty or replacement. J. Cardiovasc. Surg. 2021, 62, 515–522. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, K.; Yang, Y.; He, B.; Chen, Z.; Tian, C.; Hualng, H. Outcomes of redo-isolated tricuspid valve surgery after left-sided valve surgery. J. Card. Surg. 2021, 36, 3060–3069. [Google Scholar] [CrossRef]
- Dai, X.; Teng, P.; Miao, S.; Zheng, J.; Si, W.; Zheng, Q.; Qin, K.; Ma, L. Minimally Invasive Isolated Tricuspid Valve Repair After Left-Sided Valve Surgery: A Single-Center Experience. Front. Surg. 2022, 9, 837148. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, L.; Cui, H.; Ren, T.; Li, L.; Jiang, S. Minimally Invasive Isolated Tricuspid Valve Redo Surgery Has Better Clinical Outcome: A Single-Center Experience. Heart Surg. Forum. 2020, 23, E647–E651. [Google Scholar] [CrossRef]
- Chaney, M.A.; Durazo-Arvizu, R.A.; Fludetr, E.M.; Sawicki, K.J.; Nikolov, M.P.; Blakeman, B.P.; Bakhos, M. Port-access minimally invasive cardiac surgery increases surgical complexity, increases operating room time, and facilitates early postoperative hospital discharge. Anesthesiology 2000, 92, 1637–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glower, D.D.; Landolfo, K.P.; Clements, F.; DeBruijn, N.P.; Stafford-Smith, M.; Smith, P.K.; Duhaylongsod, F. Mitral valve operation via Port Access versus median sternotomy. Eur. J. Cardiothorac. Surg. 1998, 14 (Suppl. S1), S143–S147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Ochiai, R.; Taketda, J.; Shin, H.; Yozu, R. Comparison of early postoperative quality of life in minimally invasive versus conventional valve surgery. J. Anesth. 2003, 17, 171–176. [Google Scholar] [CrossRef]
- Santana, O.; Retyna, J.; Grana, R.; Buendia, M.; Lamas, G.A.; Lamelas, J. Outcomes of minimally invasive valve surgery versus standard sternotomy in obese patients undergoing isolated valve surgery. Ann. Thorac. Surg. 2011, 91, 406–410. [Google Scholar] [CrossRef]
- Mazzeffi, M.; Khelemsky, Y. Poststernotomy pain: A clinical review. J. Cardiothorac. Vasc. Anesth. 2011, 25, 1163–1178. [Google Scholar] [CrossRef] [PubMed]
- Walther, T.; Falk, V.; Metz, S.; Diegeler, A.; Battellini, R.; Autschbach, R.; Mohr, F.W. Pain and quality of life after minimally invasive versus conventional cardiac surgery. Ann. Thorac. Surg. 1999, 67, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Sherazee, E.A.; Chetn, S.A.; Li, D.; Frank, P.; Kiaii, B. Pain Management Strategies for Minimally Invasive Cardiothoracic Surgery. Innovations 2022, 17, 167–176. [Google Scholar] [CrossRef]
- Castillo-Sang, M.; Bartone, C.; Palmer, C.; Truong, V.T.; Kelly, B.; Voeller, R.K.; Griffin, J.; Smith, T.; Raidt, H.; Alnswini, G.A. Fifty Percent Reduction in Narcotic Use After Minimally Invasive Cardiac Surgery Using Liposomal Bupivacaine. Innovations 2019, 14, 512–518. [Google Scholar] [CrossRef]
- Lee, J.W.; Song, J.-M.; Park, J.P.; Lee, J.W.; Kang, D.-H.; Song, J.-K. Long-term prognosis of isolated significant tricuspid regurgitation. Circ. J. 2010, 74, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmarats, L.; Puri, R.; Latib, A.; Navia, J.L.; Rodés-Cabau, J. Transcatheter Tricuspid Valve Interventions: Landscape, Challenges, and Future Directions. J. Am. Coll. Cardiol. 2018, 71, 2935–2956. [Google Scholar] [CrossRef]
- Lurz, P.; von Bardeleben, R.S.; Weber, M.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.-N.; Nabauer, M.; Tang, G.H.; et al. Transcatheter Edge-to-Edge Repair for Treatment of Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2021, 77, 229–239. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauvé, J.-A.; Wu, Y.-S.; Ghatanatti, R.; Zacharias, J. Minimal Access Tricuspid Valve Surgery. J. Cardiovasc. Dev. Dis. 2023, 10, 118. https://doi.org/10.3390/jcdd10030118
Sauvé J-A, Wu Y-S, Ghatanatti R, Zacharias J. Minimal Access Tricuspid Valve Surgery. Journal of Cardiovascular Development and Disease. 2023; 10(3):118. https://doi.org/10.3390/jcdd10030118
Chicago/Turabian StyleSauvé, Jean-Alexandre, Yung-Szu Wu, Ravi Ghatanatti, and Joseph Zacharias. 2023. "Minimal Access Tricuspid Valve Surgery" Journal of Cardiovascular Development and Disease 10, no. 3: 118. https://doi.org/10.3390/jcdd10030118
APA StyleSauvé, J. -A., Wu, Y. -S., Ghatanatti, R., & Zacharias, J. (2023). Minimal Access Tricuspid Valve Surgery. Journal of Cardiovascular Development and Disease, 10(3), 118. https://doi.org/10.3390/jcdd10030118