Association between Genetic Variants of CELSR2-PSRC1-SORT1 and Cardiovascular Diseases: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases and Literature Sources
2.2. Eligibility Criteria
2.3. Assessment of Study Quality
2.4. Data Extraction
- last name of the leading author;
- year of publication;
- self-reported ancestry and country of study population;
- number of cases and controls;
- diagnostic criteria of cases and controls;
- allele and genotype frequencies.
2.5. Methods for Quantitative Synthesis and Statistical Analysis
- 1. Allelic
- Allele 1 (Reference)
- Allele 2;
- 2. Codominant
- 11 (Reference)
- 12
- 22;
- 3. Dominant
- 11 (Reference)
- 12 + 22;
- 4. Recessive
- 11 + 12 (References)
- 22.
- overall, coronary artery disease, myocardial infarction, acute coronary artery syndrome, ischemic stroke, and peripheral arterial disease;
- studies including only coronary artery disease;
- studies including only healthy controls;
- Asian populations.
2.6. Prior Genome-Wide Association Signals with Phenotypes Related to Cardiovascular Diseases
2.7. Effect of Genetic Variants in the Expression of CELSR2-PSRC1-SORT1 Cluster Transcripts in the Liver
3. Results
3.1. Systematic Review
Study Characteristics
3.2. Meta-Analysis
3.2.1. rs599839 Polymorphism and Susceptibility to Cardiovascular Diseases
3.2.2. rs646776 Polymorphism and Susceptibility to Cardiovascular Diseases
3.2.3. rs464218 Polymorphism and Susceptibility to Cardiovascular Diseases
3.3. Publication Bias and Sensitive Analysis
3.4. Bioinformatic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Flora, G.D.; Nayak, M.K. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr. Pharm. Des. 2019, 25, 4063–4084. [Google Scholar] [CrossRef]
- Tzoulaki, I.; Elliott, P.; Kontis, V.; Ezzati, M. Worldwide Exposures to Cardiovascular Risk Factors and Associated Health Effects: Current Knowledge and Data Gaps. Circulation 2016, 133, 2314–2333. [Google Scholar] [CrossRef] [Green Version]
- Shah, V.N.; Bailey, R.; Wu, M.; Foster, N.C.; Pop-Busui, R.; Katz, M.; Crandall, J.; Bacha, F.; Nadeau, K.; Libman, I.; et al. Risk Factors for Cardiovascular Disease (CVD) in Adults with Type 1 Diabetes: Findings from Prospective Real-life T1D Exchange Registry. J. Clin. Endocrinol. Metab. 2020, 105, e2032–e2038. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Møller, P.L.; Rohde, P.D.; Winther, S.; Breining, P.; Nissen, L.; Nykjaer, A.; Bøttcher, M.; Nyegaard, M.; Kjolby, M. Sortilin as a Biomarker for Cardiovascular Disease Revisited. Front. Cardiovasc. Med. 2021, 8, 652584. [Google Scholar] [CrossRef]
- Arvind, P.; Nair, J.; Jambunathan, S.; Kakkar, V.V.; Shanker, J. CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort. J. Cardiol. 2014, 64, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samani, N.J.; Braund, P.S.; Erdmann, J.; Götz, A.; Tomaszewski, M.; Linsel-Nitschke, P.; Hajat, C.; Mangino, M.; Hengstenberg, C.; Stark, K.; et al. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J. Mol. Med. 2008, 86, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, S.; Xu, R.; Lin, N. Identification of CELSR2 as a novel prognostic biomarker for hepatocellular carcinoma. BMC Cancer 2020, 20, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Eitan, L.N.; Elsaqa, B.Z.; Almasri, A.Y.; Aman, H.A.; Khasawneh, R.H.; Alghamdi, M.A. Influence of PSRC1, CELSR2, and SORT1 Gene Polymorphisms on the Variability of Warfarin Dosage and Susceptibility to Cardiovascular Disease. Pharm. Pers. Med. 2020, 13, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Li, P.; Guo, K. The impact of PSRC1 overexpression on gene and transcript expression profiling in the livers of ApoE(-/-) mice fed a high-fat diet. Mol. Cell. Biochem. 2020, 465, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Kjolby, M.; Nielsen, M.S.; Petersen, C.M. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease. Curr. Atheroscler. Rep. 2015, 17, 496. [Google Scholar] [CrossRef] [PubMed]
- Goettsch, C.; Kjolby, M.; Aikawa, E. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.J.; Hong, S.C.; Yang, Q.; Yin, R.X.; Cao, X.L.; Chen, W.X. Association of variants in CELSR2-PSRC1-SORT1 with risk of serum lipid traits, coronary artery disease and ischemic stroke. Int. J. Clin. Exp. Pathol. 2015, 8, 9543–9551. [Google Scholar] [PubMed]
- Rodríguez-Arellano, M.E.; Solares-Tlapechco, J.; Costa-Urrutia, P.; Cárdenas-Hernández, H.; Vallejo-Gómez, M.; Granados, J.; Salas-Padilla, S. Association of the PSRC1 rs599839 Variant with Coronary Artery Disease in a Mexican Population. Medicina 2020, 56, 427. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Iniesta, R.; Guinó, E.; Moreno, V. Statistical analysis of genetic polymorphisms in epidemiological studies. Gac. Sanit. 2005, 19, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Wang, P.; Tang, B.; Teng, X.; Li, C.; Liu, X.; Zou, D.; Song, S.; Zhang, Z. GWAS Atlas: A curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 2020, 48, D927–D932. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Ding, H.; Zhang, X.; He, M.; Huang, S.; Xu, Y.; Shi, Y.; Cui, G.; Cheng, L.; Wang, Q.K.; et al. Genetic variants at newly identified lipid loci are associated with coronary heart disease in a Chinese Han population. PLoS ONE 2011, 6, e27481. [Google Scholar] [CrossRef]
- Qin, J.; Tian, J.; Liu, G.; Zhang, Y.; Tian, L.; Zhen, Y.; Zhang, H.; Xu, J.; Sun, X.; Fang, H. Association between 1p13 polymorphisms and peripheral arterial disease in a Chinese population with diabetes. J. Diabetes Investig. 2018, 9, 1189–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Wei, Z.; Zhang, H.; Geng, C.; Dang, R.; Yang, M.; Zhang, J.; Wang, C.; Jiang, P. The Association between Sortilin and Inflammation in Patients with Coronary Heart Disease. J. Inflamm. Res. 2020, 13, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueyama, C.; Horibe, H.; Yamase, Y.; Fujimaki, T.; Oguri, M.; Kato, K.; Arai, M.; Watanabe, S.; Murohara, T.; Yamada, Y. Association of FURIN and ZPR1 polymorphisms with metabolic syndrome. Biomed. Rep. 2015, 3, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, R.; Abe, S.; Tokoro, F.; Arai, M.; Noda, T.; Watanabe, S.; Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; et al. Association of six genetic variants with myocardial infarction. Int. J. Mol. Med. 2015, 35, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Fujimaki, T.; Oguri, M.; Horibe, H.; Kato, K.; Matsuoka, R.; Abe, S.; Tokoro, F.; Arai, M.; Noda, T.; Watanabe, S.; et al. Association of a transcription factor 21 gene polymorphism with hypertension. Biomed. Rep. 2015, 3, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Tokoro, F.; Matsuoka, R.; Arai, M.; Noda, T.; Watanabe, S.; Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; et al. Association of genetic variants with dyslipidemia. Mol. Med. Rep. 2015, 12, 5429–5436. [Google Scholar] [CrossRef] [Green Version]
- Ellis, K.L.; Frampton, C.M.; Pilbrow, A.P.; Troughton, R.W.; Doughty, R.N.; Whalley, G.A.; Ellis, C.J.; Skelton, L.; Thomson, J.; Yandle, T.G.; et al. Genomic risk variants at 1p13.3, 1q41, and 3q22.3 are associated with subsequent cardiovascular outcomes in healthy controls and in established coronary artery disease. Circ. Cardiovasc. Genet. 2011, 4, 636–646. [Google Scholar] [CrossRef]
- Kleber, M.E.; Renner, W.; Grammer, T.B.; Linsel-Nitschke, P.; Boehm, B.O.; Winkelmann, B.R.; Bugert, P.; Hoffmann, M.M.; März, W. Association of the single nucleotide polymorphism rs599839 in the vicinity of the sortilin 1 gene with LDL and triglyceride metabolism, coronary heart disease and myocardial infarction. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 2010, 209, 492–497. [Google Scholar] [CrossRef]
- Rizk, N.M.; El-Menyar, A.; Egue, H.; Souleman Wais, I.; Mohamed Baluli, H.; Alali, K.; Farag, F.; Younes, N.; Al Suwaidi, J. The Association between Serum LDL Cholesterol and Genetic Variation in Chromosomal Locus 1p13.3 among Coronary Artery Disease Patients. BioMed Res. Int. 2015, 2015, 678924. [Google Scholar] [CrossRef] [Green Version]
- Gigante, B.; Leander, K.; Vikström, M.; Ye, S.; de Faire, U. Chromosome 1p13 genetic variants antagonize the risk of myocardial infarction associated with high ApoB serum levels. BMC Cardiovasc. Disord. 2012, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Bressler, J.; Folsom, A.R.; Couper, D.J.; Volcik, K.A.; Boerwinkle, E. Genetic variants identified in a European genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 2010, 171, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, W.M.; Humphries, S.E.; Naveed, A.K.; Khan, O.J.; Khan, D.A.; Khattak, E.H. Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokine 2019, 122, 154060. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, S.; Voight, B.F.; Purcell, S.; Musunuru, K.; Ardissino, D.; Mannucci, P.M.; Anand, S.; Engert, J.C.; Samani, N.J.; Schunkert, H.; et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 2009, 41, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author | Country | Cases | Controls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Diagnostic | NOS | N | Male | Female | Age * | Diagnostic | N | Male | Female | Age * | ||
rs599839 polymorphism | ||||||||||||
Zhou, Y.J., 2015 [15] | China | CAD | 7 | 561 | 417 | 144 | 62.1 ± 10.5 | HC | 590 | 431 | 159 | 61.3 ± 9.7 |
China | IS | 7 | 527 | 383 | 144 | 62.7 ± 12.3 | - | - | - | - | - | |
Zhou, L., 2011 [20] | China | CHD | 8 | 1269 | 971 | 298 | 60.5 ± 10.4 | HC | 2745 | 1844 | 901 | 60.6 ± 8.5 |
Qin, J., 2018 [21] | China | DM+PAD | 7 | 440 | 223 | 217 | 66.7 ± 7.5 | NC | 442 | 246 | 196 | 60.4 ± 7.9 |
Ueyama, C., 2015 [23] | Japan | MetS | 8 | 1822 | 1228 | 594 | 64.4 ± 10.3 | HC | 1096 | 635 | 461 | 63.4 ± 11.7 |
Matsuoka, R., 2015 [24] | Japan | MI | 7 | 1824 | 1468 | 356 | 64.6 ± 10.3 | HC | 2329 | 1029 | 1300 | 62.3 ± 11.8 |
Fujimaki, T., 2015 [25] | Japan | AH | 8 | 3348 | 2139 | 1209 | 66.2 ± 10.2 | HC | 2112 | 1162 | 950 | 61.9 ± 12.1 |
Ellis, K.L., 2011 [27] | New Zealand | CD | 8 | 1794 | 1272 | 525 | 66.5 ± 12.3 | HC | 1649 | 1093 | 622 | 62.8 ± 10.8 |
Kleber, M.E., 2010 [28] | Germany | CAD | 8 | 2508 | 1881 | 627 | 64 ± 10 | HC | 681 | 354 | 327 | 58 ± 12 |
Germany | CAD, MI | 8 | 1575 | 1197 | 378 | 64 ± 10 | - | - | - | - | - | |
Rizk, N.M., 2015 [29] | Arabia | ACS | 8 | 136 | 110 | 26 | 56.3 ± 10.5 | NC | 91 | 68 | 23 | 56.86 ± 9.3 |
Han, W., 2020 [22] | China | CHD | 8 | 227 | NA | NA | 51.2 ± 6.9 | HC | 101 | NA | NA | 49.93 ± 8.0 |
Gigante, B., 2012 [30] | Stockholm | MI | 8 | 1213 | 852 | 361 | 60 (53–65) | HC | 1561 | 1054 | 507 | 61 (54–66) |
Bressler, J., 2010 [31] | USA | CHD | 7 | 397 | 197 | 200 | 54.8 | HC | 3206 | 1131 | 2075 | 53.1 |
USA | CHD | 7 | 1362 | 931 | 431 | 55.5 | HC | 8710 | 3643 | 5067 | 53.9 | |
Abe S, 2015 [26] | Japan | High-LDL-C | 8 | 1174 | 672 | 500 | 63.7 ± 10.7 | NC | 3296 | 2146 | 1150 | 64.5 ± 11.0 |
Overall | 21,553 | 14,941 | 6386 | 61.37 | - | 29,985 | 15,794 | 14,156 | 59.36 | |||
rs646776 polymorphism | ||||||||||||
Ansari, W.M., 2019 [32] | Pakistan | PCAD | 8 | 340 | 329 | 11 | 42 ± 3.8 | HC | 310 | 298 | 12 | 39 ± 7.8 |
Qin, J., 2018 [21] | China | DM+PAD | 7 | 440 | 223 | 217 | 66.7 ± 7.5 | NC | 442 | 246 | 196 | 60.4 ± 7.9 |
Rizk, N.M., 2015 [29] | Arabia | ACS | 8 | 136 | 110 | 26 | 56.3 ± 10.5 | NC | 91 | 68 | 23 | 56.8 ± 9.3 |
Han, W., 2020 [22] | China | CHD | 8 | 227 | NA | NA | 51.2 ± 6.9 | HC | 101 | NA | NA | 49.9 ± 8.0 |
Gigante, B., 2012 [30] | Stockholm | MI | 8 | 1213 | 852 | 361 | 60 (53–65) | HC | 1561 | 1054 | 507 | 61 (54–66) |
Overall | 2356 | 1514 | 615 | 55.24 | - | 2505 | 1666 | 738 | 53.42 | |||
rs464218 polymorphism | ||||||||||||
Zhou, Y.J., 2015 [15] | China | CAD | 7 | 561 | 417 | 144 | 62.1 ± 10.5 | HC | 590 | 431 | 159 | 61.3 ± 9.7 |
China | IS | 7 | 527 | 383 | 144 | 62.7 ± 12.3 | - | - | - | - | - | |
Han, W., 2020 [22] | China | CHD | 8 | 227 | NA | NA | 51.2 ± 6.9 | HC | 101 | NA | NA | 49.9 ± 8.0 |
Overall | 1315 | 800 | 288 | 58.6 | - | 691 | 431 | 159 | 55.6 |
Model | Random Effect | Z p-Value | Q Test p-Value | I2 | Egger Test p-Value |
---|---|---|---|---|---|
Overall | |||||
G | Reference | ||||
A | 1.27 (1.11–1.44) | 1 × 10−4 | 1 × 10−4 | 80.82 | 0.100 |
A * | 1.19 (1.13–1.26) | 1 × 10−4 | 0.175 | 30.38 | 0.108 |
GG c | Reference | ||||
GA c | 1.11 (0.92–1.35) | 0.28 | 0.155 | 31.70 | 0.100 |
AA c | 1.33 (1.00–1.75) | 0.045 | 0.009 | 58.90 | 0.100 |
GG d | Reference | ||||
GA+AA d | 1.25 (0.98–1.59) | 0.064 | 0.019 | 53.15 | 0.300 |
GA+AA d* | 1.22 (1.06–1.39) | 3 × 10−3 | 0.141 | 34.63 | 0.446 |
GG+GA r | Reference | ||||
AA r | 1.29 (1.12–1.49) | 1 × 10−4 | 1 × 10−4 | 76.65 | 0.103 |
AA r* | 1.23 (1.15–1.32) | 1 × 10−4 | 0.423 | 1.30 | 0.175 |
CAD | |||||
G | Reference | ||||
A | 1.30 (1.11–1.51) | 1 × 10−4 | 1 × 10−4 | 81.22 | 0.100 |
A * | 1.17 (1.10–1.24) | 1 × 10−4 | 0.265 | 21.54 | 0.310 |
GG c | Reference | ||||
GA c | 1.18 (1.00–1.39) | 0.039 | 0.340 | 11.7 | 0.100 |
AA c | 1.51 (1.14–2.00) | 4 × 10−3 | 0.041 | 54.2 | 0.100 |
AA c* | 1.39 (1.18–1.65) | 1 × 10−4 | 0.325 | 13.66 | 0.614 |
GG d | Reference | ||||
GA+AA d | 1.39 (1.08–1.79) | 0.010 | 0.037 | 52.97 | 0.104 |
GA+AA d* | 1.24 (1.08–1.42) | 2 × 10−3 | 0.153 | 36.11 | 0.301 |
GG+GA r | Reference | ||||
AA r | 1.32 (1.12–1.56) | 1 × 10−3 | 1 × 10−4 | 75.99 | 0.100 |
AA r* | 1.20 (1.11–1.29) | 1 × 10−4 | 0.645 | 0.000 | 0.386 |
Asian population | |||||
G | Reference | ||||
A | 1.32 (1.12–1.57) | 1 × 10−3 | 1 × 10−4 | 80.70 | 0.290 |
A * | 1.27 (1.18–1.36) | 1 × 10−4 | 0.494 | 0.000 | 0.236 |
GG c | Reference | ||||
GA c | 0.84 (0.60–1.16) | 0.288 | 0.600 | 0.000 | 0.340 |
AA c | 1.29 (1.29–1.30) | 0.260 | 0.060 | 43.48 | 0.320 |
AA c* | 1.07 (0.77–1.49) | 0.676 | 0.424 | 1.201 | 0.653 |
GG d | Reference | ||||
GA+AA d | 1.12 (0.81–1.55) | 0.466 | 0.112 | 37.12 | 0.323 |
GG+GA r | Reference | ||||
AA r | 1.34 (1.14–1.59) | 1 × 10−4 | 1 × 10−4 | 77.79 | 0.324 |
AA r* | 1.30 (1.21–1.40) | 1 × 10−4 | 0.629 | 0.000 | 0.333 |
Model | Random Effect | Z p-Value | Q Test p-Value | I2 | Egger Test p-Value |
---|---|---|---|---|---|
Overall | |||||
C | Reference | ||||
T | 1.17 (0.86–1.59) | 0.290 | 0.040 | 68.81 | 0.420 |
Asian Population | |||||
C | Reference | ||||
T | 1.46 (1.17–1.82) | 1 × 10−3 | 0.643 | 0.00 | 0.462 |
Model | Random Effect | Z p-Value | Q Test p-Value | I2 | Egger Test p-Value |
---|---|---|---|---|---|
Overall | |||||
G | Reference | ||||
A | 1.10 (0.85–1.41) | 0.448 | 0.020 | 74.58 | 0.101 |
GG c | Reference | ||||
GA c | 0.847 (0.37–1.92) | 0.692 | 1 × 10−4 | 94.4 | 0.100 |
AA c | 1.94 (0.76–4.92) | 0.163 | 1 × 10−4 | 92.2 | 0.100 |
GG d | Reference | ||||
GA+AA d | 1.10 (0.48–2.48) | 0.817 | 1 × 10−4 | 95.27 | 0.893 |
GG+GA r | Reference | ||||
AA r | 2.03 (1.19–3.47) | 9 × 10−3 | 8 × 10−3 | 79.47 | 0.951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Avila, R.G.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Martínez-Magaña, J.J.; López-Narváez, M.L.; Juárez-Rojop, I.E.; Arias-Vázquez, P.I.; Borgonio-Cuadra, V.M.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M. Association between Genetic Variants of CELSR2-PSRC1-SORT1 and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 91. https://doi.org/10.3390/jcdd10030091
Castillo-Avila RG, González-Castro TB, Tovilla-Zárate CA, Martínez-Magaña JJ, López-Narváez ML, Juárez-Rojop IE, Arias-Vázquez PI, Borgonio-Cuadra VM, Pérez-Hernández N, Rodríguez-Pérez JM. Association between Genetic Variants of CELSR2-PSRC1-SORT1 and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Development and Disease. 2023; 10(3):91. https://doi.org/10.3390/jcdd10030091
Chicago/Turabian StyleCastillo-Avila, Rosa Giannina, Thelma Beatriz González-Castro, Carlos Alfonso Tovilla-Zárate, José Jaime Martínez-Magaña, María Lilia López-Narváez, Isela Esther Juárez-Rojop, Pedro Iván Arias-Vázquez, Verónica Marusa Borgonio-Cuadra, Nonanzit Pérez-Hernández, and José Manuel Rodríguez-Pérez. 2023. "Association between Genetic Variants of CELSR2-PSRC1-SORT1 and Cardiovascular Diseases: A Systematic Review and Meta-Analysis" Journal of Cardiovascular Development and Disease 10, no. 3: 91. https://doi.org/10.3390/jcdd10030091
APA StyleCastillo-Avila, R. G., González-Castro, T. B., Tovilla-Zárate, C. A., Martínez-Magaña, J. J., López-Narváez, M. L., Juárez-Rojop, I. E., Arias-Vázquez, P. I., Borgonio-Cuadra, V. M., Pérez-Hernández, N., & Rodríguez-Pérez, J. M. (2023). Association between Genetic Variants of CELSR2-PSRC1-SORT1 and Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Journal of Cardiovascular Development and Disease, 10(3), 91. https://doi.org/10.3390/jcdd10030091