A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode
Abstract
:1. Introduction
2. Methods
2.1. Ablation Procedure
2.2. HPSD Ablation
2.3. VGLB Ablation
2.4. Adenosine Provocation Test
2.5. Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Procedural Characteristics
3.2. Ablation Data for the HPSD Arm
3.3. Ablation Data for the VGLB Arm
3.4. Adenosine Testing
3.5. Reablation after Positive APT
3.6. Complications
3.7. Long-Term Clinical Follow-Up
4. Discussion
4.1. Study Rationale
4.2. Interpreting the Results
4.3. Positive Effects of Adding the AI Parameter to HPSD Ablation
4.4. The Influence of the Rapid Mode on the Effectiveness of VGLB Ablation
4.5. Procedural and Safety Data Comparison
4.6. Influence of the Study Findings on the Previous Study Results
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin converting enzyme |
AF | Atrial fibrillation |
APT | Adenosine provocation test |
BMI | Body mass index |
CABG | Coronary artery bypass grafting |
CF | Contact force |
DOAC | Direct oral anticoagulants |
EF | Ejection fraction |
EHRA | European Heart Rhythm Association |
EP | Electrophysiology |
ESC | European Society of Cardiology |
GFR | Glomerular filtration rate |
HPSD | High-power short-duration |
ICD | Implantable cardioverter defibrillator |
INR | International normalized ratio |
LA | Left atrium |
LIPV | Left inferior pulmonary vein |
LSPV | Left superior pulmonary vein |
NYHA | New York Heart Association |
PV | Pulmonary vein(s) |
PVI | Pulmonary vein isolation |
RF | Radiofrequency |
RIPV | Right inferior pulmonary vein |
RSPV | Right superior pulmonary vein |
References
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Borne, R.T.; Sauer, W.H.; Zipse, M.M.; Zheng, L.; Tzou, W.; Nguyen, D.T. Longer Duration Versus Increasing Power During Radiofrequency Ablation Yields Different Ablation Lesion Characteristics. JACC Clin. Electrophysiol. 2018, 4, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Poudyal, A.; Abid, Q.-U.-A.; Larsen, T.; Krishnan, K.; Sharma, P.S.; Trohman, R.G.; Huang, H.D. High-power short duration vs. conventional radiofrequency ablation of atrial fibrillation: A systematic review and meta-analysis. Europace 2021, 23, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Heeger, C.-H.; Tiemeyer, C.M.; Phan, H.-L.; Meyer-Saraei, R.; Fink, T.; Sciacca, V.; Liosis, S.; Brüggemann, B.; Große, N.; Fahimi, B.; et al. Rapid pulmonary vein isolation utilizing the third-generation laserballoon—The PhoeniX registry. Int. J. Cardiol. Heart Vasc. 2020, 29, 100576. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.-C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuck, K.-H.; Hoffmann, B.A.; Ernst, S.; Wegscheider, K.; Treszl, A.; Metzner, A.; Eckardt, L.; Lewalter, T.; Breithardt, G.; Willems, S. Impact of Complete Versus Incomplete Circumferential Lines Around the Pulmonary Veins During Catheter Ablation of Paroxysmal Atrial Fibrillation: Results From the Gap-Atrial Fibrillation-German Atrial Fibrillation Competence Network 1 Trial. Circ. Arrhythm. Electrophysiol. 2016, 9, e003337. [Google Scholar] [CrossRef] [PubMed]
- Winkle, R.A.; Moskovitz, R.; Hardwin Mead, R.; Engel, G.; Kong, M.H.; Fleming, W.; Salcedo, J.; Patrawala, R.A.; Tranter, J.H.; Shai, I. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters. J. Interv. Card. Electrophysiol. 2018, 52, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baher, A.; Kheirkhahan, M.; Rechenmacher, S.J.; Marashly, Q.; Kholmovski, E.G.; Siebermair, J.; Acharya, M.; Aljuaid, M.; Morris, A.K.; Kaur, G.; et al. High-Power Radiofrequency Catheter Ablation of Atrial Fibrillation. JACC Clin. Electrophysiol. 2018, 4, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Ücer, E.; Janeczko, Y.; Seegers, J.; Fredersdorf, S.; Friemel, S.; Poschenrieder, F.; Maier, L.S.; Jungbauer, C.G. A RAndomized Trial to compare the acute reconnection after pulmonary vein ISolation with Laser-BalloON versus radiofrequency Ablation: RATISBONA trial. J. Cardiovasc Electrophysiol. 2018, 29, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Ücer, E.; Jungbauer, C.; Hauck, C.; Kaufmann, M.; Poschenrieder, F.; Maier, L.; Fredersdorf, S. The low acute effectiveness of a high-power short duration radiofrequency current application technique in pulmonary vein isolation for atrial fibrillation. Cardiol. J. 2020. [CrossRef] [PubMed] [Green Version]
- Phlips, T.; Taghji, P.; El, H.M.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: The role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. EP Europace 2018, 20, f419–f427. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Grimaldi, M.; Potter, T.; de Vijgen, J.M.; Bulava, A.; Duytschaever, M.F.; Martinek, M.; Natale, A.; Knecht, S.; Neuzil, P.; et al. Pulmonary Vein Isolation With Very High Power, Short Duration, Temperature-Controlled Lesions: The QDOT-FAST Trial: Sicherheitsstudie, gesponsort von Biosensen Webster. JACC Clin. Electrophysiol. 2019, 5, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Schmidt, B.; Bordignon, S.; Urbanek, L.; Tohoku, S.; Bologna, F.; Angelkov, L.; Garvanski, I.; Tsianakas, N.; Konstantinou, A.; et al. atrial fibrillation: Procedural data, lesion analysis, and initial results from the FAFA AI High Power Study. J. Cardiovasc. Electrophysiol. 2019, 30, 2724–2731. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Neuzil, P.; Luik, A.; Osca Asensi, J.; Schrickel, J.W.; Deneke, T.; Bordignon, S.; Petru, J.; Merkel, M.; Sediva, L.; et al. Laser Balloon or Wide-Area Circumferential Irrigated Radiofrequency Ablation for Persistent Atrial Fibrillation: A Multicenter Prospective Randomized Study. Circ. Arrhythm. Electrophysiol. 2017, 10, e005767. [Google Scholar] [CrossRef] [PubMed]
- Dukkipati, S.R.; Cuoco, F.; Kutinsky, I.; Aryana, A.; Bahnson, T.D.; Lakkireddy, D.; Woollett, I.; Issa, Z.F.; Natale, A.; Reddy, V.Y. Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation. J. Am. Coll. Cardiol. 2015, 66, 1350–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HPSD (n = 35) | VGLB (n = 35) | p-Value | |
---|---|---|---|
Age, years | 64 ± 10 | 61 ± 12 | 0.220 |
Male, n (%) | 20 (57) | 20 (57) | 1.000 |
Paroxysmal AF, n (%) Persistent AF, n (%) | 22 (63) 13 (37) | 25 (71) 10 (29) | 0.445 |
BMI, kg/m2 | 30 ± 6 | 29 ± 4 | 0.170 |
AF duration, months a | 29 ± 34 | 31 ± 47 | 0.876 |
EHRA I-IV | III (3–3) | III (3–4) | 0.471 |
CHA2DS2VASc | 3 (1–4) | 2 (1–3) | 0.496 |
Previous cardioversion, n (%) | 18 (51) | 17 (49) | 0.811 |
Previous cavotricuspidale isthmus ablation, n (%) | 3 (9) | 1 (3) | 0.614 |
2D left atrium area in CT, cm2 | 26.0 (20–31) | 22.1 (19–24) | 0.054 |
EF < 30%, n (EF) | 2 (28 ± 0.7%) | 0 | 0.493 |
Hypertension b, n (%) | 21 (60) | 21 (60) | 1.000 |
Diabetes mellitus, n (%) | 3 (9) | 2 (6) | 1.000 |
History of congestive heart failure, n (%) | 9 (26) | 5 (14) | 0.232 |
Coronary artery disease, n (%) | 7 (20) | 11 (31) | 0.274 |
History of myocardial infarction, n (%) | 2 (6) | 2 (6) | 1.000 |
CABG, n (%) | 2 (6) | 0 (0) | 0.493 |
Valve intervention, n (%) | 1 (3) | 0 (0) | 1.000 |
Hyperlipidemia, n (%) | 16 (46) | 14 (40) | 0.629 |
Stroke, n (%) | 5 (14) | 3 (9) | 0.710 |
Pacemaker, n (%) | 1 (3) | 1 (3) | 1.000 |
ICD, n (%) | 0 (0) | 1 (3) | 1.000 |
HPSD (n = 35) | VGLB (n = 35) | p-Value | |
---|---|---|---|
ACE a inhibitor or AT1R b blocker, n (%) | 21 (60) | 22 (63) | 0.806 |
Sacubitril/Valsartan, n (%) | 2 (6) | 0 (6) | 0.493 |
Beta blockers, n (%) | 30 (86) | 27 (77) | 0.356 |
Class IC antiarrhythmics, n (%) | 5 (14) | 6 (17) | 0.492 |
Cass III antiarrhythmics, n (%) | 3 (9) | 1 (3) | 0.357 |
Ca2+ channel blockers, non-dihydropyridine type, n (%) | 1 (3) | 1 (3) | 1.000 |
DOACs c, n (%) | 33 (94) | 32 (91) | 0.215 |
Phenprocoumon, n (%) | 1 (3) | 2 (6) | 0.555 |
Diuretics, n (%) | 13 (37) | 7 (20) | 0.117 |
Aldosterone antagonist, n (%) | 2 (6) | 5 (14) | 0.428 |
Ca2+ channel blockers, dihydropyridine type, n (%) | 10 (29) | 7 (20) | 0.703 |
HPSD (n = 35) | VGLB (n = 35) | p-Value | |
---|---|---|---|
Procedure duration a, min | 155 ± 39 | 175 ± 58 | 0.191 |
LA dwelling time b, min | 134 (104–154) | 157 (111–185) | 0.049 |
Ablation time c, min | 72 (43–85) | 92 (59–108) | 0.010 |
Fluoroscopy dose, cGycm2 | 1302 ± 599 | 2007 ± 1011 | 0.001 |
Fluoroscopy duration, min | 12 ± 4 | 23 ± 8 | <0.001 |
Ablation energy, kWs | 81.0 (50–99) | 14.3 (12–16) | <0.001 |
HPSD (n = 35) | VGLB (n = 35) | p-Value | |
---|---|---|---|
Number of PVs | 137 | 133 | |
Successful PVI, n (%) | 137 (100) | 131 (98.5) | 0.242 |
First-pass isolation | 60% (42 out of 70) | 74% (99 out of 133) | 0.034 |
Spontaneous reconnection before adenosine testing, n (%) | 9 (7) | 11 (8) | 0.594 |
Time to APT d, min | 25 (20–32) | 25 (20–30) | 0.613 |
Adenosine doses | 20.2 (18–20) | 19.5 (18–18) | 0.266 |
PV reconnection after APT, (%) | 10 (7) | 6 (5) | 0.34 |
APT-Negative (n = 127 PV) | APT-Positive (n = 10 PV) | p-Value | |
---|---|---|---|
Ablation duration a, min | 12 (8–12) | 15 (8–22) | 0.346 |
Ablation energy, kWs | 33.4 (23–35) | 43.2 (26–63) | 0.234 |
Ablation lesion count, n | 53 (37–58) | 67 (48–82) | 0.126 |
Time to APT, min | 25 (20–31) | 27 (20–35) | 0.821 |
Adenosine dose, mg | 19.8 (18–18) | 19.2 (18–18) | 0.625 |
APT-Negative (n = 126 PV) | APT-Positive (n = 6 PV) | p-Value | |
---|---|---|---|
Ablation duration a, min | 6 (3–7) | 7 (4–9) | 0.254 |
Ablation energy, kWs | 3.7 (2.6–4.3) | 4.4 (2.8–6.1) | 0.379 |
Time to APT, min | 25 (20–29) | 25 (20–36) | 0.577 |
Adenosine dose, mg | 19.5 (18–18) | 17.0 (17–18) | 0.145 |
Average chosen energy b, W | 11.2 (9.6–13) | 10.6 (9.0–11.8) | 0.362 |
Fraction of rapid mode, % | 69.2 (43–100) | 54.8 (30–77) | 0.272 |
First-pass isolation, n (%) | 98 (78) | 1 (17) | 0.003 |
HPSD | VGLB | p-Value | |
---|---|---|---|
Postinterventional pericarditis, n (%) | 5 (14) | 1 (3) | 0.198 |
Esophageal ulceration, n (%) | 0 (0) | 1 (3) | 1.000 |
Transient phrenic nerve palsy, n (%) | 0 (0) | 1 (3) | 1.000 |
Steam pops, n (%) | 1 (3) | 0 (0) | 1.000 |
Bronchospasm, n (%) | 0 (0) | 1 (3) | 1.000 |
Stroke, n (%) | 0 (0) | 0 (0) | 1.000 |
Groin hematoma, n (%) | 0 (0) | 0 (0) | 1.000 |
Pericardial tamponade, n (%) | 0 (0) | 0 (0) | 1.000 |
Transient ST-Elevation | 0 (0) | 2 (6) | 0.493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schildt, S.; Fredersdorf, S.; Jungbauer, C.G.; Hauck, C.; Tarnowski, D.; Debl, K.; Neef, S.; Schach, C.; Sossalla, S.; Maier, L.S.; et al. A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode. J. Cardiovasc. Dev. Dis. 2023, 10, 98. https://doi.org/10.3390/jcdd10030098
Schildt S, Fredersdorf S, Jungbauer CG, Hauck C, Tarnowski D, Debl K, Neef S, Schach C, Sossalla S, Maier LS, et al. A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode. Journal of Cardiovascular Development and Disease. 2023; 10(3):98. https://doi.org/10.3390/jcdd10030098
Chicago/Turabian StyleSchildt, Sönke, Sabine Fredersdorf, Carsten G. Jungbauer, Christian Hauck, Daniel Tarnowski, Kurt Debl, Stefan Neef, Christian Schach, Samuel Sossalla, Lars S. Maier, and et al. 2023. "A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode" Journal of Cardiovascular Development and Disease 10, no. 3: 98. https://doi.org/10.3390/jcdd10030098
APA StyleSchildt, S., Fredersdorf, S., Jungbauer, C. G., Hauck, C., Tarnowski, D., Debl, K., Neef, S., Schach, C., Sossalla, S., Maier, L. S., & Üçer, E. (2023). A Pilot Trial to Compare the Long-Term Efficacy of Pulmonary Vein Isolation with High-Power Short-Duration Radiofrequency Versus Laser Energy with Rapid Ablation Mode. Journal of Cardiovascular Development and Disease, 10(3), 98. https://doi.org/10.3390/jcdd10030098