Physical and Mental Recovery after Aortic Valve Surgery in Non-Elderly Patients: Native Valve-Preserving Surgery vs. Prosthetic Valve Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Surgical Procedure
2.3. Study Protocol
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Time to Treatment Failure
3.3. Treatment Effect as Difference 1 Year Postoperatively
3.4. Longitudinal Changes after Native Valve-Preserving Surgery
3.5. Longitudinal Changes after Prosthetic Valve Replacement
3.6. Differences between Our Data and Gender- and Age-Specific Published Data on Healthy Individuals
3.7. Descriptive Statistics of Peak VO2, Work Rate, Anxiety and Depression
4. Discussion
Limitations
5. Conclusions
- Physical and mental performance improved during the first year after native valve preservation and prosthetic AVR.
- One year postoperatively, the reported physical and mental QoL was similar in both cohorts, while native valve preservation was associated with a positive, although not significant, treatment effect on 6MWT distance.
- A tendency of more patients reaching the 6MWT distance of healthy individuals and a trend of better peak oxygen consumption and work rate at the 1-year follow-up following native valve-preserving surgery than following prosthetic AVR were observed.
- Despite an increased risk of treatment failure, physical and mental performance after native valve-preserving surgery was comparable to that after conventional prosthetic AVR.
- Hence, shared decision making with patients to choose the appropriate treatment option adapted to their own specific needs is necessary.
Contributions to the Field
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouhout, I.; Stevens, L.M.; Mazine, A.; Poirier, N.; Cartier, R.; Demers, P.; El-Hamamsy, I. Long-term outcomes after elective isolated mechanical aortic valve replacement in young adults. J. Thorac. Cardiovasc. Surg. 2014, 148, 1341–1346.e1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puskas, J.; Gerdisch, M.; Nichols, D.; Quinn, R.; Anderson, C.; Rhenman, B.; Fermin, L.; McGrath, M.; Kong, B.; Hughes, C.; et al. Reduced anticoagulation after mechanical aortic valve replacement: Interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized Food and Drug Administration investigational device exemption trial. J. Thorac. Cardiovasc. Surg. 2014, 147, 1202–1211.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimtoola, S.H. Choice of prosthetic heart valve in adults an update. J. Am. Coll. Cardiol. 2010, 55, 2413–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etnel, J.R.G.; Huygens, S.A.; Grashuis, P.; Pekbay, B.; Papageorgiou, G.; Roos Hesselink, J.W.; Bogers, A.; Takkenberg, J.J.M. Bioprosthetic Aortic Valve Replacement in Nonelderly Adults: A Systematic Review, Meta-Analysis, Microsimulation. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005481. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Krogmann, H.; Reichenspurner, H.; Girdauskas, E. Long-Term Outcome and Quality of Life After Biological Aortic Valve Replacement in Nonelderly Adults. Ann. Thorac. Surg. 2020, 111, 142–149. [Google Scholar] [CrossRef]
- Buratto, E.; Shi, W.Y.; Wynne, R.; Poh, C.L.; Larobina, M.; O’Keefe, M.; Goldblatt, J.; Tatoulis, J.; Skillington, P.D. Improved Survival After the Ross Procedure Compared With Mechanical Aortic Valve Replacement. J. Am. Coll. Cardiol. 2018, 71, 1337–1344. [Google Scholar] [CrossRef]
- El-Hamamsy, I.; Toyoda, N.; Itagaki, S.; Stelzer, P.; Varghese, R.; Williams, E.E.; Erogova, N.; Adams, D.H. Propensity-Matched Comparison of the Ross Procedure and Prosthetic Aortic Valve Replacement in Adults. J. Am. Coll. Cardiol. 2022, 79, 805–815. [Google Scholar] [CrossRef]
- Baman, J.R.; Medhekar, A.N.; Malaisrie, S.C.; McCarthy, P.; Davidson, C.J.; Bonow, R.O. Management Challenges in Patients Younger than 65 Years with Severe Aortic Valve Disease: A Review. JAMA Cardiol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Mazine, A.; El-Hamamsy, I.; Ouzounian, M. The Ross procedure in adults: Which patients, which disease? Curr. Opin. Cardiol. 2017, 32, 663–671. [Google Scholar] [CrossRef]
- Aicher, D.; Fries, R.; Rodionycheva, S.; Schmidt, K.; Langer, F.; Schafers, H.J. Aortic valve repair leads to a low incidence of valve-related complications. Eur. J. Cardiothorac. Surg. 2010, 37, 127–132. [Google Scholar] [CrossRef]
- Gökalp, A.L.; de Heer, F.; Etnel, J.R.G.; Kluin, J.; Takkenberg, J.J.M. Clinical and quality of life outcomes after aortic valve replacement and aortic root surgery in adult patients <65 years old. Ann. Cardiothorac. Surg. 2019, 8, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hamamsy, I.; Warnes, C.A.; Nishimura, R.A. The Ross Procedure in Adults: The Ideal Aortic Valve Substitute? J. Am. Coll. Cardiol. 2021, 77, 1423–1425. [Google Scholar] [CrossRef]
- Takajo, D.; Kota, V.; Balakrishnan, P.P.L.; Gayanilo, M.; Sriram, C.; Aggarwal, S. Longitudinal Changes in Exercise Capacity in Patients Who Underwent Ross Procedure and Mechanical Aortic Valve Replacement: Does the Type of Surgery Matter? Pediatr. Cardiol. 2021, 42, 1018–1025. [Google Scholar] [CrossRef]
- Aicher, D.; Holz, A.; Feldner, S.; Kollner, V.; Schafers, H.J. Quality of life after aortic valve surgery: Replacement versus reconstruction. J. Thorac. Cardiovasc. Surg. 2011, 142, e19–e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacek, P.; Holubec, T.; Vobornik, M.; Dominik, J.; Takkenberg, J.; Harrer, J.; Vojacek, J. Quality of life after aortic valve repair is similar to Ross patients and superior to mechanical valve replacement: A cross-sectional study. BMC Cardiovasc. Disord. 2016, 16, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beacher, D.; Frommelt, P.; Brosig, C.; Zhang, J.; Simpson, P.; Hraska, V.; Ginde, S. Impact of Valve Type (Ross vs. Mechanical) on Health-Related Quality of Life in Children and Young Adults with Surgical Aortic Valve Replacement. Pediatr. Cardiol. 2021, 42, 1119–1125. [Google Scholar] [CrossRef]
- Nötzold, A.; Hüppe, M.; Schmidtke, C.; Blömer, P.; Uhlig, T.; Sievers, H.H. Quality of life in aortic valve replacement: Pulmonary autografts versus mechanical prostheses. J. Am. Coll. Cardiol. 2001, 37, 1963–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamás, E.; Nielsen, N.E.; Vanhanen, I.; Nylander, E. Measurement of physical work capacity in patients with chronic aortic regurgitation: A potential improvement in patient management. Clin. Physiol. Funct. Imaging 2009, 29, 453–457. [Google Scholar] [CrossRef]
- Petersen, J.; Vettorazzi, E.; Winter, L.; Schmied, W.; Kindermann, I.; Schafers, H.J. Physical and mental recovery after conventional aortic valve surgery. J. Thorac. Cardiovasc. Surg. 2016, 152, 1549–1556.e1542. [Google Scholar] [CrossRef] [Green Version]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Bullinger, M. Fragebogen zum Gesundheitszustand SF-36; Handanweisung; Hogrefe, Verl. für Psychologie: Göttingen, Germany, 1998. [Google Scholar]
- Herrmann-Lingen, C. HADS-D Manual: Deutsche Adaptation der Hospital Anxiety and Depression Scale (HADS) von R.P. Snaith und A.S. Zigmond, 3rd ed.; aktualisierte und neu normierte Auflage; Huber: Mannheim, Germany, 2011. [Google Scholar]
- Goetghebeur, E.; le Cessie, S.; De Stavola, B.; Moodie, E.E.; Waernbaum, I. Formulating causal questions and principled statistical answers. Stat. Med. 2020, 39, 4922–4948. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Li, L.; Greene, T. Propensity score weighting analysis and treatment effect discovery. Stat. Methods Med. Res. 2019, 28, 2439–2454. [Google Scholar] [CrossRef] [PubMed]
- Troosters, T.; Gosselink, R.; Decramer, M. Six minute walking distance in healthy elderly subjects. Eur. Respir. J. 1999, 14, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Whipp, B.J. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Hinz, A.; Brahler, E. Normative values for the hospital anxiety and depression scale (HADS) in the general German population. J. Psychosom. Res. 2011, 71, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Lansac, E.; Youssefi, P.; de Heer, F.; Bavaria, J.; De Kerchove, L.; El-Hamamsy, I.; El Khoury, G.; Enriquez-Sarano, M.; Jondeau, L.G.; Kluin, J.; et al. Aortic Valve Surgery in Nonelderly Patients: Insights Gained From AVIATOR. Semin Thorac. Cardiovasc. Surg. 2019, 31, 643–649. [Google Scholar] [CrossRef]
- Schneider, U.; Feldner, S.K.; Hofmann, C.; Schope, J.; Wagenpfeil, S.; Giebels, C.; Schafers, H.J. Two decades of experience with root remodeling and valve repair for bicuspid aortic valves. J. Thorac. Cardiovasc. Surg. 2017, 153, S65–S71. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Matsushima, S.; Shimizu, A.; Ehrlich, T.; Karliova, I.; Schäfers, H.J. Bicuspidization and Annuloplasty Provide a Functioning Configuration to the Unicuspid Aortic Valve. Ann. Thorac. Surg. 2020, 110, 111–119. [Google Scholar] [CrossRef]
- Schafers, H.J.; Aicher, D.; Riodionycheva, S.; Lindinger, A.; Radle-Hurst, T.; Langer, F.; Abdul-Khaliq, H. Bicuspidization of the unicuspid aortic valve: A new reconstructive approach. Ann. Thorac. Surg. 2008, 85, 2012–2018. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
NV (n = 72) | PV before Weighting (n = 28) | PV after Weighting (Weight: 76.92) | SMD before Weighting | SMD after Weighting | |
---|---|---|---|---|---|
Age (years) #$ | 41 ± 12 | 52 ± 12 | 40 ± 13 | 0.92 | 0.10 |
Male sex #$ | 62 (86%) | 20 (71%) | 68 (88%) | 0.37 | 0.07 |
Sum of cardiac risk factors *#$ | |||||
0 | 9 (13%) | 2 (7%) | 11 (14%) | 0.20 | 0.04 |
1 | 20 (28%) | 5 (18%) | 15 (20%) | 0.24 | 0.18 |
2 | 30 (42%) | 9 (32%) | 16 (21%) | 0.21 | 0.47 |
3 | 9 (13%) | 8 (29%) | 18 (24%) | 0.40 | 0.29 |
≥4 | 4 (6%) | 4 (14%) | 17 (22%) | 0.27 | 0.54 |
AV morphology # | |||||
Unicuspid | 14 (19%) | 4 (14%) | 15 (20%) | 0.14 | 0.00 |
Bicuspid | 42 (58%) | 10 (36%) | 49 (64%) | 0.45 | 0.11 |
Tricuspid | 16 (22%) | 14 (50%) | 13 (17%) | 0.61 | 0.14 |
Reason for surgery $ | |||||
Isolated regurgitation | 59 (82%) | 21 (75%) | 54 (70%) | 0.17 | 0.28 |
Isolated stenosis | 10 (14%) | 1 (4%) | 1 (1%) | 0.35 | 0.50 |
Mixed AV disease | 3 (4%) | 6 (21%) | 22 (29%) | 0.53 | 0.70 |
NYHA class #$ | |||||
I | 33 (46%) | 8 (29%) | 37 (48%) | 0.36 | 0.03 |
II | 28 (39%) | 9 (32%) | 34 (44%) | 0.15 | 0.10 |
III | 11 (15%) | 11 (39%) | 7 (9%) | 0.56 | 0.21 |
IV | 0 (0%) | 0 (0%) | 0 (0%) | 0.00 | 0.00 |
Preoperative proBNP (ng/L) #$ | 332 ± 634 | 1102 ± 1882 | 372 ± 594 | 0.55 | 0.07 |
Preoperative LVEF (%) #$ | 56 ± 7 | 52 ± 8 | 55 ± 8 | 0.53 | 0.04 |
Preoperative LVESDind (mm/m2) | 21 ± 3 | 24 ± 6 | 22 ± 2 | 0.63 | 0.10 |
STS-PROM (%) #$ | 0.75 ± 0.59 | 0.92 ± 0.51 | 0.82 ± 0.37 | 0.31 | 0.14 |
EuroSCORE II (%) #$ | 1.19 ± 0.99 | 1.20 ± 0.65 | 1.29 ± 0.54 | 0.11 | 0.12 |
Baseline | One-Year Follow-Up | Adj. p-Value * | ||
---|---|---|---|---|
6MWT distance | Native valve | 593 (161) | 640 (120) | <0.001 |
Prosthetic valve | 525 (146) | 550 (165) | 0.004 | |
SF-12 physical QoL | Native valve | 48 (18) | 55 (6) | 0.023 |
Prosthetic valve | 44 (18) | 54 (7) | 0.005 | |
SF-12 mental QoL | Native valve | 49 (18) | 56 (7) | <0.001 |
Prosthetic valve | 51 (17) | 56 (13) | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holst, T.; Petersen, J.; Friedrich, S.; Waschki, B.; Sinning, C.; Rybczynski, M.; Reichenspurner, H.; Girdauskas, E. Physical and Mental Recovery after Aortic Valve Surgery in Non-Elderly Patients: Native Valve-Preserving Surgery vs. Prosthetic Valve Replacement. J. Cardiovasc. Dev. Dis. 2023, 10, 138. https://doi.org/10.3390/jcdd10040138
Holst T, Petersen J, Friedrich S, Waschki B, Sinning C, Rybczynski M, Reichenspurner H, Girdauskas E. Physical and Mental Recovery after Aortic Valve Surgery in Non-Elderly Patients: Native Valve-Preserving Surgery vs. Prosthetic Valve Replacement. Journal of Cardiovascular Development and Disease. 2023; 10(4):138. https://doi.org/10.3390/jcdd10040138
Chicago/Turabian StyleHolst, Theresa, Johannes Petersen, Sarah Friedrich, Benjamin Waschki, Christoph Sinning, Meike Rybczynski, Hermann Reichenspurner, and Evaldas Girdauskas. 2023. "Physical and Mental Recovery after Aortic Valve Surgery in Non-Elderly Patients: Native Valve-Preserving Surgery vs. Prosthetic Valve Replacement" Journal of Cardiovascular Development and Disease 10, no. 4: 138. https://doi.org/10.3390/jcdd10040138
APA StyleHolst, T., Petersen, J., Friedrich, S., Waschki, B., Sinning, C., Rybczynski, M., Reichenspurner, H., & Girdauskas, E. (2023). Physical and Mental Recovery after Aortic Valve Surgery in Non-Elderly Patients: Native Valve-Preserving Surgery vs. Prosthetic Valve Replacement. Journal of Cardiovascular Development and Disease, 10(4), 138. https://doi.org/10.3390/jcdd10040138