Comparison of Cardiorespiratory Fitness between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Characteristics
2.2. Cardiopulmonary Exercise Testing
2.3. Pulmonary Function Test
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Data of Pulmonary Function Tests
3.3. Data of CPET
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guy, T.S.; Hill, A.C. Mitral Valve Prolapse. Annu. Rev. Med. 2012, 63, 277–292. [Google Scholar] [CrossRef]
- Liu, P.Y.; Tsai, K.Z.; Lin, Y.P.; Lin, C.S.; Zeng, H.C.; Takimoto, E.; Lin, G.M. Prevalence and characteristics of mitral valve prolapse in military young adults in Taiwan of the CHIEF Heart Study. Sci. Rep. 2021, 11, 2719. [Google Scholar] [CrossRef]
- Kukavica, D.; Guglielmo, M.; Baggiano, A.; Muscogiuri, G.; Fusini, L.; Muratori, M.; Tamborini, G.; Mantegazza, V.; Trancuccio, A.; Arnò, C.; et al. Arrhythmic Mitral Valve Prolapse: Introducing an Era of Multimodality Imaging-Based Diagnosis and Risk Stratification. Diagnostics 2021, 11, 467. [Google Scholar] [CrossRef]
- Nalliah, C.J.; Mahajan, R.; Elliott, A.D.; Haqqani, H.; Lau, D.H.; Vohra, J.K.; Morton, J.B.; Semsarian, C.; Marwick, T.; Kalman, J.M.; et al. Mitral valve prolapse and sudden cardiac death: A systematic review and meta-analysis. Heart 2019, 105, 144–151. [Google Scholar] [CrossRef]
- Karakurum, B.; TopÇU, S.; Yildirim, T.; KarataŞ, M.; Turan, I.; Tan, M.; Benli, S. Silent cerebral infarct in patients with mitral valve prolapse. Int. J. Neurosci. 2005, 115, 1527–1537. [Google Scholar] [CrossRef]
- DeSimone, D.C.; DeSimone, C.V.; Tleyjeh, I.M.; Correa de Sa, D.D.; Anavekar, N.S.; Lahr, B.D.; Sohail, M.R.; Steckelberg, J.M.; Wilson, W.R.; Baddour, L.M. Association of Mitral Valve Prolapse with Infective Endocarditis Due to Viridans Group Streptococci. Clin. Infect. Dis. 2015, 61, 623–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yontar, O.C.; Karaagac, K.; Tenekecioglu, E.; Tutuncu, A.; Demir, M.; Melek, M. Assessment of ventricular repolarization inhomogeneity in patients with mitral valve prolapse: Value of T wave peak to end interval. Int. J. Clin. Exp. Med. 2014, 7, 2173–2178. [Google Scholar] [PubMed]
- Alenazy, A.; Eltayeb, A.; Alotaibi, M.K.; Anwar, M.K.; Mulafikh, N.; Aladmawi, M.; Vriz, O. Diagnosis of Mitral Valve Prolapse: Much More than Simple Prolapse. Multimodality Approach to Risk Stratification and Therapeutic Management. J. Clin. Med. 2022, 11, 455. [Google Scholar] [CrossRef]
- Freed, L.A.; Levy, D.; Levine, R.A.; Larson, M.G.; Evans, J.C.; Fuller, D.L.; Lehman, B.; Benjamin, E.J. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 1999, 341, 1–7. [Google Scholar] [CrossRef]
- Perazzolo Marra, M.; Basso, C.; De Lazzari, M.; Rizzo, S.; Cipriani, A.; Giorgi, B.; Lacognata, C.; Rigato, I.; Migliore, F.; Pilichou, K.; et al. Morphofunctional Abnormalities of Mitral Annulus and Arrhythmic Mitral Valve Prolapse. Circ. Cardiovasc. Imaging 2016, 9, e005030. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Adams, D.H.; Pandis, D.; Robson, P.M.; Pawale, A.; Pyzik, R.; Liao, S.L.; El-Eshmawi, A.; Boateng, P.; Garg, J.; et al. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging in Arrhythmic Mitral Valve Prolapse. JAMA Cardiol. 2020, 5, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Delling, F.N.; Vasan, R.S. Epidemiology and pathophysiology of mitral valve prolapse: New insights into disease progression, genetics, and molecular basis. Circulation 2014, 129, 2158–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, M.S.J.; Weyman, A.E. Mitral Valve Prolapse Prevalence and Complications. Circulation 2002, 106, 1305–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, G.V.; Bellotti, G.; Mocelin, A.O.; Camargo, P.R.; Bocchi, E.A. Cardiopulmonary exercise testing in children with heart failure secondary to idiopathic dilated cardiomyopathy. Chest 2001, 120, 816–824. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Glaab, T.; Taube, C. Practical guide to cardiopulmonary exercise testing in adults. Respir. Res. 2022, 23, 9. [Google Scholar] [CrossRef]
- Gati, S.; Malhotra, A.; Sharma, S. Exercise recommendations in patients with valvular heart disease. Heart 2019, 105, 106–110. [Google Scholar] [CrossRef]
- Bashore, T.M.; Grines, C.L.; Utlak, D.; Boudoulas, H.; Wooley, C.F. Postural exercise abnormalities in symptomatic patients with mitral valve prolapse. J. Am. Coll. Cardiol. 1988, 11, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Styres, K.S. The phenomenon of dysautonomia and mitral valve prolapse. J. Am. Acad. Nurse Pract. 1994, 6, 11–15. [Google Scholar] [CrossRef]
- Gokhale, S.G.; Gokhale, S. High prevalence of ‘mitral valve prolapse syndrome’ (MVPS) among older children and adolescents in a contained population. Int. J. Cardiol. 2013, 168, 4307–4308. [Google Scholar] [CrossRef]
- Szymanski, C.; Levine, R.A.; Tribouilloy, C.; Zheng, H.; Handschumacher, M.D.; Tawakol, A.; Hung, J. Impact of mitral regurgitation on exercise capacity and clinical outcomes in patients with ischemic left ventricular dysfunction. Am. J. Cardiol. 2011, 108, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Kampaktsis, P.N.; Albert, B.J.; Kim, J.; Xie, L.X.; Brouwer, L.R.; Tehrani, N.H.; Villanueva, M.; Choi, D.Y.; Szulc, M.; Ratcliffe, M.B.; et al. Impact of Mitral Regurgitation Severity and Cause on Effort Tolerance–Integrated Stress Myocardial Perfusion Imaging and Echocardiographic Assessment of Patients with Known or Suspected Coronary Artery Disease Undergoing Exercise Treadmill Testing. J. Am. Heart Assoc. 2019, 8, e010974. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-H.; Tuan, S.-H.; Tsai, Y.-J.; Huang, W.-C.; Huang, T.-C.; Chang, S.-T.; Lin, K.-L. Comparison of the Results of Cardiopulmonary Exercise Testing between Healthy Peers and Pediatric Patients with Different Echocardiographic Severity of Mitral Valve Prolapse. Life 2023, 13, 302. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Rowland, T.W. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med. 1990, 10, 255–266. [Google Scholar] [CrossRef]
- Pepera, G.; Hadjiandrea, S.; Iliadis, I.; Sandercock, G.R.H.; Batalik, L. Associations between cardiorespiratory fitness, fatness, hemodynamic characteristics, and sedentary behaviour in primary school-aged children. BMC Sports Sci. Med. Rehabil. 2022, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Washington, R.L. Cardiorespiratory testing: Anaerobic threshold/respiratory threshold. Pediatr. Cardiol. 1999, 20, 12–15. [Google Scholar] [CrossRef]
- Chang, S.M.; Tsai, H.J.; Tzeng, J.Y.; Yeh, K.W.; Chen, L.C.; Lai, S.H.; Liao, S.L.; Hua, M.C.; Tsai, M.H.; Huang, J.L.; et al. Reference equations for spirometry in healthy Asian children aged 5 to 18 years in Taiwan. World Allergy Organ. J. 2019, 12, 100074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaseca-Rojas, Y.; Varela-Melo, J.; Torres-Castro, R.; Vasconcello-Castillo, L.; Mazzucco, G.; Vilaró, J.; Blanco, I. Exercise Capacity in Children and Adolescents with Congenital Heart Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 990. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Semizel, E.; Bostan, O.; Cil, E. Risk of vasovagal syncope and cardiac arrhythmias in children with mitral valve prolapse. Acta Cardiol. 2008, 63, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, A.P.; Liakos, C.I.; Antoniades, C.; Tsiachris, D.L.; Soulis, D.; Dilaveris, P.E.; Tsioufis, K.P.; Stefanadis, C.I. ST-Segment Depression in Hyperventilation Indicates a False Positive Exercise Test in Patients with Mitral Valve Prolapse. Cardiol. Res. Pract. 2010, 2010, 541781. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.R.; Gobel, F.L.; Jorgensen, C.R.; Wang, K.; Wang, Y.; Taylor, H.L. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 1974, 50, 1179–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobel, F.L.; Norstrom, L.A.; Nelson, R.R.; Jorgensen, C.R.; Wang, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978, 57, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.B.; Simões, R.P.; Goulart, C.D.L.; Roscani, M.G.; Marinho, R.S.; Camargo, P.F.; Arbex, R.F.; Casale, G.; Oliveira, C.R.; Mendes, R.G.; et al. Eccentric Left Ventricular Hypertrophy and Left and Right Cardiac Function in Chronic Heart Failure with or without Coexisting COPD: Impact on Exercise Performance. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Tuan, S.H.; Su, H.T.; Chen, C.H.; Liou, I.H.; Weng, T.P.; Chen, G.B.; Lin, K.L. Analysis of Exercise Capacity of Children with Kawasaki Disease by a Coronary Artery z Score Model (ZSP Version 4) Derived by the Lambda-Mu-Sigma Method. J. Pediatr. 2018, 201, 128–133. [Google Scholar] [CrossRef]
- Szymczyk, E.; Wierzbowska-Drabik, K.; Drozdz, J.; Krzemińska-Pakuła, M. Mitral valve regurgitation is a powerful factor of left ventricular hypertrophy. Pol. Arch. Med. Wewn. 2008, 118, 478–483. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral regurgitation. Lancet 2009, 373, 1382–1394. [Google Scholar] [CrossRef]
- Lapu-Bula, R.; Robert, A.; Craeynest, D.V.; D’Hondt, A.-M.; Gerber, B.L.; Pasquet, A.; Melin, J.A.; Kock, M.D.; Vanoverschelde, J.-L. Contribution of Exercise-Induced Mitral Regurgitation to Exercise Stroke Volume and Exercise Capacity in Patients with Left Ventricular Systolic Dysfunction. Circulation 2002, 106, 1342–1348. [Google Scholar] [CrossRef] [Green Version]
- Bandera, F.; Generati, G.; Pellegrino, M.; Garatti, A.; Labate, V.; Alfonzetti, E.; Gaeta, M.; Castelvecchio, S.; Menicanti, L.; Guazzi, M. Mitral regurgitation in heart failure: Insights from CPET combined with exercise echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Romero Daza, A.; Chokshi, A.; Pardo, P.; Maneiro, N.; Guijarro Contreras, A.; Larrañaga-Moreira, J.M.; Ibañez, B.; Fuster, V.; Fernández Friera, L.; Solís, J.; et al. Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: More than just a valvular disease. J. Cardiovasc. Magn. Reson. 2021, 23, 107. [Google Scholar] [CrossRef]
- Cipriani, A.; Bauce, B. Ventricular arrhythmias in mitral valve prolapse: New explanations for an old problem. Heart 2021, 107, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.; Iliceto, S.; Thiene, G.; Perazzolo Marra, M. Mitral Valve Prolapse, Ventricular Arrhythmias, and Sudden Death. Circulation 2019, 140, 952–964. [Google Scholar] [CrossRef]
- Luxereau, P.; Dorent, R.; De Gevigney, G.; Bruneval, P.; Chomette, G.; Delahaye, G. Aetiology of surgically treated mitral regurgitation. Eur. Heart J. 1991, 12 (Suppl. B), 2–4. [Google Scholar] [CrossRef]
- Zuppiroli, A.; Mori, F.; Favilli, S.; Barchielli, A.; Corti, G.; Montereggi, A.; Dolara, A. Arrhythmias in mitral valve prolapse: Relation to anterior mitral leaflet thickening, clinical variables, and color Doppler echocardiographic parameters. Am. Heart J. 1994, 128, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Bonow, R.O.; Nishimura, R.A.; Thompson, P.D.; Udelson, J.E. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 5: Valvular Heart Disease. Circulation 2015, 132, e292–e297. [Google Scholar] [CrossRef] [PubMed]
MVP (n = 30) | Control (n = 30) | p Value a | |
---|---|---|---|
Age at first CPET(y) | 13.28 ± 3.24 | 13.62 ± 2.65 | 0.675 |
Height (cm) | 153.52 ± 11.72 | 158.38 ± 11.06 | 0.121 |
Weight (kg) | 49.89 ± 14.57 | 53.09 ± 10.11 | 0.353 |
BMI (kg/m2) | 20.88 ± 4.66 | 21.08 ± 3.14 | 0.853 |
Resting HR (bpm) | 87.72 ± 15.25 | 86.38 ± 11.74 | 0.719 |
Resting SBP (mmHg) | 114.79 ± 12.31 | 114.86 ± 18.44 | 0.988 |
Resting DBP (mmHg) | 67.93 ± 7.27 | 64.64 ± 7.70 | 0.125 |
Time from first to last CPET (y) | 4.28 ± 2.55 | 4.06 ± 2.18 | 0.721 |
First CPET | Last CPET | Comparisons between the 1st and the Last CPET | ||||||
---|---|---|---|---|---|---|---|---|
MVP (n = 30) | Control (n = 30) | p Value a | MVP (n = 30) | Control (n = 30) | p Value a | MVP p Value b | Control p Value b | |
FVC (L) | 2.93 ± 0.57 | 3.03 ± 1.17 | 0.653 | 3.12 ± 0.48 | 3.27 ± 1.07 | 0.587 | 0.168 | 0.192 |
FVCP (%) | 99.75 ± 21.23 | 98.15 ± 21.45 | 0.791 | 90.95 ± 12.65 | 95.44 ± 21.32 | 0.432 | 0.081 | 0.434 |
FEV1 (L) | 2.38 ± 0.61 | 2.70 ± 11.12 | 0.212 | 2.72 ± 0.38 | 2.93 ± 1.09 | 0.431 | 0.093 | 0.233 |
FEV1P (%) | 100.03 ± 20.70 | 101.09 ± 24.55 | 0.867 | 92.66 ± 11.58 | 94.66 ± 29.83 | 0.734 | 0.100 | 0.207 |
FEV1/FVC (%) | 88.75 ± 80.5 | 88.96 ± 6.83 | 0.920 | 87.05 ± 5.36 | 88.81 ± 9.15 | 0.475 | 0.069 | 0.332 |
MVV (L) | 67.60 ± 22.30 | 79.05 ± 35.00 | 0.136 | 74.75 ± 13.64 | 84.10 ± 25.78 | 0.188 | 0.140 | 0.245 |
MVVP (%) | 100.75 ± 50.26 | 103.63 ± 57.82 | 0.834 | 81.80 ± 24.94 | 97.66 ± 54.99 | 0.156 | 0.069 | 0.684 |
AT HR (bpm) | 146.72 ± 12.07 | 140.35 ± 13.05 | 0.065 | 141.33 ± 11.98 | 143.55 ± 12.50 | 0.485 | 0.146 | 0.336 |
AT MET | 6.29 ± 1.43 | 6.25 ± 0.77 | 0.898 | 6.87 ± 5.46 | 6.92 ± 1.29 | 0.968 | 0.299 | 0.142 |
peak MET | 9.11 ± 2.27 | 9.29 ± 1.78 | 0.744 | 8.48 ± 1.76 | 9.66 ± 1.99 | 0.032 * | 0.235 | 0.451 |
peak HR (bpm) | 179.48 ± 9.41 | 177.81 ± 11.01 | 0.546 | 175.77 ± 12.12 | 177.91 ± 7.94 | 0.422 | 0.191 | 0.973 |
peak RER | 1.18 ± 0.09 | 1.22 ± 0.14 | 0.201 | 1.17 ± 0.12 | 1.20 ± 0.14 | 0.451 | 0.717 | 0.246 |
peak SBP (mmHg) | 161.82 ± 21.76 | 155.96 ± 28.78 | 0.400 | 158.88 ± 20.60 | 164.96 ± 35.36 | 0.475 | 0.318 | 0.304 |
peak DBP (mmHg) | 81.32 ± 20.07 | 76.96 ± 17.55 | 0.401 | 78.38 ± 15.34 | 80.65 ± 18.95 | 0.612 | 0.526 | 0.437 |
PRPP | 27048.00 ± 3488.07 | 29905.05 ± 4081.12 | 0.022 * | 26805.89 ± 3103.76 | 29894.21 ± 6053.24 | 0.031 * | 0.777 | 0.367 |
peak oxygen pulse (mL/beat) | 8.71 ± 2.82 | 9.68 ± 2.45 | 0.182 | 9.95 ± 2.16 | 10.92 ± 2.49 | 0.131 | 0.007 * | 0.004 * |
Difference (%) between the First and the Last CPET | |||
---|---|---|---|
MVP (n = 30) | Control (n = 30) | p Value a | |
FVC (L) | 0.12 ± 0.21 | 0.21 ± 0.41 | 0.409 |
FVCP (%) | −0.06 ± 0.18 | −0.22 ± 0.20 | 0.565 |
FEV1 (L) | 0.13 ± 0.32 | 0.23 ± 0.51 | 0.472 |
FEV1P (%) | −0.08 ± 0.21 | −0.60 ± 0.25 | 0.832 |
FEV1/FVC (%) | −0.03 ± 0.06 | −0.02 ± 0.09 | 0.764 |
MVV (L) | 0.36 ± 0.54 | 0.29 ± 0.55 | 0.738 |
MVVP (%) | −0.03 ± 0.63 | −0.17 ± 0.52 | 0.483 |
AT HR (bpm) | −0.04 ± 0.10 | 0.05 ± 0.10 | 0.002 |
AT MET | −0.03 ± 0.23 | 0.07 ± 0.22 | 0.127 |
peak MET | −5.25 ± 17.25 | 5.56 ± 16.58 | 0.034 * |
peak HR (bpm) | −0.03 ± 0.07 | 0.00 ± 0.07 | 0.134 |
peak RER | 0.00 ± 0.13 | −0.02 ± 0.12 | 0.597 |
peak SBP (mmHg) | −0.02 ± 0.14 | 0.09 ± 0.28 | 0.084 |
peak DBP (mmHg) | −0.27 ± 0.27 | 0.15 ± 0.28 | 0.025 |
PRPP | −4.39 ± 13.44 | 9.19 ± 31.75 | 0.047 * |
peak oxygen pulse (mL/beat) | 22.14 ± 38.65 | 15.54 ± 25.13 | 0.462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.-H.; Tsai, Y.-J.; Lin, K.-L.; Weng, K.-P.; Huang, M.-H.; Chen, G.-B.; Tuan, S.-H. Comparison of Cardiorespiratory Fitness between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. J. Cardiovasc. Dev. Dis. 2023, 10, 167. https://doi.org/10.3390/jcdd10040167
Chung J-H, Tsai Y-J, Lin K-L, Weng K-P, Huang M-H, Chen G-B, Tuan S-H. Comparison of Cardiorespiratory Fitness between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. Journal of Cardiovascular Development and Disease. 2023; 10(4):167. https://doi.org/10.3390/jcdd10040167
Chicago/Turabian StyleChung, Jin-Hui, Yi-Ju Tsai, Ko-Long Lin, Ken-Pen Weng, Ming-Hsuan Huang, Guan-Bo Chen, and Sheng-Hui Tuan. 2023. "Comparison of Cardiorespiratory Fitness between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing" Journal of Cardiovascular Development and Disease 10, no. 4: 167. https://doi.org/10.3390/jcdd10040167
APA StyleChung, J. -H., Tsai, Y. -J., Lin, K. -L., Weng, K. -P., Huang, M. -H., Chen, G. -B., & Tuan, S. -H. (2023). Comparison of Cardiorespiratory Fitness between Patients with Mitral Valve Prolapse and Healthy Peers: Findings from Serial Cardiopulmonary Exercise Testing. Journal of Cardiovascular Development and Disease, 10(4), 167. https://doi.org/10.3390/jcdd10040167