Feasibility of Short-Term Aggressive Lipid-Lowering Therapy with the PCSK9 Antibody in Acute Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Masking
2.4. Outcomes
- (1)
- A positive functional study such as an exercise or Persantine myocardial perfusion imaging, a stress or dobutamine echo, or other imaging demonstrating clear evidence of reversible ischemia corresponding to stenosis.
- (2)
- New ischemic electrocardiographic changes consistent with stenosis.
- (3)
- A fractional flow reserve ≤ 0.80.
2.5. Statistical Analysis
3. Results
3.1. Eligible Patients and Baseline Characteristics
3.2. Primary and Secondary Endpoints
3.3. Time Course of Lipid Levels
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Natsuaki, M.; Furukawa, Y.; Morimoto, T.; Nakagawa, Y.; Ono, K.; Kaburagi, S.; Inada, T.; Mitsuoka, H.; Taniguchi, R.; Nakano, A.; et al. Intensity of statin therapy, achieved low-density lipoprotein cholesterol levels and cardiovascular outcomes in Japanese patients after coronary revascularization. Perspectives from the CREDO-Kyoto registry cohort-2. Circ. J. 2012, 76, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, I.; Iimuro, S.; Iwata, H.; Takashima, H.; Abe, M.; Amiya, E.; Ogawa, T.; Ozaki, Y.; Sakuma, I.; Nakagawa, Y.; et al. High-Dose versus Low-Dose Pitavastatin in Japanese Patients with Stable Coronary Artery Disease (REAL-CAD): A Randomized Superiority Trial. Circulation 2018, 137, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Schleyer, T.; Hui, S.; Wang, J.; Zhang, Z.; Knapp, K.; Baker, J.; Chase, M.; Boggs, R.; Simpson, R.J., Jr. Quantifying Unmet Need in Statin-Treated Hyperlipidemia Patients and the Potential Benefit of Further LDL-C Reduction through an EHR-Based Retrospective Cohort Study. J. Manag. Care Spec. Pharm. 2019, 25, 544–554. [Google Scholar] [CrossRef]
- Curneen, J.M.; Judge, C.; Traynor, B.; Buckley, A.; Saiva, L.; Murphy, L.; Murray, D.; Fleming, S.; Kearney, P.; Murphy, R.T.; et al. Interhospital and interindividual variability in secondary prevention: A comparison of outpatients with a history of chronic coronary syndrome versus outpatients with a history of acute coronary syndrome (the iASPIRE Study). Open Heart 2021, 8, e001659. [Google Scholar] [CrossRef]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Oyama, K.; Giugliano, R.P.; Blazing, M.A.; Park, J.G.; Tershakovec, A.M.; Sabatine, M.S.; Cannon, C.P.; Braunwald, E. Baseline Low-Density Lipoprotein Cholesterol and Clinical Outcomes of Combining Ezetimibe With Statin Therapy in IMPROVE-IT. J. Am. Coll. Cardiol. 2021, 78, 1499–1507. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Coronary Plaque Composition. J. Am. Coll. Cardiol. 2018, 72, 2012–2021. [Google Scholar] [CrossRef]
- Takahashi, N.; Dohi, T.; Endo, H.; Okazaki, S. Stepwise regression of non-culprit lipid-rich plaque observed using serial near-infrared spectroscopy-intravascular ultrasound and optical coherence tomographic measurements after aggressive cholesterol-lowering treatment: A case report. Eur. Heart J. Case Rep. 2021, 5, ytab095. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Laiteerapong, N.; Ham, S.A.; Gao, Y.; Moffet, H.H.; Liu, J.Y.; Huang, E.S.; Karter, A.J. The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study). Diabetes Care 2019, 42, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.M.; Defina, L.F.; Leonard, D.; Barlow, C.E.; Radford, N.B.; Willis, B.L.; Rohatgi, A.; McGuire, D.K.; de Lemos, J.A.; Grundy, S.M.; et al. Long-Term Association of Low-Density Lipoprotein Cholesterol With Cardiovascular Mortality in Individuals at Low 10-Year Risk of Atherosclerotic Cardiovascular Disease. Circulation 2018, 138, 2315–2325. [Google Scholar] [CrossRef]
- Bosch, J.; Lonn, E.M.; Jung, H.; Zhu, J.; Liu, L.; Lopez-Jaramillo, P.; Pais, P.; Xavier, D.; Diaz, R.; Dagenais, G.; et al. Lowering cholesterol, blood pressure, or both to prevent cardiovascular events: Results of 8.7 years of follow-up of Heart Outcomes Evaluation Prevention (HOPE)-3 study participants. Eur. Heart J. 2021, 42, 2995–3007. [Google Scholar] [CrossRef] [PubMed]
- Hlatky, M.A.; Kazi, D.S. PCSK9 Inhibitors: Economics and Policy. J. Am. Coll. Cardiol. 2017, 70, 2677–2687. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Mehta, S.R.; Wood, D.A.; Storey, R.F.; Mehran, R.; Bainey, K.R.; Nguyen, H.; Meeks, B.; Di Pasquale, G.; López-Sendón, J.; Faxon, D.P.; et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction. N. Engl. J. Med. 2019, 381, 1411–1421. [Google Scholar] [CrossRef]
- Ray, K.K.; Cannon, C.P.; McCabe, C.H.; Cairns, R.; Tonkin, A.M.; Sacks, F.M.; Jackson, G.; Braunwald, E. Early and late benefits of high-dose atorvastatin in patients with acute coronary syndromes: Results from the PROVE IT-TIMI 22 trial. J. Am. Coll. Cardiol. 2005, 46, 1405–1410. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Ezekowitz, M.D.; Ganz, P.; Oliver, M.F.; Waters, D.; Zeiher, A.; Chaitman, B.R.; Leslie, S.; Stern, T. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: The MIRACL study: A randomized controlled trial. JAMA 2001, 285, 1711–1718. [Google Scholar] [CrossRef]
- Patti, G.; Pasceri, V.; Colonna, G.; Miglionico, M.; Fischetti, D.; Sardella, G.; Montinaro, A.; Di Sciascio, G. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: Results of the ARMYDA-ACS randomized trial. J. Am. Coll. Cardiol. 2007, 49, 1272–1278. [Google Scholar] [CrossRef]
- Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients with Acute Coronary Syndromes (EVOPACS). J. Am. Coll. Cardiol. 2019, 74, 2452–2462. [Google Scholar] [CrossRef] [PubMed]
- Vavuranakis, M.A.; Jones, S.R.; Ziogos, E.; Blaha, M.J.; Williams, M.S.; Foran, P.; Schindler, T.H.; Lai, S.; Schulman, S.P.; Gerstenblith, G.; et al. The Trajectory of Lipoprotein(a) During the Peri- and Early Postinfarction Period and the Impact of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition. Am. J. Cardiol. 2022, 171, 1–6. [Google Scholar] [CrossRef]
- Yano, H.; Horinaka, S.; Ishimitsu, T. Effect of evolocumab therapy on coronary fibrous cap thickness assessed by optical coherence tomography in patients with acute coronary syndrome. J. Cardiol. 2020, 75, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, Z.J.; Ma, X.T.; Shen, H.; Yang, L.X.; Zhou, Y.J. Effect of alirocumab on coronary plaque in patients with coronary artery disease assessed by optical coherence tomography. Lipids Health Dis. 2021, 20, 106. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, Q.; Wei, R.; Ma, C.; Zhang, X.; Chen, X.; Fang, F.; Zhao, Q. Cost-Effectiveness of Alirocumab for the Secondary Prevention of Cardiovascular Events after Myocardial Infarction in the Chinese Setting. Front. Pharmacol. 2021, 12, 648244. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Briggs, A.H.; Reed, S.D.; Annemans, L.; Szarek, M.; Bittner, V.A.; Diaz, R.; Goodman, S.G.; Harrington, R.A.; Higuchi, K.; et al. Cost-Effectiveness of Alirocumab in Patients with Acute Coronary Syndromes: The ODYSSEY OUTCOMES Trial. J. Am. Coll. Cardiol. 2020, 75, 2297–2308. [Google Scholar] [CrossRef]
- Omori, H.; Ota, H.; Mizukami, T.; Kawase, Y.; Tanigaki, T.; Hirata, T.; Okubo, M.; Kawasaki, M.; Matsuo, H. How Do Coronary Lipid-Rich Plaques Change after Cessation of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors?—Serial Assessment Using Near-Infrared Spectroscopy. Circ. J. 2021, 85, 1404. [Google Scholar] [CrossRef] [PubMed]
With PCSK9 Antibody Group (N = 62) | Without PCSK9 Antibody Group (N = 62) | |
---|---|---|
Male | 48 (77) | 48 (77) |
Age, years | 66.9 ± 10.2 | 66.0 ± 11.6 |
BMI, kg/m2 | 24.2 ± 3.9 | 24.0 ± 3.6 |
Hypertension | 43 (69) | 39 (63) |
Hyperlipidemia | 49 (79) | 47 (76) |
Familial hyperlipidemia | 2 (3) | 1 (2) |
Diabetes mellitus | 20 (32) | 21 (34) |
Hyperuricemia | 11 (18) | 15 (24) |
COPD | 4 (6) | 5 (8) |
PAD | 0 (0) | 3 (5) |
AF | 3 (5) | 4 (6) |
Congestive heart failure | 2 (3) | 4 (6) |
History of PCI | 5 (8) | 4 (6) |
Current tobacco use | 20 (32) | 19 (31) |
Clinical presentation | ||
STEMI | 50 (81) | 45 (73) |
NSTEMI | 7 (11) | 8 (13) |
UAP | 5 (8) | 9 (14) |
Medications | ||
Statins | 62 (100) | 62 (100) |
Atorvastatin | 7 (11) | 8 (13) |
Rosuvastatin | 53 (85) | 51 (82) |
Pitavastatin | 1 (2) | 1 (2) |
Pravastatin | 1 (2) | 2 (3) |
Fibrate | 1 (2) | 0 (0) |
Ezetimibe | 5 (8) | 6 (10) |
PCSK9 antibody therapy | ||
Evolocumab 140 mg every 2 weeks | 28 (45) | NA |
Evolocumab 420 mg every 4 weeks | 12 (19) | NA |
Alirocumab 75 mg every 2 weeks | 21 (34) | NA |
Alirocumab 150 mg every 4 weeks | 1 (2) | NA |
Anti-platelets | ||
Aspirin | 60 (97) | 60 (97) |
Prasugrel | 54 (87) | 52 (84) |
Clopidogrel | 6 (10) | 8 (13) |
Anti-coagulants | ||
Warfarin | 0 (0) | 1 (2) |
DOAC | 2 (3) | 3 (5) |
ACE-I or ARB | 45 (73) | 46 (74) |
β-blocker | 38 (61) | 28 (45) |
Ca blocker | 11 (18) | 8 (13) |
Laboratory data | ||
Hb, g/dL | 13.9 ± 1.7 | 13.4 ± 1.7 |
Cr, mg/dL | 0.9 ± 0.2 | 0.9 ± 0.3 |
LDL-C level, mg/dL | 113.2 ± 32.8 | 111.3 ± 30.3 |
HDL-C level, mg/dL | 45.0 ± 12.4 | 42.5 ± 12.0 |
Triglyceride level, mg/dL | 137.2 ± 69.6 | 136.3 ± 77.5 |
Glucose, mg/dL | 125.7 ± 29.4 | 127.0 ± 52.7 |
HbA1c, % | 6.3 ± 0.6 | 6.3 ± 1.1 |
Echocardiographic data | ||
LVEDD, mm | 46.4 ± 5.7 | 48.4 ± 6.1 |
LVESD, mm | 31.1 ± 6.4 | 33.3 ± 6.2 |
EF, % | 57.6 ± 10.0 | 56.2 ± 10.0 |
With PCSK9 Antibody Group (N = 62) | Without PCSK9 Antibody Group (N = 62) | |
---|---|---|
Target lesion | ||
RCA | 23 (37) | 17 (27) |
LMT | 2 (3) | 1 (2) |
LAD | 24 (39) | 33 (53) |
LCX | 13 (21) | 11 (18) |
Stents | ||
CoCr-EES | 27 (40) | 25 (37) |
Others | 40 (60) | 43 (63) |
Multiple stents | 5 (8) | 8 (13) |
Stent diameter, mm | 3.1 ± 0.5 | 3.1 ± 0.5 |
Total number of stents | 1.1 ± 0.3 | 1.1 ± 0.4 |
Total stent length, mm | 26.0 ± 10.4 | 27.4 ± 13.2 |
Final TIMI III | 53 (86) | 58 (94) |
Event | With PCSK9 Antibody Group (N = 62) | Without PCSK9 Antibody Group (N = 62) | p Value |
---|---|---|---|
AST ≥ 3 upper limit of normal range | |||
1 month | 0 (0) | 0 (0) | 1.0 |
3 months | 0 (0) | 0 (0) | 1.0 |
12 months | 1 (1.6) | 0 (0) | 1.0 |
ALT ≥ 3 upper limit of normal range | |||
1 month | 0 (0) | 0 (0) | 1.0 |
3 months | 0 (0) | 0 (0) | 1.0 |
12 months | 2 (3.2) | 0 (0) | 0.496 |
CK ≥ 5 upper limit of normal range | |||
1 month | 0 (0) | 0 (0) | 1.0 |
3 months | 0 (0) | 0 (0) | 1.0 |
12 months | 0 (0) | 0 (0) | 1.0 |
Myalgia | |||
12 months | 1 (1.6) | 0 (0) | 1.0 |
With PCSK9 Antibody Group (N = 62) | Without PCSK9 Antibody Group (N = 62) | p Value | |
---|---|---|---|
1 month | |||
LDL-C, mg/dL | 28.5 ± 14.6 | 80.5 ± 18.4 | <0.001 |
HDL-C, mg/dL | 53.2 ± 11.9 | 46.7 ± 11.8 | 0.003 |
Triglyceride, mg/dL | 125.2 ± 60.9 | 145.1 ± 74.4 | 0.111 |
3 months | |||
LDL-C, mg/dL | 32.8 ± 19.6 | 80.6 ± 23.3 | <0.001 |
HDL-C, mg/dL | 53.4 ± 12.2 | 48.9 ± 13.3 | 0.056 |
Triglyceride, mg/dL | 128.9 ± 87.5 | 127.8 ± 66.7 | 0.942 |
12 months | |||
LDL-C, mg/dL | 79.5 ± 19.6 | 80.2 ± 29.1 | 0.875 |
HDL-C, mg/dL | 50.5 ± 12.9 | 49.4 ± 12.7 | 0.652 |
Triglyceride, mg/dL | 148.0 ± 70.0 | 128.1 ± 63.8 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, S.; Sakamoto, A.; Shoji, S.; Kawaguchi, Y.; Wakabayashi, Y.; Matsunaga, M.; Suguro, K.; Matsumoto, Y.; Takase, H.; Onodera, T.; et al. Feasibility of Short-Term Aggressive Lipid-Lowering Therapy with the PCSK9 Antibody in Acute Coronary Syndrome. J. Cardiovasc. Dev. Dis. 2023, 10, 204. https://doi.org/10.3390/jcdd10050204
Yamashita S, Sakamoto A, Shoji S, Kawaguchi Y, Wakabayashi Y, Matsunaga M, Suguro K, Matsumoto Y, Takase H, Onodera T, et al. Feasibility of Short-Term Aggressive Lipid-Lowering Therapy with the PCSK9 Antibody in Acute Coronary Syndrome. Journal of Cardiovascular Development and Disease. 2023; 10(5):204. https://doi.org/10.3390/jcdd10050204
Chicago/Turabian StyleYamashita, Satoshi, Atsushi Sakamoto, Satoshi Shoji, Yoshitaka Kawaguchi, Yasushi Wakabayashi, Masaki Matsunaga, Kiyohisa Suguro, Yuji Matsumoto, Hiroyuki Takase, Tomoya Onodera, and et al. 2023. "Feasibility of Short-Term Aggressive Lipid-Lowering Therapy with the PCSK9 Antibody in Acute Coronary Syndrome" Journal of Cardiovascular Development and Disease 10, no. 5: 204. https://doi.org/10.3390/jcdd10050204
APA StyleYamashita, S., Sakamoto, A., Shoji, S., Kawaguchi, Y., Wakabayashi, Y., Matsunaga, M., Suguro, K., Matsumoto, Y., Takase, H., Onodera, T., Tawarahara, K., Muto, M., Shirasaki, Y., Katoh, H., Sano, M., Suwa, K., Naruse, Y., Ohtani, H., Saotome, M., ... Maekawa, Y. (2023). Feasibility of Short-Term Aggressive Lipid-Lowering Therapy with the PCSK9 Antibody in Acute Coronary Syndrome. Journal of Cardiovascular Development and Disease, 10(5), 204. https://doi.org/10.3390/jcdd10050204