Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms
Abstract
:1. Introduction
2. Coronary and Carotid Artery Disease
3. Coronary and Peripheral Artery Disease
4. Other Arterial Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chatzizisis, Y.S.; Coskun, A.U.; Jonas, M.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 2007, 49, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Rampidis, G.; Rafailidis, V.; Kouskouras, K.; Davidhi, A.; Papachristodoulou, A.; Samaras, A.; Giannakoulas, G.; Ziakas, A.; Prassopoulos, P.; Karvounis, H. Relationship between Coronary Arterial Geometry and the Presence and Extend of Atherosclerotic Plaque Burden: A Review Discussing Methodology and Findings in the Era of Cardiac Computed Tomography Angiography. Diagnostics 2022, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Flather, M.D.; Hacke, W.; Berger, P.B.; Black, H.R.; Boden, W.E.; Cacoub, P.; Cohen, E.A.; Creager, M.A.; Easton, J.D.; et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J. Am. Coll. Cardiol. 2007, 49, 1982–1988. [Google Scholar] [CrossRef]
- Keaney, J.F.J.; Vita, J.A. The value of inflammation for predicting unstable angina. N. Engl. J. Med. 2002, 347, 55–57. [Google Scholar] [CrossRef]
- Shenouda, R.; Vancheri, S.; Maria Bassi, E.; Nicoll, R.; Sobhi, M.; El Sharkawy, E.; Wester, P.; Vancheri, F.; Henein, M.Y. The relationship between carotid and coronary calcification in patients with coronary artery disease. Clin. Physiol. Funct. Imaging 2021, 41, 271–280. [Google Scholar] [CrossRef]
- Jashari, F.; Ibrahimi, P.; Nicoll, R.; Bajraktari, G.; Wester, P.; Henein, M.Y. Coronary and carotid atherosclerosis: Similarities and differences. Atherosclerosis 2013, 227, 193–200. [Google Scholar] [CrossRef]
- Solberg, L.A.; McGarry, P.A.; Moossy, J.; Tejada, C.; Loken, A.C.; Robertson, W.B.; Donoso, S. Distribution of cerebral atherosclerosis by geographic location, race, and sex. Lab. Investig. 1968, 18, 604–612. [Google Scholar] [PubMed]
- Huh, J.; Wall, M.J.J.; Soltero, E.R. Treatment of combined coronary and carotid artery disease. Curr. Opin. Cardiol. 2003, 18, 447–453. [Google Scholar] [CrossRef]
- Hertzer, N.R.; Young, J.R.; Beven, E.G.; Graor, R.A.; O’Hara, P.J.; Ruschhaupt WF 3rd deWolfe, V.G.; Maljovec, L.C. Coronary angiography in 506 patients with extracranial cerebrovascular disease. Arch. Intern. Med. 1985, 145, 849–852. [Google Scholar] [CrossRef]
- Bytyçi, I.; Shenouda, R.; Wester, P.; Henein, M.Y. Carotid Atherosclerosis in Predicting Coronary Artery Disease: A Systematic Review and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2021, 41, e224–e237. [Google Scholar] [CrossRef]
- Narula, J.; Nakano, M.; Virmani, R.; Kolodgie, F.D.; Petersen, R.; Newcomb, R.; Malik, S.; Fuster, V.; Finn, A.V. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J. Am. Coll. Cardiol. 2013, 61, 1041–1051. [Google Scholar] [CrossRef]
- Sigala, F.; Oikonomou, E.; Antonopoulos, A.S.; Galyfos, G.; Tousoulis, D. Coronary versus carotid artery plaques. Similarities and differences regarding biomarkers morphology and prognosis. Curr. Opin. Pharmacol. 2018, 39, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, J.N.; Lovett, J.K.; Gallagher, P.J.; Rothwell, P.M. Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: The Oxford plaque study. Circulation 2006, 113, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Song, J.; Watase, H.; Hippe, D.S.; Zhao, X.; Canton, G.; Tian, F.; Du, R.; Ji, S.; CARE-II Investigators. Differences in Carotid Plaques between Symptomatic Patients With and Without Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1234–1239. [Google Scholar] [CrossRef]
- Achim, A.; Lackó, D.; Hüttl, A.; Csobay-Novák, C.; Csavajda, Á.; Sótonyi, P.; Merkely, B.; Nemes, B.; Ruzsa, Z. Impact of Diabetes Mellitus on Early Clinical Outcome and Stent Restenosis after Carotid Artery Stenting. Am. Heart J. 2022, 254, 234. [Google Scholar] [CrossRef]
- Della-Morte, D.; Dong, C.; Crisby, M.; Gardener, H.; Cabral, D.; Elkind, M.S.V.; Gutierrez, J.; Sacco, R.L.; Rundek, T. Association of Carotid Plaque Morphology and Glycemic and Lipid Parameters in the Northern Manhattan Study. Front. Cardiovasc. Med. 2022, 9, 793755. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.S.; Pontone, G.; Hlatky, M.A.; Patel, M.R.; Norgaard, B.L.; Byrne, R.A.; Curzen, N.; Purcell, I.; Gutberlet, M.; Rioufol, G.; et al. PLATFORM Investigators. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: The prospective longitudinal trial of FFR(CT): Outcome and resource impacts study. Eur. Heart J. 2015, 36, 3359–3367. [Google Scholar] [CrossRef]
- Motoyama, S.; Ito, H.; Sarai, M.; Kondo, T.; Kawai, H.; Nagahara, Y.; Harigaya, H.; Kan, S.; Anno, H.; Takahashi, H.; et al. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J. Am. Coll. Cardiol. 2015, 66, 337–346. [Google Scholar] [CrossRef]
- Burke, A.P.; Farb, A.; Malcom, G.T.; Liang, Y.H.; Smialek, J.; Virmani, R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 1997, 336, 1276–1282. [Google Scholar] [CrossRef]
- Mauriello, A.; Sangiorgi, G.M.; Virmani, R.; Trimarchi, S.; Holmes, D.R.J.; Kolodgie, F.D.; Piepgras, D.G.; Piperno, G.; Liotti, D.; Narula, J.; et al. A pathobiologic link between risk factors profile and morphological markers of carotid instability. Atherosclerosis 2010, 208, 572–580. [Google Scholar] [CrossRef]
- Lüscher, T.F.; Davies, A.; Beer, J.H.; Valgimigli, M.; Nienaber, C.A.; Camm, J.A.; Baumgartner, I.; Diener, H.C.; Konstantinides, S.V. Towards personalized antithrombotic management with drugs and devices across the cardiovascular spectrum. Eur. Heart J. 2022, 43, 940–958. [Google Scholar] [CrossRef]
- Aboyans, V.; Bauersachs, R.; Mazzolai, L.; Brodmann, M.; Palomares, J.F.R.; Debus, S.; Collet, J.P.; Drexel, H.; Espinola-Klein, C.; Lewis, B.S.; et al. Antithrombotic therapies in aortic and peripheral arterial diseases in 2021: A consensus document from the ESC working group on aorta and peripheral vascular diseases, the ESC working group on thrombosis, and the ESC working group on cardiovascular pharmacotherapy. Eur. Heart J. 2021, 42, 4013–4024. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Gnasso, A.; Irace, C.; Carallo, C.; De Franceschi, M.S.; Motti, C.; Mattioli, P.L.; Pujia, A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997, 28, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Spring, S.; van der Loo, B.; Krieger, E.; Amann-Vesti, B.R.; Rousson, V.; Koppensteiner, R. Decreased wall shear stress in the common carotid artery of patients with peripheral arterial disease or abdominal aortic aneurysm: Relation to blood rheology, vascular risk factors, and intima-media thickness. J. Vasc. Surg. 2006, 43, 56–63; discussion 63. [Google Scholar] [CrossRef]
- Dammers, R.; Stifft, F.; Tordoir, J.H.; Hameleers, J.M.; Hoeks, A.P.; Kitslaar, P.J. Shear stress depends on vascular territory: Comparison between common carotid and brachial artery. J. Appl. Physiol. 2003, 94, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, A.M.; Duerinckx, A.J. Wall shear stress and early atherosclerosis: A review. Am. J. Roentgenol. 2000, 174, 1657–1665. [Google Scholar] [CrossRef]
- Achim, A.; Stanek, A.; Homorodean, C.; Spinu, M.; Onea, H.L.; Lazăr, L.; Marc, M.; Ruzsa, Z.; Olinic, D.M. Approaches to Peripheral Artery Disease in Diabetes: Are There Any Differences? Int. J. Environ. Res. Public Health 2022, 19, 9801. [Google Scholar] [CrossRef]
- Valentine, R.J.; Verstraete, R.; Clagett, G.P.; Cohen, J.C. Premature cardiovascular disease is common in relatives of patients with premature peripheral atherosclerosis. Arch. Intern. Med. 2000, 160, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Grenon, S.M.; Vittinghoff, E.; Owens, C.D.; Conte, M.S.; Whooley, M.; Cohen, B.E. Peripheral artery disease and risk of cardiovascular events in patients with coronary artery disease: Insights from the Heart and Soul Study. Vasc. Med. 2013, 18, 176–184. [Google Scholar] [CrossRef]
- Kim, E.K.; Song, P.S.; Yang, J.H.; Song, Y.B.; Hahn, J.Y.; Choi, J.H.; Gwon, H.C.; Lee, S.H.; Hong, K.P.; Park, J.E.; et al. Peripheral artery disease in korean patients undergoing percutaneous coronary intervention: Prevalence and association with coronary artery disease severity. J. Korean Med. Sci. 2013, 28, 87–92. [Google Scholar] [CrossRef]
- Lisowska, A.; Dubatówka, M.; Chlabicz, M.; Jamiołkowski, J.; Kondraciuk, M.; Szyszkowska, A.; Knapp, M.; Szpakowicz, A.; Łukasiewicz, A.; Kamiński, K. Disparities in the Prevalence and Risk Factors for Carotid and Lower Extremities Atherosclerosis in a General Population-Bialystok PLUS Study. J. Clin. Med. 2023, 12, 2627. [Google Scholar] [CrossRef]
- Bittl, J.A.; Hirsch, A.T. Concomitant peripheral arterial disease and coronary artery disease: Therapeutic opportunities. Circulation 2004, 109, 3136–3144. [Google Scholar] [CrossRef]
- Matsuo, Y.; Takumi, T.; Mathew, V.; Chung, W.Y.; Barsness, G.W.; Rihal, C.S.; Gulati, R.; McCue, E.T.; Holmes, D.R.; Eeckhout, E.; et al. Plaque characteristics and arterial remodeling in coronary and peripheral arterial systems. Atherosclerosis 2012, 223, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Sulkava, M.; Raitoharju, E.; Levula, M.; Seppälä, I.; Lyytikäinen, L.P.; Mennander, A.; Järvinen, O.; Zeitlin, R.; Salenius, J.P.; Illig, T.; et al. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques-Tampere Vascular Study. Sci. Rep. 2017, 7, 41483. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Poredos, P.; Jezovnik, M.K. Structure of Atherosclerotic Plaques in Different Vascular Territories: Clinical Relevance. Curr. Vasc. Pharmacol. 2018, 16, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Dannenberg, A.J.; Olin, J.W.; Bhatt, D.L.; Johnson, K.W.; Nadkarni, G.; Min, J.; Torii, S.; Poojary, P.; Anand, S.S.; et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J. Am. Coll. Cardiol. 2018, 72, 2152–2163. [Google Scholar] [CrossRef]
- Soor, G.S.; Vukin, I.; Leong, S.W.; Oreopoulos, G.; Butany, J. Peripheral vascular disease: Who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology 2008, 40, 385–391. [Google Scholar] [CrossRef]
- Torii, S.; Mustapha, J.A.; Narula, J.; Mori, H.; Saab, F.; Jinnouchi, H.; Yahagi, K.; Sakamoto, A.; Romero, M.E.; Narula, N.; et al. Histopathologic characterization of peripheral arteries in subjects with abundant risk factors: Correlating imaging with pathology. JACC Cardiovasc. Imaging 2019, 12 Pt 1, 1501–1513. [Google Scholar] [CrossRef]
- Derksen, W.J.; de Vries, J.P.; Vink, A.; Velema, E.; Vos, J.A.; de Kleijn, D.; Moll, F.L.; Pasterkamp, G. Histologic atherosclerotic plaque characteristics are associated with restenosis rates after endarterectomy of the common and superficial femoral arteries. J. Vasc. Surg. 2010, 52, 592–599. [Google Scholar] [CrossRef]
- De Bakker, M.; Timmerman, N.; van Koeverden, I.D.; de Kleijn, D.P.V.; de Borst, G.J.; Pasterkamp, G.; Boersma, E.; den Ruijter, H.M. The age- and sex-specific composition of atherosclerotic plaques in vascular surgery patients. Atherosclerosis 2020, 310, 1–10. [Google Scholar] [CrossRef]
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef]
- O’Brien, E.R.; Schwartz, S.M. Update on the biology and clinical study of restenosis. Trends Cardiovasc. Med. 1994, 4, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Forrester, J.S.; Fishbein, M.; Helfant, R.; Fagin, J. A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. J. Am. Coll. Cardiol. 1991, 17, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Poredoš, P.; Cevc, M.; Blinc, A. Characteristics of atherosclerosis in femoropopliteal artery and its clinical relevance. Atherosclerosis 2021, 335, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.H.; Myers, K.S.; Bansilal, S.; Machac, J.; Pinto, C.A.; Tong, C.; Rafique, A.; Hargeaves, R.; Farkouh, M.; Fuster, V.; et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 2008, 49, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Brevetti, G.; Piscione, F.; Schiano, V.; Galasso, G.; Scopacasa, F.; Chiariello, M. Concomitant coronary and peripheral arterial disease: Relationship between the inflammatory status of the affected limb and the severity of coronary artery disease. J. Vasc. Surg. 2009, 49, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Buffon, A.; Biasucci, L.M.; Liuzzo, G.; D’Onofrio, G.; Crea, F.; Maseri, A. Widespread coronary inflammation in unstable angina. N. Engl. J. Med. 2002, 347, 5–12. [Google Scholar] [CrossRef]
- Zhang, R.; Brennan, M.L.; Fu, X.; Aviles, R.J.; Pearce, G.L.; Penn, M.S.; Topol, E.J.; Sprecher, D.L.; Hazen, S.L. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001, 286, 2136–2142. [Google Scholar] [CrossRef]
- Dalager, S.; Paaske, W.P.; Kristensen, I.B.; Laurberg, J.M.; Falk, E. Artery-related differences in atherosclerosis expression: Implications for atherogenesis and dynamics in intima-media thickness. Stroke 2007, 38, 2698–2705. [Google Scholar] [CrossRef]
- Cotter, G.; Cannon, C.P.; McCabe, C.H.; Michowitz, Y.; Kaluski, E.; Charlesworth, A.; Milo, O.; Bentley, J.; Blatt, A.; Krakover, R.; et al. Prior peripheral arterial disease and cerebrovascular disease are independent predictors of adverse outcome in patients with acute coronary syndromes: Are we doing enough? Results from the Orbofiban in Patients with Unstable Coronary Syndromes-Thrombolysis in Myocardial Infarction (OPUS-TIMI) 16 study. Am. Heart J. 2003, 145, 622–627. [Google Scholar] [CrossRef]
- Golomb, B.A.; Dang, T.T.; Criqui, M.H. Peripheral arterial disease: Morbidity and mortality implications. Circulation 2006, 114, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.T.; Creager, M.A. The relationship of cigarette smoking to peripheral arterial disease. Rev. Cardiovasc. Med. 2004, 5, 189–193. [Google Scholar]
- Morley, R.L.; Sharma, A.; Horsch, A.D.; Hinchliffe, R.J. Peripheral artery disease. BMJ 2018, 360, j5842. [Google Scholar] [CrossRef]
- Diez-Roux, A.V.; Nieto, F.J.; Comstock, G.W.; Howard, G.; Szklo, M. The relationship of active and passive smoking to carotid atherosclerosis 12–14 years later. Prev. Med. 1995, 24, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Iyer, S.; Gardener, H.; Della-Morte, D.; Crisby, M.; Dong, C.; Cheung, K.; Mora-McLaughlin, C.; Wright, C.B.; Elkind, M.S.; et al. Cigarette Smoking and Carotid Plaque Echodensity in the Northern Manhattan Study. Cerebrovasc. Dis. 2015, 40, 136–143. [Google Scholar] [CrossRef]
- Bolorunduro, O.; Cushman, C.; Kapoor, D.; Alexander, K.; Cuellar-Silva, J.; Giri, S.; Robinson, V.; Ibebuogu, U.N. Comparison of Coronary Atherosclerotic Plaque Burden and Composition of Culprit Lesions Between Cigarette Smokers and Non-Smokers by In Vivo Virtual Histology Intravascular Ultrasound. J. Invasive Cardiol. 2015, 27, 354–358. [Google Scholar]
- Zhang, X.; Peng, X.; Li, L.; Yu, H.; Yu, B. Persistent Cigarette Smoking Attenuates Plaque Stabilization in Response to Lipid-Lowering Therapy: A Serial Optical Coherence Tomography Study. Front. Cardiovasc. Med. 2021, 8, 616568. [Google Scholar] [CrossRef] [PubMed]
- Khatami, M.R.; Edalati-Fard, M.; Sadeghian, S.; Salari-Far, M.; Bs, M.P. Renal artery stenosis in patients with established coronary artery disease: Prevalence and predicting factors. Saudi J. Kidney Dis. Transplant. 2014, 25, 986. [Google Scholar] [CrossRef]
- Palit, S.; Kendrick, J. Vascular calcification in chronic kidney disease: Role of disordered mineral metabolism. Curr. Pharm. Des. 2014, 20, 5829–5833. [Google Scholar] [CrossRef]
- Schwarz, U.; Buzello, M.; Ritz, E.; Stein, G.; Raabe, G.; Wiest, G.; Mall, G.; Amann, K. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol. Dial. Transplant. 2000, 15, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Ishibashi-Ueda, H.; Niizuma, S.; Yoshihara, F.; Horio, T.; Kawano, Y. Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1892–1900. [Google Scholar] [CrossRef]
- Tomiyama, C.; Higa, A.; Dalboni, M.A.; Cendoroglo, M.; Draibe, S.A.; Cuppari, L.; Carvalho, A.B.; Neto, E.M.; Canziani, M.E. The impact of traditional and non-traditional risk factors on coronary calcification in pre-dialysis patients. Nephrol. Dial. Transplant. 2006, 21, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Palmiero, G.; De Blasio, A.P.; Balletta, M.M.; Andreucci, V.E. Coronary artery calcification in patients with CRF not undergoing dialysis. Am. J. Kidney Dis. 2004, 44, 1024–1030. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Sukhorukov, V.N.; Orekhov, A.N. Atherosclerosis Specific Features in Chronic Kidney Disease (CKD). Biomedicines 2022, 10, 2094. [Google Scholar] [CrossRef]
- Menon, V.; Sarnak, M.J. The epidemiology of chronic kidney disease stages 1 to 4 and cardiovascular disease: A high-risk combination. Am. J. Kidney Dis. 2005, 45, 223–232. [Google Scholar] [CrossRef]
- Betriu, A.; Martinez-Alonso, M.; Arcidiacono, M.V.; Cannata-Andia, J.; Pascual, J.; Valdivielso, J.M.; Fernández, E.; Investigators from the NEFRONA Study. Prevalence of subclinical atheromatosis and associated risk factors in chronic kidney disease: The NEFRONA study. Nephrol. Dial. Transplant. 2014, 29, 1415–1422. [Google Scholar] [CrossRef]
- Verbrugge, F.H.; Tang, W.H.; Hazen, S.L. Protein carbamylation and cardiovascular disease. Kidney Int. 2015, 88, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, D.; Betriu, A.; Martinez-Alonso, M.; Vidal, T.; Valdivielso, J.M.; Fernández, E.; Investigators from the NEFRONA study. Observational multicenter study to evaluate the prevalence and prognosis of subclinical atheromatosis in a Spanish chronic kidney disease cohort: Baseline data from the NEFRONA study. BMC Nephrol. 2014, 15, 168. [Google Scholar] [CrossRef]
- Hsu, S.; Rifkin, D.E.; Criqui, M.H.; Suder, N.C.; Garimella, P.; Ginsberg, C.; Marasco, A.M.; McQuaide, B.J.; Barinas-Mitchell, E.J.; Allison, M.A.; et al. Relationship of femoral artery ultrasound measures of atherosclerosis with chronic kidney disease. J. Vasc. Surg. 2018, 67, 1855–1863.e1. [Google Scholar] [CrossRef]
- Achim, A.; Kákonyi, K.; Nagy, F.; Jambrik, Z.; Varga, A.; Nemes, A.; Chan, J.S.K.; Toth, G.G.; Ruzsa, Z. Radial Artery Calcification in Predicting Coronary Calcification and Atherosclerosis Burden. Cardiol. Res. Pract. 2022, 2022, 5108389. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.; Menzenbach, J.; Velten, M.; Kim, S.-C.; Hilbert, T. Lower Patient Height and Weight Are Predisposing Factors for Complex Radial Arterial Catheterization. J. Clin. Med. 2023, 12, 2225. [Google Scholar] [CrossRef] [PubMed]
- Achim, A.; Péter, O.Á.; Kákonyi, K.; Sasi, V.; Nemes, A.; Homorodean, C.; Stanek, A.; Olinic, D.M.; Ruzsa, Z. The Role of Ultrasound in Accessing the Distal Radial Artery at the Anatomical Snuffbox for Cardiovascular Interventions. Life 2023, 13, 25. [Google Scholar] [CrossRef]
- Achim, A.; Szűcsborus, T.; Sasi, V.; Nagy, F.; Jambrik, Z.; Nemes, A.; Varga, A.; Homorodean, C.; Bertrand, O.F.; Ruzsa, Z. Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty: The DR-BAV Study. JACC Cardiovasc. Interv. 2022, 15, 679–681. [Google Scholar] [CrossRef]
- Mateo, R.B.; O’Hara, P.J.; Hertzer, N.R.; Mascha, E.J.; Beven, E.G.; Krajewski, L.P. Elective surgical treatment of symptomatic chronic mesenteric occlusive disease: Early results and late outcomes. J. Vasc. Surg. 1999, 29, 821–831; discussion 832. [Google Scholar] [CrossRef]
- Shadman, R.; Criqui, M.H.; Bundens, W.P.; Fronek, A.; Denenberg, J.O.; Gamst, A.C.; McDermott, M.M. Subclavian artery stenosis: Prevalence, risk factors, and association with cardiovascular diseases. J. Am. Coll. Cardiol. 2004, 44, 618–623. [Google Scholar] [CrossRef]
- Lin, A.; Manral, N.; McElhinney, P.; Killekar, A.; Matsumoto, H.; Kwiecinski, J.; Pieszko, K.; Razipour, A.; Grodecki, K.; Park, C.; et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: An international multicentre study. Lancet Digit. Health 2022, 4, e256–e265. [Google Scholar] [CrossRef]
- Cohen, G.I.; Aboufakher, R.; Bess, R.; Frank, J.; Othman, M.; Doan, D.; Mesiha, N.; Rosman, H.S.; Szpunar, S. Relationship between carotid disease on ultrasound and coronary disease on CT angiography. JACC Cardiovasc. Imaging 2013, 6, 1160–1167. [Google Scholar] [CrossRef]
- Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Fernández-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997, 95, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.T.; Biasiolli, L.; Li, L.; Alkhalil, M.; Galassi, F.; Darby, C.; Halliday, A.W.; Hands, L.; Magee, T.; Perkins, J.; et al. Quantification of Lipid-Rich Core in Carotid Atherosclerosis Using Magnetic Resonance T2 Mapping: Relation to Clinical Presentation. JACC Cardiovasc. Imaging 2017, 10, 747–756. [Google Scholar] [CrossRef]
CAD | Carotid Disease | PAD | ||||
---|---|---|---|---|---|---|
Antithrombotic therapy | Symptomatic (Secondary prevention) | Asymptomatic (Primary prevention) | Symptomatic | Asymptomatic | Symptomatic | Asymptomatic |
Aspirin long term | Aspirin for primary prevention in higher ASCVD risk | Aspirin or clopidogrel | No | Aspirin and low-dose rivaroxaban | No data | |
Statin | Yes | Yes | Yes | Yes | Yes | |
First-line treatment of associated hypertension | Beta-blockers ACEIs and ARBs | ACEIs and ARBs | ACEIs and ARBs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achim, A.; Péter, O.Á.; Cocoi, M.; Serban, A.; Mot, S.; Dadarlat-Pop, A.; Nemes, A.; Ruzsa, Z. Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms. J. Cardiovasc. Dev. Dis. 2023, 10, 210. https://doi.org/10.3390/jcdd10050210
Achim A, Péter OÁ, Cocoi M, Serban A, Mot S, Dadarlat-Pop A, Nemes A, Ruzsa Z. Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms. Journal of Cardiovascular Development and Disease. 2023; 10(5):210. https://doi.org/10.3390/jcdd10050210
Chicago/Turabian StyleAchim, Alexandru, Orsolya Ágnes Péter, Mihai Cocoi, Adela Serban, Stefan Mot, Alexandra Dadarlat-Pop, Attila Nemes, and Zoltan Ruzsa. 2023. "Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms" Journal of Cardiovascular Development and Disease 10, no. 5: 210. https://doi.org/10.3390/jcdd10050210
APA StyleAchim, A., Péter, O. Á., Cocoi, M., Serban, A., Mot, S., Dadarlat-Pop, A., Nemes, A., & Ruzsa, Z. (2023). Correlation between Coronary Artery Disease with Other Arterial Systems: Similar, Albeit Separate, Underlying Pathophysiologic Mechanisms. Journal of Cardiovascular Development and Disease, 10(5), 210. https://doi.org/10.3390/jcdd10050210