Exploring the Diversity of Visceral, Subcutaneous and Perivascular Adipose Tissue in a Vascular Surgery Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description
2.2. Ethical Considerations
2.3. Inclusion and Exclusion Criteria
2.4. Clinical Characteristics
2.5. Anthropometric Measurements
- Biceps—the anterior surface of biceps midway between the anterior fold and the antecubital fossa;
- Triceps—a vertical fold on the posterior midline of the upper arm, over the triceps muscle, halfway between the acromion process and olecranon process;
- Subscapular—taken on the diagonal line coming from the vertebral border to between 1 and 2 cm from the inferior angle of scapulae;
- Suprailiac—a diagonal fold above the crest of the ilium at the spot where an imaginary line would come down from the anterior auxiliary line just above the hipbone and 2–3 cm forward.
2.6. Determination of Adipose Tissue with CT Scan
2.7. Samples of Subcutaneous Adipose Tissue
2.8. Analytic Evaluation
2.9. Statistical Analysis
3. Results
3.1. General Description of the Studied Population
3.2. Characteristics of Visceral, Subcutaneous and Peri-Aortic Adipose Tissue Depots in CT Scan
3.3. Characteristics of Adipose Tissue Depot and Cardiovascular Risk Factors
3.3.1. Subcutaneous Adipose Tissue
- (a)
- Smokers/ex-smokers had a higher number of CD 163+ macrophages on the subcutaneous adipose tissue (CD 163+ macrophages more than moderate in 22.8% of smokers/ex-smokers and 11.2% of non-smokers, p = 0.04).
- (b)
- Older patients had a higher number of CD 45+ leucocytes in the subcutaneous adipose tissue (CD 45+ leucocytes mild or absent: MD = 68.0 years old, AI = 13; CD 45+ leucocytes higher than moderate: MD = 70.0 years old, AI = 13, p = 0.03).
3.3.2. Visceral Adipose Tissue
3.3.3. Peri-Aortic Adipose Tissue
3.4. Adipose Tissue and Anthropometric Measurements
3.4.1. Subcutaneous Adipose Tissue
3.4.2. Visceral Adipose Tissue
3.4.3. Peri-Aortic Adipose Tissue
3.5. Adipose Tissue and Medication
4. Discussion
4.1. Characteristics of Visceral, Subcutaneous and Peri-Aortic Adipose Tissue Depots in CT Scan
4.2. Characteristics of Adipose Tissue Depot and Cardiovascular Risk Factors
4.3. Adipose Tissue and Anthropometric Measurements
4.4. Adipose Tissue and Medication
4.5. Clinical and Research Implications
4.6. Strength, Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- Obtain a paraffin-embedded tissue sample from the desired area.
- 2.
- Section the paraffin-embedded tissue sample onto a slide at a thickness of 4–6 μm.
- 3.
- Turn on the bath.
- 4.
- Adjust the pH of the buffer, put it in plastic cuvettes and place them in the bath.
- 5.
- 3. Heat to 60 °C until the paraffin melts. (NOTE: if the slides are paraffinized, it requires more time).
- 6.
- Paraffin removal and hydration (Leica Auto Stainer XL): xylene, 2 × 5 min; absolute ethanol, 2 min; ethanol 95°, 2 min; ethanol 95°, 2 min; ethanol 70°, 2 min; water, 2 min.
- 7.
- Antigen recovery: bath 98 °C, 20 min (citrate buffer 10 mM); let cool for 20 min.
- 8.
- PBS wash, 2 × 5 min.
- 9.
- Inactivation of endogenous peroxidases: 3% in methanol, 10 min (stock H2O2 30%).
- 10.
- PBS wash, 2 × 5 min.
- 11.
- Incubate with primary antibody 2 h at room temperature—CD45 abcam 10558, 1:500; CD163 Cell Marque™, MRQ-26 1:100 (manufactured by Cell Marque in California, United States).
- 12.
- Wash with PBS, 2 × 5 min.
- 13.
- Incubate with amplification solution (HiDef Detection™ HRP Polymer System, manufactured by Cell Marque in California, United States, and Cell Marque™), 10 min.
- 14.
- Wash with PBS, 2 × 5 min.
- 15.
- Incubate with polymer (HiDef Detection™ HRP Polymer System, Cell Marque™), 10 min.
- 16.
- Wash with PBS, 2 × 5 min.
- 17.
- Incubate with DAB (DAB Substrate Kit, produced in Massachusetts, United States of America, and Cell Marque™), 5 min.
- 18.
- Wash with H2O, 2 min.
- 19.
- Counter-stain with Hematoxylin (Leica Auto Stainer XL, manufactured by Leica biosystems in Nussloch, Germany).
- 20.
- Mount with Entellan in the Hotte.
References
- Ahmadieh, S.; Kim, H.W.; Weintraub, N.L. Potential role of perivascular adipose tissue in modulating atherosclerosis. Clin. Sci. 2020, 134, 3–13. Available online: https://portlandpress.com/clinsci/article/134/1/3/221757/Potential-role-of-perivascular-adipose-tissue-in (accessed on 11 January 2023). [CrossRef] [PubMed] [Green Version]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- The World Obesity Federation. Projections of Obesity Prevalence in 2030. World Obes. Atlas 2022, 2022, 18–41. [Google Scholar]
- Biasucci, L.M.; Graziani, F.; Rizzello, V.; Liuzzo, G.; Guidone, C.; De Caterina, A.R.; Brugaletta, S.; Mingrone, G.; Crea, F. Paradoxical preservation of vascular function in severe obesity. Am. J. Med. 2010, 123, 727–734. [Google Scholar] [CrossRef]
- Fadini, G.P.; Boscaro, E.; de Kreutzenberg, S.; Agostini, C.; Seeger, F.; Dimmeler, S.; Zeiher, A.; Tiengo, A.; Avogaro, A. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 2010, 33, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Wang, Z.; Punyanita, M.; Lei, J.; Sinav, A.; Kral, J.G.; Imielinska, C.; Ross, R.; Heymsfield, S.B. Adipose Tissue Quantification by Imaging Methods: A Proposed Classification. Obes. Res. 2003, 11, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Maeda, N.; Funahashi, T.; Matsuzawa, Y.; Shimomura, I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 2020, 292, 1–9. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0021915019315515 (accessed on 20 January 2023). [CrossRef]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. Available online: http://www.nature.com/articles/ncpcardio0319 (accessed on 18 January 2023). [CrossRef]
- Jakovljević, B.; Stojanov, V.; Lović, D.; Paunović, K.; Radosavljević, V.; Tutić, I. Obesity and fat distribution as predictors of aortoiliac peripheral arterial disease in middle-aged men. Eur. J. Intern. Med. 2011, 22, 84–88. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0953620510001597 (accessed on 18 January 2023). [CrossRef]
- Li, F.; Li, Y.; Duan, Y.; Hu, C.-A.A.; Tang, Y.; Yin, Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017, 33, 73–82. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1359610116300910 (accessed on 20 January 2023). [CrossRef]
- Badimon, L.; Cubedo, J. Adipose tissue depots and inflammation: Effects on plasticity and resident mesenchymal stem cell function. Cardiovasc. Res. 2017, 113, 1064–1073. Available online: http://academic.oup.com/cardiovascres/article/113/9/1064/3819204/Adipose-tissue-depots-and-inflammation-effects-on (accessed on 11 January 2023). [CrossRef] [Green Version]
- Mittal, B. Subcutaneous adipose tissue & visceral adipose tissue. Indian J. Med. Res. 2019, 149, 571. Available online: http://www.ijmr.org.in/text.asp?2019/149/5/571/264264 (accessed on 1 January 2023).
- Shuster, A.; Patlas, M.; Pinthus, J.H.; Mourtzakis, M. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 2012, 85, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shibata, R.; Ouchi, N.; Takahashi, R.; Terakura, Y.; Ohashi, K.; Ikeda, N.; Higuchi, A.; Terasaki, H.; Kihara, S.; Murohara, T. Omentin as a novel biomarker of metabolic risk factors. Diabetol. Metab. Syndr. 2012, 4, 37. Available online: https://dmsjournal.biomedcentral.com/articles/10.1186/1758-5996-4-37 (accessed on 13 January 2023). [CrossRef] [PubMed] [Green Version]
- Li, F.Y.L.; Cheng, K.K.Y.; Lam, K.S.L.; Vanhoutte, P.M.; Xu, A. Cross-talk between adipose tissue and vasculature: Role of adiponectin. Acta Physiol. 2011, 203, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Cronin, O.; Bradshaw, B.; Iyer, V.; Cunningham, M.; Buttner, P.; Walker, P.J.; Golledge, J. The Association of Visceral Adiposity with Cardiovascular Events in Patients with Peripheral Artery Disease. PLoS ONE 2013, 8, e82350. [Google Scholar] [CrossRef] [PubMed]
- Alkhalil, M.; Edmond, E.; Edgar, L.; Digby, J.E.; Omar, O.; Robson, M.D.; Choudhury, R.P. The relationship of perivascular adipose tissue and atherosclerosis in the aorta and carotid arteries, determined by magnetic resonance imaging. Diabetes Vasc. Dis. Res. 2018, 15, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Barra, S.; Providência, R.; Silva, J.; Gomes, P.L.; Seca, L.; Nascimento, J.; Leitão-Marques, A. Taxa de filtração glomerular: Que fórmula deverá ser usada em doentes com enfarte agudo do miocárdio? [Glomerular filtration rate: Which formula should be used in patients with myocardial infarction?]. Rev. Port. Cardiol. 2012, 31, 493–502. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J. Hypertens. 2018, 36, 1953–2041. Available online: https://journals.lww.com/00004872-201810000-00002 (accessed on 11 January 2023). [CrossRef] [Green Version]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr. Pract. 2017, 23, 1–87. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1530891X20429593 (accessed on 13 January 2023). [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luepker, R.V.; Apple, F.S.; Christenson, R.H.; Crow, R.S.; Fortmann, S.P.; Goff, D.; Goldberg, R.J.; Hand, M.M.; Jaffe, A.S.; Julian, D.G.; et al. Case Definitions for Acute Coronary Heart Disease in Epidemiology and Clinical Research Studies. Circulation 2003, 108, 2543–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hippel, A. Human Evolutionary Biology; Stone Age Press: Bloomington, IN, USA, 1994. [Google Scholar]
- Verhave, J.C.; Fesler, P.; Ribstein, J.; du Cailar, G.; Mimran, A. Estimation of Renal Function in Subjects with Normal Serum Creatinine Levels: Influence of Age and Body Mass Index. Am. J. Kidney Dis. 2005, 46, 233–241. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0272638605006256 (accessed on 13 January 2023). [CrossRef]
- Nishida, C.; Uauy, R. WHO Scientific Update on health consequences of trans fatty acids: Introduction. Eur. J. Clin. Nutr. 2009, 63, S1–S4. Available online: https://www.nature.com/articles/ejcn200913 (accessed on 18 January 2023). [CrossRef]
- Matsubara, Y.; Matsumoto, T.; Aoyagi, Y.; Tanaka, S.; Okadome, J.; Morisaki, K.; Shirabe, K.; Maehara, Y. Sarcopenia is a prognostic factor for overall survival in patients with critical limb ischemia. J. Vasc. Surg. 2015, 61, 945–950. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0741521414020230 (accessed on 18 January 2023). [CrossRef] [PubMed] [Green Version]
- Garg, S.K.; Lin, F.; Kandula, N.; Ding, J.; Carr, J.; Allison, M.; Liu, K.; Herrington, D.; Vaidya, D.; Vittinghoff, E.; et al. Ectopic Fat Depots and Coronary Artery Calcium in South Asians Compared with Other Racial/Ethnic Groups. J. Am. Heart Assoc. 2016, 5, e004257. [Google Scholar] [CrossRef] [Green Version]
- Schlett, C.L.; Massaro, J.M.; Lehman, S.J.; Bamberg, F.; O’Donnell, C.J.; Fox, C.S.; Hoffmann, U. Novel measurements of periaortic adipose tissue in comparison to anthropometric measures of obesity, and abdominal adipose tissue. Int. J. Obes. 2009, 33, 226–232. Available online: http://www.nature.com/articles/ijo2008267 (accessed on 20 January 2023). [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. Available online: http://www.nature.com/articles/nmeth.2019 (accessed on 20 January 2023). [CrossRef] [Green Version]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.-Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal Visceral and Subcutaneous Adipose Tissue Compartments. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Rosenquist, K.J.; Pedley, A.; Massaro, J.M.; Therkelsen, K.E.; Murabito, J.M.; Hoffmann, U.; Fox, C.S. Visceral and Subcutaneous Fat Quality and Cardiometabolic Risk. JACC Cardiovasc. Imaging 2013, 6, 762–771. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1936878X13002696 (accessed on 20 January 2023). [CrossRef] [Green Version]
- Côté, J.A.; Nazare, J.-A.; Nadeau, M.; Leboeuf, M.; Blackburn, L.; Després, J.-P.; Tchernof, A. Computed tomography-measured adipose tissue attenuation and area both predict adipocyte size and cardiometabolic risk in women. Adipocyte 2016, 5, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Abraham, T.M.; Pedley, A.; Massaro, J.M.; Hoffmann, U.; Fox, C.S. Association between Visceral and Subcutaneous Adipose Depots and Incident Cardiovascular Disease Risk Factors. Circulation 2015, 132, 1639–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhu, J.; Tan, Z.; Yu, Y.; Luo, L.; Zhou, W.; Zhu, L.; Wang, T.; Cao, T.; Liu, L.; et al. Visceral adiposity index is associated with arterial stiffness in hypertensive adults with normal-weight: The china H-type hypertension registry study. Nutr. Metab. 2021, 18, 90. Available online: https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-021-00617-5 (accessed on 13 January 2023). [CrossRef] [PubMed]
- Sobhani, S.; Vakili, S.; Jam, D.J.; Aryan, R.; Khadem-Rezaiyan, M.; Eslami, S.; Alinezhad-Namaghi, M. Relationship between anthropometric indices and arterial stiffness: Insights from an epidemiologic study. Obes. Sci. Pract. 2022, 8, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tong, X.; Ma, Y.; Bao, T.; Yue, J. Relationship between Low Skeletal Muscle Mass and Arteriosclerosis in Western China: A Cross-Sectional Study. Front. Cardiovasc. Med. 2021, 8, 735262. [Google Scholar] [CrossRef] [PubMed]
- Kauerova, S.; Bartuskova, H.; Muffova, B.; Janousek, L.; Fronek, J.; Petras, M.; Poledne, R.; Lesna, I.K. Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation. Biomedicines 2021, 9, 211. [Google Scholar] [CrossRef]
- Raggi, P.; Gadiyaram, V.; Zhang, C.; Chen, Z.; Lopaschuk, G.; Stillman, A.E. Statins Reduce Epicardial Adipose Tissue Attenuation Independent of Lipid Lowering: A Potential Pleiotropic Effect. J. Am. Heart Assoc. 2019, 8, e013104. [Google Scholar] [CrossRef] [Green Version]
- Naguib, Y.M.; Samaka, R.M.; Rizk, M.S.; Ameen, O.; Motawea, S.M. Countering adipose tissue dysfunction could underlie the superiority of telmisartan in the treatment of obesity-related hypertension. Cardiovasc. Diabetol. 2021, 20, 70. [Google Scholar] [CrossRef]
- Hiuge-Shimizu, A.; Kishida, K.; Funahashi, T.; Ishizaka, Y.; Oka, R.; Okada, M.; Suzuki, S.; Takaya, N.; Nakagawa, T.; Fukui, T.; et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann. Med. 2012, 44, 82–92. [Google Scholar] [CrossRef]
- Terry, J.G.; Hartley, K.G.; Steffen, L.M.; Nair, S.; Alman, A.C.; Wellons, M.F.; Jacobs, D.R.; Tindle, H.A.; Carr, J.J. Association of smoking with abdominal adipose deposition and muscle composition in Coronary Artery Risk Development in Young Adults (CARDIA) participants at mid-life: A population-based cohort study. PLoS Med. 2020, 17, e1003223. [Google Scholar] [CrossRef]
- Austys, D.; Valeviciene, N.; Stukas, R. Smoking and distribution of adipose tissue. Eur. J. Public Health 2018, 28 (Suppl. S4), cky213.378. [Google Scholar] [CrossRef]
- Filozof, C.; Pinilla, M.C.F.; Fernandez-Cruz, A. Smoking cessation and weight gain. Obes. Rev. 2004, 5, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Pourmoghaddas, Z.; Hekmatnia, A.; Sanei, H.; Tavakoli, B.; Tchernof, A.; Roohafza, H.; Sarrafzadegan, N. Abdominal fat distribution and serum lipids in patients with and without coronary heart disease. Arch. Iran. Med. 2013, 16, 149–153. [Google Scholar] [PubMed]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diab. Rep. 2018, 18, 69. [Google Scholar] [CrossRef]
- Lehman, S.J.; Massaro, J.M.; Schlett, C.L.; O’Donnell, C.J.; Hoffmann, U.; Fox, C.S. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: The Framingham Heart Study. Atherosclerosis 2010, 210, 656–661. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0021915010000535 (accessed on 13 January 2023). [CrossRef] [PubMed] [Green Version]
- Rapolti, E.; Opincariu, D.; Benedek, I.; Kovacs, I.; Ratiu, M.; Rat, N.; Benedek, T. Computer-Aided Biomedical Imaging of Periiliac Adipose Tissue Identifies Perivascular Fat as a Marker of Disease Complexity in Patients with Lower Limb Ischemia. Appl. Sci. 2020, 10, 4456. [Google Scholar] [CrossRef]
- Lesna, I.K.; Kralova, A.; Cejkova, S.; Fronek, J.; Petras, M.; Sekerkova, A.; Thieme, F.; Janousek, L.; Poledne, R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl. Med. 2016, 14, 208. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.; Gitto, S.; Fogacci, F.; Rosticci, M.; Giovannini, M.; D’Addato, S.; Andreone, P.; Borghi, C.; Brisighella Heart Study Group Medical and Surgical Sciences Dept., University of Bologna. Fatty liver index is associated to pulse wave velocity in healthy subjects: Data from the Brisighella Heart Study. Eur. J. Intern. Med. 2018, 53, 29–33. [Google Scholar] [CrossRef]
- Haraguchi, N.; Koyama, T.; Kuriyama, N.; Ozaki, E.; Matsui, D.; Watanabe, I.; Uehara, R.; Watanabe, Y. Assessment of anthropometric indices other than BMI to evaluate arterial stiffness. Hypertens. Res. 2019, 42, 1599–1605. Available online: http://www.nature.com/articles/s41440-019-0264-0 (accessed on 11 January 2023). [CrossRef]
- Van den Munckhof, I.C.L.; Holewijn, S.; de Graaf, J.; Rutten, J.H.W. Sex differences in fat distribution influence the association between BMI and arterial stiffness. J. Hypertens. 2017, 35, 1219–1225. Available online: https://journals.lww.com/00004872-201706000-00014 (accessed on 13 January 2023). [CrossRef]
- Pak, K.; Lee, S.H.; Lee, J.G.; Seok, J.W.; Kim, I.J. Comparison of Visceral Fat Measures with Cardiometabolic Risk Factors in Healthy Adults. PLoS ONE 2016, 11, e0153031. [Google Scholar] [CrossRef] [PubMed]
Studied Population (n = 177) | |
---|---|
Male (n; %) | 141; 80 |
Hypertension (n; %) | 121; 68 |
Smoker/ex-smoker (n; %) | 112; 63 |
Smoking load (PY) | 28.15 ± 31.86 |
Dyslipidemia (n; %) | 110; 62 |
Diabetes (n; %) | 66; 37 |
HbA1c (%) | 6.53 ± 3.01 |
Coronary artery disease (n; %) | 23; 13 |
Statins (n; %) | 143; 81 |
Fibrate (n; %) | 14; 8 |
Ezetimibe (n; %) | 9; 5 |
Antiplatelet (n; %) | 126; 71 |
ACEi/ARA (n; %) | 53; 30 |
Beta-blockers (n; %) | 38; 21 |
Calcium channel blockers (n; %) | 51; 29 |
Present | Non-Present | p-Value | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Hypertension | 14,095.0 | 10,426.42 | 13,402.0 | 7419.8 | 0.33 |
Smoker/ex-smoker | 13,330.5 | 6324.5 | 15,182.5 | 12,454.5 | 0.01 * |
Dyslipidemia | 14,273.5 | 8564.8 | 13,185.0 | 8917.0 | 0.27 |
Diabetes | 15,030.0 | 9880.6 | 135,414.0 | 7273.5 | 0.28 |
Present | Non-Present | p-Value | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Hypertension | −103.6 | 880.0 | −102.0 | 5.2 | 0.17 |
Smoker/ex-smoker | −104.0 | 5.0 | −101.5 | 8.9 | 0.05 * |
Dyslipidemia | −103.7 | 7.0 | −102.0 | 5.1 | 0.15 |
Diabetes | −102.0 | 7.5 | −104.0 | 5.0 | 0.00 * |
Present | Non-Present | p-Value | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
Hypertension | 17,200.0 | 35,353.1 | 14,427.0 | 10,487.0 | 0.02 * |
Smoker/ex-smoker | 17,198.0 | 13,900.2 | 15,978.0 | 15,170.5 | 0.38 |
Dyslipidemia | 15,978.5 | 12,656.0 | 17,528.0 | 14,312.0 | 0.74 |
Diabetes | 17,532.0 | 13,191.0 | 15,396.0 | 13,774.5 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.; Afonso, J.; Carneiro, A.L.; Vila, I.; Cunha, C.; Roque, S.; Silva, C.; Mesquita, A.; Cotter, J.; Correia-Neves, M.; et al. Exploring the Diversity of Visceral, Subcutaneous and Perivascular Adipose Tissue in a Vascular Surgery Population. J. Cardiovasc. Dev. Dis. 2023, 10, 271. https://doi.org/10.3390/jcdd10070271
Ferreira J, Afonso J, Carneiro AL, Vila I, Cunha C, Roque S, Silva C, Mesquita A, Cotter J, Correia-Neves M, et al. Exploring the Diversity of Visceral, Subcutaneous and Perivascular Adipose Tissue in a Vascular Surgery Population. Journal of Cardiovascular Development and Disease. 2023; 10(7):271. https://doi.org/10.3390/jcdd10070271
Chicago/Turabian StyleFerreira, Joana, Julieta Afonso, Alexandre Lima Carneiro, Isabel Vila, Cristina Cunha, Susana Roque, Cristina Silva, Amílcar Mesquita, Jorge Cotter, Margarida Correia-Neves, and et al. 2023. "Exploring the Diversity of Visceral, Subcutaneous and Perivascular Adipose Tissue in a Vascular Surgery Population" Journal of Cardiovascular Development and Disease 10, no. 7: 271. https://doi.org/10.3390/jcdd10070271
APA StyleFerreira, J., Afonso, J., Carneiro, A. L., Vila, I., Cunha, C., Roque, S., Silva, C., Mesquita, A., Cotter, J., Correia-Neves, M., Mansilha, A., Longatto-Filho, A., & Cunha, P. (2023). Exploring the Diversity of Visceral, Subcutaneous and Perivascular Adipose Tissue in a Vascular Surgery Population. Journal of Cardiovascular Development and Disease, 10(7), 271. https://doi.org/10.3390/jcdd10070271