Transcatheter Aortic Valve Replacement in Elderly Patients: Opportunities and Challenges
Abstract
:1. Introduction
2. Access Site
2.1. Trans-Subclavian/Axillary Arterial Access
2.2. Transaortic Access
2.3. Transcarotid Access
2.4. Transapical Access
3. Coronary Artery Disease
The Timing of Revascularization
4. Atrial Fibrillation
4.1. Anticoagulation
4.2. Left Atrial Appendage Occlusion
5. Stroke
5.1. Incidence and Prognosis of Stroke
5.2. Preventive Measures for Stroke
6. Conduction Disturbances
6.1. Incidence
6.2. Prognosis
6.3. Risk Factors
7. Low-Flow, Low-Gradient Aortic Stenosis
Prognosis and Risk Factors
8. Acute Kidney Injury
8.1. Risk Factors
8.2. Prevention of Acute Kidney Injury
9. Bleeding
10. Vascular Complications
11. Future Directions and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- D’Arcy, J.L.; Coffey, S.; Loudon, M.A.; Kennedy, A.; Pearson-Stuttard, J.; Birks, J.; Frangou, E.; Farmer, A.J.; Mant, D.; Wilson, J.; et al. Prendergast, Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: The OxVALVE Population Cohort Study. Eur. Heart J. 2016, 37, 3515–3522. [Google Scholar] [CrossRef] [Green Version]
- Iung, B.; Baron, G.; Tornos, P.; Gohlke-Bärwolf, C.; Butchart, E.G.; Vahanian, A. Valvular heart disease in the community: A European experience. Curr. Probl. Cardiol. 2007, 32, 609–661. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A.; Paulus, W.J. Aortic stenosis. Lancet 2009, 373, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Osnabrugge, R.L.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.; Piazza, N.; Kappetein, A.P. Aortic stenosis in the elderly: Disease prevalence and number of candidates for transcatheter aortic valve replacement: A meta-analysis and modeling study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freed, B.H.; Sugeng, L.; Furlong, K.; Mor-Avi, V.; Raman, J.; Jeevanandam, V.; Lang, R.M. Reasons for nonadherence to guidelines for aortic valve replacement in patients with severe aortic stenosis and potential solutions. Am. J. Cardiol. 2010, 105, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J.; Kleiman, N.S., Jr.; et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef] [Green Version]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Kurra, V.; Schoenhagen, P.; Roselli, E.E.; Kapadia, S.R.; Tuzcu, E.M.; Greenberg, R.; Akhtar, M.; Desai, M.Y.; Flamm, S.D.; Halliburton, S.S.; et al. Prevalence of significant peripheral artery disease in patients evaluated for percutaneous aortic valve insertion: Preprocedural assessment with multidetector computed tomography. J. Thorac. Cardiovasc. Surg. 2009, 137, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Raptis, D.A.; Beal, M.A.; Kraft, D.C.; Maniar, H.S.; Bierhals, A.J. Transcatheter aortic valve replacement: Alternative access beyond the femoral arterial approach. Radiographics 2019, 39, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Gleason, T.G.; Schindler, J.T.; Hagberg, R.C.; Deeb, G.M.; Adams, D.H.; Conte, J.V.; Zorn, G.L.; Hughes, G.C., 3rd; Guo, J.; Popma, J.J.; et al. Subclavian/Axillary access for Self-Expanding transcatheter aortic valve replacement renders equivalent outcomes as transfemoral. Ann. Thorac. Surg. 2018, 105, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bapat, V.; Frank, D.; Cocchieri, R.; Jagielak, D.; Bonaros, N.; Aiello, M.; Lapeze, J.; Laine, M.; Chocron, S.; Muir, D.; et al. Transcatheter aortic valve replacement using transaortic access: Experience from the multicenter, multinational, prospective ROUTE registry. JACC Cardiovasc. Interv. 2016, 9, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Chamandi, C.; Abi-Akar, R.; Rodes-Cabau, J.; Blanchard, D.; Dumont, E.; Spaulding, C.; Doyle, D.; Pagny, J.Y.; DeLarochellière, R.; Lafont, A.; et al. Transcarotid compared with other alternative access routes for transcatheter aortic valve replacement. Circ. Cardiovasc. Interv. 2018, 11, e6388. [Google Scholar] [CrossRef]
- Mylotte, D.; Sudre, A.; Teiger, E.; Obadia, J.F.; Lee, M.; Spence, M.; Khamis, H.; Al Nooryani, A.; Delhaye, C.; Amr, G.; et al. Transcarotid transcatheter aortic valve replacement: Feasibility and safety. JACC Cardiovasc. Interv. 2016, 9, 472–480. [Google Scholar] [CrossRef]
- Silaschi, M.; Conradi, L.; Wendler, O.; Schlingloff, F.; Kappert, U.; Rastan, A.J.; Baumbach, H.; Holzhey, D.; Eichinger, W.; Bader, R.; et al. The JUPITER registry: One-year outcomes of transapical aortic valve implantation using a second generation transcatheter heart valve for aortic regurgitation. Catheter. Cardiovasc. Interv. 2018, 91, 1345–1351. [Google Scholar] [CrossRef]
- Blackstone, E.H.; Suri, R.M.; Rajeswaran, J.; Babaliaros, V.; Douglas, P.S.; Fearon, W.F.; Miller, D.C.; Hahn, R.T.; Kapadia, S.; Kirtane, A.J.; et al. Propensity-matched comparisons of clinical outcomes after transapical or transfemoral transcatheter aortic valve replacement: A placement of aortic transcatheter valves (PARTNER)-I trial substudy. Circulation 2015, 131, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
- Elmariah, S.; Fearon, W.F.; Inglessis, I.; Vlahakes, G.J.; Lindman, B.R.; Alu, M.C.; Crowley, A.; Kodali, S.; Leon, M.B.; Svensson, L.; et al. Transapical transcatheter aortic valve replacement is associated with increased cardiac mortality in patients with left ventricular dysfunction: Insights from the PARTNER i trial. JACC Cardiovasc. Interv. 2017, 10, 2414–2422. [Google Scholar] [CrossRef]
- Paradis, J.M.; Labbe, B.; Rodes-Cabau, J. Coronary artery disease and transcatheter aortic valve replacement: Current treatment paradigms. Coron. Artery Dis. 2015, 26, 272–278. [Google Scholar] [CrossRef]
- Walther, T.; Hamm, C.W.; Schuler, G.; Berkowitsch, A.; Kotting, J.; Mangner, N.; Mudra, H.; Beckmann, A.; Cremer, J.; Welz, A.; et al. Perioperative Results and Complications in 15,964 Transcatheter Aortic Valve Replacements: Prospective Data From the GARY Registry. J. Am. Coll. Cardiol. 2015, 65, 2173–2180. [Google Scholar] [CrossRef] [Green Version]
- Dewey, T.M.; Brown, D.L.; Herbert, M.A.; Culica, D.; Smith, C.R.; Leon, M.B.; Svensson, L.G.; Tuzcu, M.; Webb, J.G.; Cribier, A.; et al. Effect of concomitant coronary artery disease on procedural and late outcomes of transcatheter aortic valve implantation. Ann. Thorac. Surg. 2010, 89, 758–767. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Stortecky, S.; Cao, D.; Rat-Wirtzler, J.; O’Sullivan, C.J.; Gloekler, S.; Buellesfeld, L.; Khattab, A.A.; Nietlispach, F.; Pilgrim, T.; et al. Coronary artery disease severity and aortic stenosis: Clinical outcomes according to SYNTAX score in patients undergoing transcatheter aortic valve implantation. Eur. Heart J. 2014, 35, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Witberg, G.; Regev, E.; Chen, S.; Assali, A.; Barbash, I.M.; Planer, D.; Vaknin-Assa, H.; Guetta, V.; Vukasinovic, V.; Orvin, K.; et al. The prognostic effects of coronary disease severity and completeness of revascularization on mortality in patients undergoing transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2017, 10, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; Del, V.D.; Muntane-Carol, G.; Mohammadi, S.; Paradis, J.M.; Rodes-Cabau, J. Coronary artery disease and transcatheter aortic valve replacement: JACC State-of-the-Art review. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, L.; Popma, J.J.; Reardon, M.J.; Van Mieghem, N.M.; Deeb, G.M.; Kodali, S.; George, I.; Williams, M.R.; Yakubov, S.J.; Kappetein, A.P.; et al. Comparison of a complete percutaneous versus surgical approach to aortic valve replacement and revascularization in patients at intermediate surgical risk: Results from the randomized SURTAVI trial. Circulation 2019, 140, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Tarus, A.; Tinica, G.; Bacusca, A.; Artene, B.; Popa, I.V.; Burlacu, A. Coronary revascularization during treatment of severe aortic stenosis: A meta-analysis of the complete percutaneous approach (PCI plus TAVR) versus the complete surgical approach (CABG plus SAVR). J. Card. Surg. 2020, 35, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Altibi, A.M.; Ghanem, F.; Hammad, F.; Patel, J.; Song, H.K.; Golwala, H.; Zahr, F.E.; Rahmouni, H. Clinical outcomes of revascularization with percutaneous coronary intervention prior to transcatheter aortic valve replacement: A comprehensive Meta-Analysis. Curr. Probl. Cardiol. 2022, 47, 101339. [Google Scholar] [CrossRef]
- Patterson, T.; Clayton, T.; Dodd, M.; Khawaja, Z.; Morice, M.C.; Wilson, K.; Kim, W.K.; Meneveau, N.; Hambrecht, R.; Byrne, J.; et al. ACTIVATION (PercutAneous Coronary inTervention prIor to transcatheter aortic VAlve implantaTION): A Randomized Clinical Trial. JACC Cardiovasc. Interv. 2021, 14, 1965–1974. [Google Scholar] [CrossRef]
- Penkalla, A.; Pasic, M.; Drews, T.; Buz, S.; Dreysse, S.; Kukucka, M.; Mladenow, A.; Hetzer, R.; Unbehaun, A. Transcatheter aortic valve implantation combined with elective coronary artery stenting: A simultaneous approachdagger. Eur. J. Cardiothorac. Surg. 2015, 47, 1083–1089. [Google Scholar] [CrossRef]
- Singh, V.; Rodriguez, A.P.; Thakkar, B.; Patel, N.J.; Ghatak, A.; Badheka, A.O.; Alfonso, C.E.; de Marchena, E.; Sakhuja, R.; Inglessis-Azuaje, I.; et al. Comparison of outcomes of transcatheter aortic valve replacement plus percutaneous coronary intervention versus transcatheter aortic valve replacement alone in the united states. Am. J. Cardiol. 2016, 118, 1698–1704. [Google Scholar] [CrossRef]
- Lateef, N.; Khan, M.S.; Deo, S.V.; Yamani, N.; Riaz, H.; Virk, H.; Khan, S.U.; Hedrick, D.P.; Kanaan, A.; Reed, G.W.; et al. Meta-Analysis comparing outcomes in patients undergoing transcatheter aortic valve implantation with versus without percutaneous coronary intervention. Am. J. Cardiol. 2019, 124, 1757–1764. [Google Scholar] [CrossRef]
- Barbanti, M.; Costa, G.; Picci, A.; Reddavid, C.; Valvo, R.; Todaro, D.; Deste, W.; Condorelli, A.; Scalia, M.; Licciardello, A.; et al. Coronary cannulation after transcatheter aortic valve replacement: The RE-ACCESS study. JACC Cardiovasc. Interv. 2020, 13, 2542–2555. [Google Scholar] [CrossRef]
- van Rosendael, P.J.; van der Kley, F.; Kamperidis, V.; Katsanos, S.; Al, A.I.; Regeer, M.; Schalij, M.J.; Ajmone, M.N.; Bax, J.J.; Delgado, V. Timing of staged percutaneous coronary intervention before transcatheter aortic valve implantation. Am. J. Cardiol. 2015, 115, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Lip, G.Y.; De Caterina, R.; Savelieva, I.; Atar, D.; Hohnloser, S.H.; Hindricks, G.; Kirchhof, P. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: An update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur. Heart J. 2012, 33, 2719–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentias, A.; Saad, M.; Girotra, S.; Desai, M.; Elbadawi, A.; Briasoulis, A.; Alvarez, P.; Alqasrawi, M.; Giudici, M.; Panaich, S.; et al. Impact of Pre-Existing and New-Onset atrial fibrillation on outcomes after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2019, 12, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.N.; Dai, D.; Matsuoka, R.; Harrison, J.K.; Hughes, G.T.; Sherwood, M.W.; Piccini, J.P.; Bhardwaj, B.; Lopes, R.D.; Cohen, D.; et al. Incidence, management, and associated clinical outcomes of New-Onset atrial fibrillation following transcatheter aortic valve replacement: An analysis from the STS/ACC TVT registry. JACC Cardiovasc. Interv. 2018, 11, 1746–1756. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Ahn, J.M.; Kang, D.Y.; Ko, E.; Lee, P.H.; Lee, S.W.; Kim, H.J.; Kim, J.B.; Choo, S.J.; Park, D.W.; et al. Incidence, predictors, management, and clinical significance of New-Onset atrial fibrillation after transcatheter aortic valve implantation. Am. J. Cardiol. 2019, 123, 1127–1133. [Google Scholar] [CrossRef]
- Vilalta, V.; Asmarats, L.; Ferreira-Neto, A.N.; Maes, F.; de Freitas, C.G.L.; Couture, T.; Paradis, J.M.; Mohammadi, S.; Dumont, E.; Kalavrouziotis, D.; et al. Incidence, clinical characteristics, and impact of acute coronary syndrome following transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2018, 11, 2523–2533. [Google Scholar] [CrossRef]
- Ammar, A.; Elbatran, A.I.; Wijesuriya, N.; Saberwal, B.; Ahsan, S.Y. Management of atrial fibrillation after transcatheter aortic valve replacement: Challenges and therapeutic considerations. Trends Cardiovasc. Med. 2021, 31, 361–367. [Google Scholar] [CrossRef]
- Alexander, K.P.; Brouwer, M.A.; Mulder, H.; Vinereanu, D.; Lopes, R.D.; Proietti, M.; Al-Khatib, S.M.; Hijazi, Z.; Halvorsen, S.; Hylek, E.M.; et al. Outcomes of apixaban versus warfarin in patients with atrial fibrillation and multi-morbidity: Insights from the ARISTOTLE trial. Am. Heart J. 2019, 208, 123–131. [Google Scholar] [CrossRef]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef]
- Didier, R.; Lhermusier, T.; Auffret, V.; Le Breton, H.; Cayla, G.; Commeau, P.; Collet, J.P.; Cuisset, T.; Dumonteil, N.; Verhoye, J.P.; et al. TAVR patients requiring anticoagulation: Direct oral anticoagulant or vitamin k antagonist? JACC Cardiovasc. Interv. 2021, 14, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Van Belle, E.; Thiele, H.; Berti, S.; Lhermusier, T.; Manigold, T.; Neumann, F.J.; Gilard, M.; Attias, D.; Beygui, F.; et al. Apixaban vs. Standard of care after transcatheter aortic valve implantation: The ATLANTIS trial. Eur. Heart J. 2022, 43, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
- Van Mieghem, N.M.; Unverdorben, M.; Hengstenberg, C.; Möllmann, H.; Mehran, R.; López-Otero, D.; Nombela-Franco, L.; Moreno, R.; Nordbeck, P.; Thiele, H.; et al. Edoxaban versus Vitamin K Antagonist for Atrial Fibrillation after TAVR. N. Engl. J. Med. 2021, 385, 2150–2160. [Google Scholar] [CrossRef]
- Chen, Y.F.; Liu, F.; Li, X.W.; Zhang, H.J.; Liu, Y.G.; Lin, L. Non-vitamin K oral anticoagulants versus vitamin K antagonists in post transcatheter aortic valve replacement patients with clinical indication for oral anticoagulation: A meta-analysis. Clin. Cardiol. 2022, 45, 401–406. [Google Scholar] [CrossRef]
- Whitlock, R.P.; Belley-Cote, E.P.; Paparella, D.; Healey, J.S.; Brady, K.; Sharma, M.; Reents, W.; Budera, P.; Baddour, A.J.; Fila, P.; et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. N. Engl. J. Med. 2021, 384, 2081–2091. [Google Scholar] [CrossRef]
- Freire, A.; Filippini, F.B.; Bignoto, T.C.; de Brito, P.; Nicz, P.; Melo, P.; e Silva, R.C.; Queiroga, M.; Ribeiro, H.B.; Procopio, A.; et al. Combined transcatheter aortic valve replacement and left atrial appendage occlusion in patients ineligible for oral anticoagulation: A case series. J. Cardiol. Cases 2022, 26, 181–185. [Google Scholar] [CrossRef]
- Tarantini, G.; Mojoli, M.; Urena, M.; Vahanian, A. Atrial fibrillation in patients undergoing transcatheter aortic valve implantation: Epidemiology, timing, predictors, and outcome. Eur. Heart J. 2017, 38, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-Year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Jimenez Diaz, V.A.; Estevez Loureiro, R.; Baz Alonso, J.A.; Juan Salvadores, P.; Bastos Fernandez, G.; Caneiro Queija, B.; Veiga Garcia, C.; Iñiguez Romo, A. Stroke prevention during and after transcatheter aortic valve implantation: From cerebral protection devices to antithrombotic management. Front. Cardiovasc. Med. 2022, 9, 958732. [Google Scholar] [CrossRef]
- Huded, C.P.; Tuzcu, E.M.; Krishnaswamy, A.; Mick, S.L.; Kleiman, N.S.; Svensson, L.G.; Carroll, J.; Thourani, V.H.; Kirtane, A.J.; Manandhar, P.; et al. Association between transcatheter aortic valve replacement and early postprocedural stroke. JAMA 2019, 321, 2306–2315. [Google Scholar] [CrossRef] [Green Version]
- Erdoes, G.; Basciani, R.; Huber, C.; Stortecky, S.; Wenaweser, P.; Windecker, S.; Carrel, T.; Eberle, B. Transcranial Doppler-detected cerebral embolic load during transcatheter aortic valve implantation. Eur. J. Cardio-Thorac. Surg. 2012, 41, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, S.; Agarwal, S.; Miller, D.C.; Webb, J.G.; Mack, M.; Ellis, S.; Herrmann, H.C.; Pichard, A.D.; Tuzcu, E.M.; Svensson, L.G.; et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (Placement of aortic transcatheter valves). Circ. Cardiovasc. Interv. 2016, 9, e002981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, D.V.; Tello-Montoliu, A.; Moreno, R.; Cruz, G.I.; Baz, A.J.; Romaguera, R.; Molina, N.E.; Juan, S.P.; Paredes, G.E.; De Miguel, C.A.; et al. Assessment of platelet REACtivity after transcatheter aortic valve replacement: The REAC-TAVI trial. JACC Cardiovasc. Interv. 2019, 12, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.; Muller, A.; Nahle, C.P.; Kocurek, J.; Werner, N.; Hammerstingl, C.; Schild, H.H.; Schwab, J. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: A prospective pilot study with diffusion-weighted magnetic resonance imaging. J. Am. Coll. Cardiol. 2010, 55, 1427–1432. [Google Scholar] [CrossRef] [Green Version]
- Woldendorp, K.; Indja, B.; Bannon, P.G.; Fanning, J.P.; Plunkett, B.T.; Grieve, S.M. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: A systematic review and meta-analysis. Eur. Heart J. 2021, 42, 1004–1015. [Google Scholar] [CrossRef]
- Haussig, S.; Mangner, N.; Dwyer, M.G.; Lehmkuhl, L.; Lucke, C.; Woitek, F.; Holzhey, D.M.; Mohr, F.W.; Gutberlet, M.; Zivadinov, R.; et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: The CLEAN-TAVI randomized clinical trial. JAMA 2016, 316, 592–601. [Google Scholar] [CrossRef]
- Lansky, A.J.; Makkar, R.; Nazif, T.; Messe, S.; Forrest, J.; Sharma, R.; Schofer, J.; Linke, A.; Brown, D.; Dhoble, A.; et al. A randomized evaluation of the TriGuard HDH cerebral embolic protection device to Reduce the Impact of Cerebral Embolic LEsions after TransCatheter Aortic Valve ImplanTation: The REFLECT I trial. Eur. Heart J. 2021, 42, 2670–2679. [Google Scholar] [CrossRef]
- Kapadia, S.R.; Kodali, S.; Makkar, R.; Mehran, R.; Lazar, R.M.; Zivadinov, R.; Dwyer, M.G.; Jilaihawi, H.; Virmani, R.; Anwaruddin, S.; et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2017, 69, 367–377. [Google Scholar] [CrossRef]
- Nazif, T.M.; Moses, J.; Sharma, R.; Dhoble, A.; Rovin, J.; Brown, D.; Horwitz, P.; Makkar, R.; Stoler, R.; Forrest, J.; et al. Randomized evaluation of TriGuard 3 cerebral embolic protection after transcatheter aortic valve replacement: REFLECT II. JACC Cardiovasc. Interv. 2021, 14, 515–527. [Google Scholar] [CrossRef]
- Jagielak, D.; Targonski, R.; Frerker, C.; Abdel-Wahab, M.; Wilde, J.; Werner, N.; Lauterbach, M.; Leick, J.; Grygier, M.; Misterski, M.; et al. Safety and performance of a novel cerebral embolic protection device for transcatheter aortic valve implantation: The PROTEMBO C Trial. EuroIntervention 2022, 18, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Auffret, V.; Puri, R.; Urena, M.; Chamandi, C.; Rodriguez-Gabella, T.; Philippon, F.; Rodes-Cabau, J. Conduction disturbances after transcatheter aortic valve replacement: Current status and future perspectives. Circulation 2017, 136, 1049–1069. [Google Scholar] [CrossRef] [PubMed]
- Muntane-Carol, G.; Guimaraes, L.; Ferreira-Neto, A.N.; Wintzer-Wehekind, J.; Junquera, L.; Del, V.D.; Faroux, L.; Philippon, F.; Rodes-Cabau, J. How does new-onset left bundle branch block affect the outcomes of transcatheter aortic valve repair? Expert Rev. Med. Devices 2019, 16, 589–602. [Google Scholar] [CrossRef]
- Muntane-Carol, G.; Okoh, A.K.; Chen, C.; Nault, I.; Kassotis, J.; Mohammadi, S.; Coromilas, J.; Lee, L.Y.; Alperi, A.; Philippon, F.; et al. Ambulatory electrocardiographic monitoring following minimalist transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2021, 14, 2711–2722. [Google Scholar] [CrossRef]
- Ream, K.; Sandhu, A.; Valle, J.; Weber, R.; Kaizer, A.; Wiktor, D.M.; Borne, R.T.; Tumolo, A.Z.; Kunkel, M.; Zipse, M.M.; et al. Ambulatory rhythm monitoring to detect late High-Grade atrioventricular block following transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2019, 73, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Reiter, C.; Lambert, T.; Kellermair, J.; Blessberger, H.; Fellner, A.; Nahler, A.; Grund, M.; Steinwender, C. Delayed total atrioventricular block after transcatheter aortic valve replacement assessed by implantable loop recorders. JACC Cardiovasc. Interv. 2021, 14, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve replacement with a Balloon-Expandable valve in Low-Risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Forrest, J.K.; Kaple, R.K.; Tang, G.; Yakubov, S.J.; Nazif, T.M.; Williams, M.R.; Zhang, A.; Popma, J.J.; Reardon, M.J. Three generations of Self-Expanding transcatheter aortic valves: A report from the STS/ACC TVT registry. JACC Cardiovasc. Interv. 2020, 13, 170–179. [Google Scholar] [CrossRef]
- Saia, F.; Gandolfo, C.; Palmerini, T.; Berti, S.; Doshi, S.N.; Laine, M.; Marcelli, C.; Piva, T.; Ribichini, F.; De Benedictis, M.; et al. In-hospital and thirty-day outcomes of the SAPIEN 3 Ultra balloon-expandable transcatheter aortic valve: The S3U registry. EuroIntervention 2020, 15, 1240–1247. [Google Scholar] [CrossRef] [Green Version]
- Nazif, T.M.; Chen, S.; George, I.; Dizon, J.M.; Hahn, R.T.; Crowley, A.; Alu, M.C.; Babaliaros, V.; Thourani, V.H.; Herrmann, H.C.; et al. New-onset left bundle branch block after transcatheter aortic valve replacement is associated with adverse long-term clinical outcomes in intermediate-risk patients: An analysis from the PARTNER II trial. Eur. Heart J. 2019, 40, 2218–2227. [Google Scholar] [CrossRef] [Green Version]
- Urena, M.; Mok, M.; Serra, V.; Dumont, E.; Nombela-Franco, L.; DeLarochelliere, R.; Doyle, D.; Igual, A.; Larose, E.; Amat-Santos, I.; et al. Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve. J. Am. Coll. Cardiol. 2012, 60, 1743–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, T.; Takagi, H.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. The prognostic impact of New-Onset persistent left bundle branch block following transcatheter aortic valve implantation: A meta-analysis. Clin. Cardiol. 2016, 39, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faroux, L.; Chen, S.; Muntane-Carol, G.; Regueiro, A.; Philippon, F.; Sondergaard, L.; Jorgensen, T.H.; Lopez-Aguilera, J.; Kodali, S.; Leon, M.; et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: A systematic review and meta-analysis. Eur. Heart J. 2020, 41, 2771–2781. [Google Scholar] [CrossRef] [PubMed]
- Zaid, S.; Sengupta, A.; Okoli, K.; Tsoi, M.; Khan, A.; Ahmad, H.; Goldberg, J.B.; Undemir, C.; Rozenshtein, A.; Patel, N.; et al. Novel anatomic predictors of new persistent left bundle branch block after evolut transcatheter aortic valve implantation. Am. J. Cardiol. 2020, 125, 1222–1229. [Google Scholar] [CrossRef]
- Jorgensen, T.H.; De Backer, O.; Gerds, T.A.; Bieliauskas, G.; Svendsen, J.H.; Sondergaard, L. Immediate Post-Procedural 12-Lead electrocardiography as predictor of late conduction defects after transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2018, 11, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Bourenane, H.; Galand, V.; Boulmier, D.; Leclercq, C.; Leurent, G.; Bedossa, M.; Behar, N.; Pichard, C.; Polin, B.; Tomasi, J.; et al. Electrophysiological Study-Guided permanent pacemaker implantation in patients with conduction disturbances following transcatheter aortic valve implantation. Am. J. Cardiol. 2021, 149, 78–85. [Google Scholar] [CrossRef]
- Tovia-Brodie, O.; Michowitz, Y.; Belhassen, B. Use of electrophysiological studies in transcatheter aortic valve implantation. Arrhythm Electrophysiol. Rev. 2020, 9, 20–27. [Google Scholar] [CrossRef]
- Berry, C.; Lloyd, S.M.; Wang, Y.; Macdonald, A.; Ford, I. The changing course of aortic valve disease in Scotland: Temporal trends in hospitalizations and mortality and prognostic importance of aortic stenosis. Eur. Heart J. 2013, 34, 1538–1547. [Google Scholar] [CrossRef] [Green Version]
- Henkel, D.M.; Malouf, J.F.; Connolly, H.M.; Michelena, H.I.; Sarano, M.E.; Schaff, H.V.; Scott, C.G.; Pellikka, P.A. Asymptomatic left ventricular systolic dysfunction in patients with severe aortic stenosis: Characteristics and outcomes. J. Am. Coll. Cardiol. 2012, 60, 2325–2329. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, H.C.; Pibarot, P.; Hueter, I.; Gertz, Z.M.; Stewart, W.J.; Kapadia, S.; Tuzcu, E.M.; Babaliaros, V.; Thourani, V.; Szeto, W.Y.; et al. Predictors of mortality and outcomes of therapy in low-flow severe aortic stenosis: A Placement of Aortic Transcatheter Valves (PARTNER) trial analysis. Circulation 2013, 127, 2316–2326. [Google Scholar] [CrossRef] [Green Version]
- Monin, J.L.; Quere, J.P.; Monchi, M.; Petit, H.; Baleynaud, S.; Chauvel, C.; Pop, C.; Ohlmann, P.; Lelguen, C.; Dehant, P.; et al. Low-gradient aortic stenosis: Operative risk stratification and predictors for long-term outcome: A multicenter study using dobutamine stress hemodynamics. Circulation 2003, 108, 319–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saybolt, M.D.; Fiorilli, P.N.; Gertz, Z.M.; Herrmann, H.C. Low-Flow severe aortic stenosis: Evolving role of transcatheter aortic valve replacement. Circ. Cardiovasc. Interv. 2017, 10, e004838. [Google Scholar] [CrossRef] [PubMed]
- Tribouilloy, C.; Levy, F.; Rusinaru, D.; Gueret, P.; Petit-Eisenmann, H.; Baleynaud, S.; Jobic, Y.; Adams, C.; Lelong, B.; Pasquet, A.; et al. Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography. J. Am. Coll. Cardiol. 2009, 53, 1865–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjan, V.Y.; Herrmann, H.C.; Pibarot, P.; Stewart, W.J.; Kapadia, S.; Tuzcu, E.M.; Babaliaros, V.; Thourani, V.H.; Szeto, W.Y.; Bavaria, J.E.; et al. Evaluation of flow after transcatheter aortic valve replacement in patients with Low-Flow aortic stenosis: A secondary analysis of the PARTNER randomized clinical trial. JAMA Cardiol. 2016, 1, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Pai, R.G.; Varadarajan, P.; Razzouk, A. Survival benefit of aortic valve replacement in patients with severe aortic stenosis with low ejection fraction and low gradient with normal ejection fraction. Ann. Thorac. Surg. 2008, 86, 1781–1789. [Google Scholar] [CrossRef]
- Pereira, J.J.; Lauer, M.S.; Bashir, M.; Afridi, I.; Blackstone, E.H.; Stewart, W.J.; McCarthy, P.M.; Thomas, J.D.; Asher, C.R. Survival after aortic valve replacement for severe aortic stenosis with low transvalvular gradients and severe left ventricular dysfunction. J. Am. Coll. Cardiol. 2002, 39, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Eleid, M.F.; Goel, K.; Murad, M.H.; Erwin, P.J.; Suri, R.M.; Greason, K.L.; Nishimura, R.A.; Rihal, C.S.; Holmes, D.J. Meta-Analysis of the prognostic impact of stroke volume, gradient, and ejection fraction after transcatheter aortic valve implantation. Am. J. Cardiol. 2015, 116, 989–994. [Google Scholar] [CrossRef]
- Castelo, A.; Grazina, A.; Mendonca, T.; Rodrigues, I.; Bras, P.G.; Ferreira, V.V.; Ramos, R.; Fiarresga, A.; Cacela, D.; Ferreira, R.C. Transcatheter aortic valve implantation outcomes in patients with low flow low gradient aortic stenosis. Rev. Port. Cardiol. 2022, 41, 621–631. [Google Scholar] [CrossRef]
- Galat, A.; Guellich, A.; Bodez, D.; Slama, M.; Dijos, M.; Zeitoun, D.M.; Milleron, O.; Attias, D.; Dubois-Rande, J.L.; Mohty, D.; et al. Aortic stenosis and transthyretin cardiac amyloidosis: The chicken or the egg? Eur. Heart J. 2016, 37, 3525–3531. [Google Scholar] [CrossRef] [Green Version]
- Levy, F.; Laurent, M.; Monin, J.L.; Maillet, J.M.; Pasquet, A.; Le Tourneau, T.; Petit-Eisenmann, H.; Gori, M.; Jobic, Y.; Bauer, F.; et al. Aortic valve replacement for low-flow/low-gradient aortic stenosis operative risk stratification and long-term outcome: A European multicenter study. J. Am. Coll. Cardiol. 2008, 51, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Annabi, M.S.; Touboul, E.; Dahou, A.; Burwash, I.G.; Bergler-Klein, J.; Enriquez-Sarano, M.; Orwat, S.; Baumgartner, H.; Mascherbauer, J.; Mundigler, G.; et al. Dobutamine stress echocardiography for management of Low-Flow, Low-Gradient aortic stenosis. J. Am. Coll. Cardiol. 2018, 71, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Garg, N. Acute kidney injury after aortic valve replacement in a nationally representative cohort in the USA. Nephrol. Dial. Transplant. 2019, 34, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Ram, P.; Mezue, K.; Pressman, G.; Rangaswami, J. Acute kidney injury post-transcatheter aortic valve replacement. Clin. Cardiol. 2017, 40, 1357–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauch, J.T.; Scherner, M.P.; Haldenwang, P.L.; Pfister, R.; Kuhn, E.W.; Madershahian, N.; Rahmanian, P.; Wippermann, J.; Wahlers, T. Minimally invasive transapical aortic valve implantation and the risk of acute kidney injury. Ann. Thorac. Surg. 2010, 89, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Harrison, A.M.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. Transapical versus transfemoral approach and risk of acute kidney injury following transcatheter aortic valve replacement: A propensity-adjusted analysis. Ren. Fail. 2017, 39, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Kurz, T.; Feistritzer, H.J.; Stachel, G.; Hartung, P.; Eitel, I.; Marquetand, C.; Nef, H.; Doerr, O.; Lauten, A.; et al. Comparison of newer generation self-expandable vs. Balloon-expandable valves in transcatheter aortic valve implantation: The randomized SOLVE-TAVI trial. Eur. Heart J. 2020, 41, 1890–1899. [Google Scholar] [CrossRef]
- Chandrasekhar, J.; Sartori, S.; Mehran, R.; Aquino, M.; Vogel, B.; Asgar, A.W.; Webb, J.G.; Tchetche, D.; Dumonteil, N.; Colombo, A.; et al. Incidence, predictors, and outcomes associated with acute kidney injury in patients undergoing transcatheter aortic valve replacement: From the BRAVO-3 randomized trial. Clin. Res. Cardiol. 2021, 110, 649–657. [Google Scholar] [CrossRef]
- Crowhurst, J.A.; Savage, M.; Subban, V.; Incani, A.; Raffel, O.C.; Poon, K.; Murdoch, D.; Saireddy, R.; Clarke, A.; Aroney, C.; et al. Factors contributing to acute kidney injury and the impact on mortality in patients undergoing transcatheter aortic valve replacement. Heart Lung Circ. 2016, 25, 282–289. [Google Scholar] [CrossRef]
- Genereux, P.; Head, S.J.; Van Mieghem, N.M.; Kodali, S.; Kirtane, A.J.; Xu, K.; Smith, C.; Serruys, P.W.; Kappetein, A.P.; Leon, M.B. Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: A weighted meta-analysis of 3,519 patients from 16 studies. J. Am. Coll. Cardiol. 2012, 59, 2317–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbanti, M.; Buccheri, S.; Rodes-Cabau, J.; Gulino, S.; Genereux, P.; Pilato, G.; Dvir, D.; Picci, A.; Costa, G.; Tamburino, C.; et al. Transcatheter aortic valve replacement with new-generation devices: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 245, 83–89. [Google Scholar] [CrossRef]
- Vincent, F.; Spillemaeker, H.; Kyheng, M.; Belin-Vincent, C.; Delhaye, C.; Pierache, A.; Denimal, T.; Verdier, B.; Debry, N.; Moussa, M.; et al. Ultrasound guidance to reduce vascular and bleeding complications of percutaneous transfemoral transcatheter aortic valve replacement: A propensity Score-Matched comparison. J. Am. Heart Assoc. 2020, 9, e14916. [Google Scholar] [CrossRef] [PubMed]
- Genereux, P.; Cohen, D.J.; Williams, M.R.; Mack, M.; Kodali, S.K.; Svensson, L.G.; Kirtane, A.J.; Xu, K.; McAndrew, T.C.; Makkar, R.; et al. Bleeding complications after surgical aortic valve replacement compared with transcatheter aortic valve replacement: Insights from the PARTNER I Trial (Placement of Aortic Transcatheter Valve). J. Am. Coll. Cardiol. 2014, 63, 1100–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berti, S.; Bartorelli, A.L.; Koni, E.; Giordano, A.; Petronio, A.S.; Iadanza, A.; Bedogni, F.; Reimers, B.; Spaccarotella, C.; Trani, C.; et al. Impact of high body mass index on vascular and bleeding complications after transcatheter aortic valve implantation. Am. J. Cardiol. 2021, 155, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Rymuza, B.; Zbronski, K.; Scislo, P.; Grodecki, K.; Kochman, J.; Filipiak, K.J.; Opolski, G.; Huczek, Z. Thromboelastography for predicting bleeding in patients with aortic stenosis treated with transcatheter aortic valve implantation. Kardiol. Pol. 2018, 76, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Al-Kassou, B.; Kandt, J.; Lohde, L.; Shamekhi, J.; Sedaghat, A.; Tabata, N.; Weber, M.; Sugiura, A.; Fimmers, R.; Werner, N.; et al. Safety and efficacy of protamine administration for prevention of bleeding complications in patients undergoing TAVR. JACC Cardiovasc. Interv. 2020, 13, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Power, D.; Schafer, U.; Guedeney, P.; Claessen, B.E.; Sartori, S.; Sorrentino, S.; Lefevre, T.; Kupatt, C.; Tchetche, D.; Dumonteil, N.; et al. Impact of percutaneous closure device type on vascular and bleeding complications after TAVR: A post hoc an alysis from the BRAVO-3 randomized trial. Catheter. Cardiovasc. Interv. 2019, 93, 1374–1381. [Google Scholar] [CrossRef]
- Sherwood, M.W.; Xiang, K.; Matsouaka, R.; Li, Z.; Vemulapalli, S.; Vora, A.N.; Fanaroff, A.; Harrison, J.K.; Thourani, V.H.; Holmes, D.; et al. Incidence, temporal trends, and associated outcomes of vascular and bleeding complications in patients undergoing transfemoral transcatheter aortic valve replacement: Insights from the society of thoracic Surgeons/American college of cardiology transcatheter valve therapies registry. Circ. Cardiovasc. Interv. 2020, 13, e8227. [Google Scholar] [CrossRef]
- Hayashida, K.; Lefevre, T.; Chevalier, B.; Hovasse, T.; Romano, M.; Garot, P.; Mylotte, D.; Uribe, J.; Farge, A.; Donzeau-Gouge, P.; et al. Transfemoral aortic valve implantation new criteria to predict vascular complications. JACC Cardiovasc. Interv. 2011, 4, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Genereux, P.; Webb, J.G.; Svensson, L.G.; Kodali, S.K.; Satler, L.F.; Fearon, W.F.; Davidson, C.J.; Eisenhauer, A.C.; Makkar, R.R.; Bergman, G.W.; et al. Vascular complications after transcatheter aortic valve replacement: Insights from the PARTNER (Placement of AoRTic TraNscathetER Valve) trial. J. Am. Coll. Cardiol. 2012, 60, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Thourani, V.H.; Kodali, S.; Makkar, R.R.; Herrmann, H.C.; Williams, M.; Babaliaros, V.; Smalling, R.; Lim, S.; Malaisrie, S.C.; Kapadia, S.; et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet 2016, 387, 2218–2225. [Google Scholar] [CrossRef]
- Toggweiler, S.; Leipsic, J.; Binder, R.K.; Freeman, M.; Barbanti, M.; Heijmen, R.H.; Wood, D.A.; Webb, J.G. Management of vascular access in transcatheter aortic valve replacement: Part 1: Basic anatomy, imaging, sheaths, wires, and access routes. JACC Cardiovasc. Interv. 2013, 6, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamandi, C.; Puri, R.; Rodriguez-Gabella, T.; Rodes-Cabau, J. Latest-Generation transcatheter aortic valve replacement devices and procedures. Can. J. Cardiol. 2017, 33, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Yan, H.; Li, Y.; Zhou, Q.; Abudoureyimu, A.; Cao, G.; Jiang, H. Transcatheter Aortic Valve Replacement in Elderly Patients: Opportunities and Challenges. J. Cardiovasc. Dev. Dis. 2023, 10, 279. https://doi.org/10.3390/jcdd10070279
Huang B, Yan H, Li Y, Zhou Q, Abudoureyimu A, Cao G, Jiang H. Transcatheter Aortic Valve Replacement in Elderly Patients: Opportunities and Challenges. Journal of Cardiovascular Development and Disease. 2023; 10(7):279. https://doi.org/10.3390/jcdd10070279
Chicago/Turabian StyleHuang, Bing, Hui Yan, Yunyao Li, Qiping Zhou, Ayipali Abudoureyimu, Guiqiu Cao, and Hong Jiang. 2023. "Transcatheter Aortic Valve Replacement in Elderly Patients: Opportunities and Challenges" Journal of Cardiovascular Development and Disease 10, no. 7: 279. https://doi.org/10.3390/jcdd10070279
APA StyleHuang, B., Yan, H., Li, Y., Zhou, Q., Abudoureyimu, A., Cao, G., & Jiang, H. (2023). Transcatheter Aortic Valve Replacement in Elderly Patients: Opportunities and Challenges. Journal of Cardiovascular Development and Disease, 10(7), 279. https://doi.org/10.3390/jcdd10070279