Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation
Abstract
:1. Introduction
2. Kinetic Energy and Energy Dissipation: Basic Principles
3. Kinetic Energy and Energy Dissipation: Techniques for Measuring
3.1. Cardiac Magnetic Resonance
3.2. Cardiac Ultrasound Techniques
4. Kinetic Energy and Energy Dissipation: Specific Measures
5. Effect of Age in CMR Studies
5.1. CMR Studies: Left Ventricle
5.2. CMR Studies: Right Ventricle
6. Effect of Age in EchoPIV Studies
7. Effect of Age in Cardiac Ultrasound Studies
7.1. Ultrasound Studies: Left Ventricle
7.2. Ultrasound Studies: Right Ventricle
8. Discussion
8.1. Effects of Aging on Ventricular KE and KED/EL
8.2. Ventricular Energetics in Younger Subjects
8.3. Ventricular Energetics in Older Adults
8.4. Clinical Perspectives
8.5. Limitations of Current Studies
8.6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Capasso, F.; Pepe, M.; Severino, S.; Luisi, G.A.; Maglione, M.; Ferrari, R. Intracardiac Flow Analysis: Techniques and Potential Clinical Applications. J. Am. Soc. Echocardiogr. 2019, 32, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Fiorencis, A.; Pepe, M.; Smarrazzo, V.; Martini, M.; Severino, S.; Pergola, V.; Evangelista, M.; Incarnato, P.; Previtero, M.; Maglione, M.; et al. Noninvasive Evaluation of Intraventricular Flow Dynamics by the HyperDoppler Technique: First Application to Normal Subjects, Athletes, and Patients with Heart Failure. J. Clin. Med. 2022, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Steding-Ehrenborg, K.; Arvidsson, P.M.; Töger, J.; Rydberg, M.; Heiberg, E.; Carlsson, M.; Arheden, H. Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H113–H122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvidsson, P.M.; Töger, J.; Carlsson, M.; Steding-Ehrenborg, K.; Pedrizzetti, G.; Heiberg, E.; Arheden, H. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H314–H328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Liu, Y.; Wu, T.; Song, H.; Chen, Z.; Zhu, W.; Cai, Y.; Zhang, W.; Bai, W.; Tang, H.; et al. Assessment of Left Ventricular Dissipative Energy Loss by Vector Flow Mapping in Patients With End-Stage Renal Disease. J. Ultrasound Med. 2016, 35, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Y.; Wang, W.; Yuan, L.; Qi, Z.; Song, D. Assessment of left ventricular energy loss using vector flow mapping in patients with stages 1–3 chronic kidney disease. BMC Cardiovasc. Disord. 2020, 20, 355. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, R.; Ding, G.; Hou, D.; Li, Z.; Yin, L.; Zhang, M. Left Ventricular Energy Loss Assessed by Vector Flow Mapping in Patients with Prediabetes and Type 2 Diabetes Mellitus. Ultrasound Med. Biol. 2016, 42, 1730–1740. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, J.; Yu, R.; Xu, D. Evaluation of left ventricular function by vector flow mapping in females with systemic lupus erythematosus. Clin. Rheumatol. 2021, 40, 4049–4060. [Google Scholar] [CrossRef]
- Stugaard, M.; Koriyama, H.; Katsuki, K.; Masuda, K.; Asanuma, T.; Takeda, Y.; Sakata, Y.; Itatani, K.; Nakatani, S. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: A combined experimental and clinical study. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Cui, C.; Li, Y.; Qiu, Z.; Hu, Y.; Wang, Y.; Cui, M.; Yin, S.; Liu, L. Analysis of left ventricular diastolic energy loss in patients with aortic stenosis with preserved ejection fraction by using vector flow mapping. Echocardiography 2019, 36, 2216–2226. [Google Scholar] [CrossRef]
- Riva, A.; Sturla, F.; Pica, S.; Camporeale, A.; Tondi, L.; Saitta, S.; Caimi, A.; Giese, D.; Palladini, G.; Milani, P.; et al. Comparison of Four-Dimensional Magnetic Resonance Imaging Analysis of Left Ventricular Fluid Dynamics and Energetics in Ischemic and Restrictive Cardiomyopathies. J. Magn. Reson. Imaging 2022, 56, 1157–1170. [Google Scholar] [CrossRef]
- Ji, L.; Hu, W.; Yong, Y.; Wu, H.; Zhou, L.; Xu, D. Left ventricular energy loss and wall shear stress assessed by vector flow mapping in patients with hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging 2018, 34, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Crandon, S.; Swoboda, P.P.; Fent, G.J.; Foley, J.R.J.; Chew, P.G.; Brown, L.A.E.; Vijayan, S.; Hassell, M.E.C.J.; Nijveldt, R.; et al. Left ventricular blood flow kinetic energy after myocardial infarction—Insights from 4D flow cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2018, 20, 61. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.; van der Geest, R.J.; Swoboda, P.P.; Crandon, S.; Fent, G.J.; Foley, J.R.J.; Dobson, L.E.; Al Musa, T.; Onciul, S.; Vijayan, S.; et al. Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Muñoz, D.; Moya Mur, J.L.; Moreno, J.; Fernández-Golfín, C.; Franco, E.; Monteagudo, J.M.; Matía, R.; Hernández-Madrid, A.; Zamorano, J.L. Energy Dissipation in Resynchronization Therapy: Impact of Atrioventricular Delay. J. Am. Soc. Echocardiogr. 2019, 32, 744–754.e1. [Google Scholar] [CrossRef] [Green Version]
- Kanski, M.; Arvidsson, P.M.; Töger, J.; Borgquist, R.; Heiberg, E.; Carlsson, M.; Arheden, H. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J. Cardiovasc. Magn. Reson. 2015, 17, 111. [Google Scholar] [CrossRef] [Green Version]
- Zajac, J.; Eriksson, J.; Dyverfeldt, P.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Turbulent kinetic energy in normal and myopathic left ventricles. J. Magn. Reson. Imaging 2015, 41, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Mutluer, F.O.; van der Velde, N.; Voorneveld, J.; Bosch, J.G.; Roos-Hesselink, J.W.; van der Geest, R.J.; Hirsch, A.; van den Bosch, A. Evaluation of intraventricular flow by multimodality imaging: A review and meta-analysis. Cardiovasc. Ultrasound 2021, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Nakou, E.S.; Parthenakis, F.I.; Kallergis, E.M.; Marketou, M.E.; Nakos, K.S.; Vardas, P.E. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology. Int. J. Cardiol. 2016, 209, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Kersten, J.; Hackenbroch, C.; Bouly, M.; Tyl, B.; Bernhardt, P. What Is Normal for an Aging Heart? A Prospective CMR Cohort Study. J. Cardiovasc. Imaging 2022, 30, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Rhee, J.; Chaudhari, V.; Rosenzweig, A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ. Res. 2016, 118, 279–295. [Google Scholar] [CrossRef]
- Li, H.; Hastings, M.H.; Rhee, J.; Trager, L.E.; Roh, J.D.; Rosenzweig, A. Targeting Age-Related Pathways in Heart Failure. Circ. Res. 2020, 126, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Lazzeroni, D.; Villatore, A.; Souryal, G.; Pili, G.; Peretto, G. The Aging Heart: A Molecular and Clinical Challenge. Int. J. Mol. Sci. 2022, 23, 16033. [Google Scholar] [CrossRef]
- Liberale, L.; Badimon, L.; Montecucco, F.; Lüscher, T.F.; Libby, P.; Camici, G.G. Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 79, 837–847. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Hu, M.; Lu, Y.; Gokulnath, P.; Vulugundam, G.; Xiao, J. Metabolic targets in cardiac aging and rejuvenation. J. Cardiovasc. Aging 2022, 2, 46. [Google Scholar] [CrossRef]
- Yan, M.; Sun, S.; Xu, K.; Huang, X.; Dou, L.; Pang, J.; Tang, W.; Shen, T.; Li, J. Cardiac Aging: From Basic Research to Therapeutics. Oxid. Med. Cell Longev. 2021, 2021, 9570325. [Google Scholar] [CrossRef] [PubMed]
- Adabifirouzjaei, F.; Igata, S.; Strachan, M.; DeMaria, A.N. Diastolic Left Ventricular Energy Loss: Relation to Age, Phase of Diastole, and Flow Velocity. J. Am. Soc. Echocardiogr. 2021, 34, 698–700. [Google Scholar] [CrossRef]
- Hayashi, T.; Itatani, K.; Inuzuka, R.; Shimizu, N.; Shindo, T.; Hirata, Y.; Miyaji, K. Dissipative energy loss within the left ventricle detected by vector flow mapping in children: Normal values and effects of age and heart rate. J. Cardiol. 2015, 66, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Tan, R.S.; Garg, P.; Chai, P.; Leng, S.; Bryant, J.; Teo, L.L.S.; Ong, C.C.; Geest, R.J.V.; Allen, J.C.; et al. Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow CMR. Int. J. Cardiol. 2021, 336, 105–112. [Google Scholar] [CrossRef]
- Eriksson, J.; Dyverfeldt, P.; Engvall, J.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2135–H2141. [Google Scholar] [CrossRef]
- Carlsson, M.; Heiberg, E.; Toger, J.; Arheden, H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H893–H900. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.; Chabiniok, R.; deVecchi, A.; Dedieu, N.; Sammut, E.; Schaeffter, T.; Razavi, R. Age-related changes in intraventricular kinetic energy: A physiological or pathological adaptation? Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H747–H755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.; Anagnostopoulos, P.V.; Roldan-Alzate, A.; Srinivasan, S.; Schiebler, M.L.; Wieben, O.; François, C.J. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 2015, 149, 1339–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, D.R.; Barton, G.P.; François, C.J.; Aggarwal, N.; Roldán-Alzate, A. Sex Differences in Cardiac Flow Dynamics of Healthy Volunteers. Radiol. Cardiothorac. Imaging 2020, 2, e190058. [Google Scholar] [CrossRef]
- Sjöberg, P.; Bidhult, S.; Bock, J.; Heiberg, E.; Arheden, H.; Gustafsson, R.; Nozohoor, S.; Carlsson, M. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: Pathophysiological insights using 4D-flow MRI. Eur. Radiol. 2018, 28, 4066–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkir, Z.; Myerson, S.; Neubauer, S.; Carlhäll, C.J.; Ebbers, T.; Raman, B. Four-dimensional flow cardiac magnetic resonance assessment of left ventricular diastolic function. Front. Cardiovasc. Med. 2022, 22, 866131. [Google Scholar] [CrossRef]
- Demirkiran, A.; van Ooij, P.; Westenberg, J.J.M.; Hofman, M.B.M.; van Assen, H.C.; Schoonmade, L.J.; Asim, U.; Blanken, C.P.S.; Nederveen, A.J.; van Rossum, A.C.; et al. Clinical intra-cardiac 4D flow CMR: Acquisition, analysis, and clinical applications. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 154–165. [Google Scholar] [CrossRef]
- Garcia, D.; Del Alamo, J.C.; Tanne, D.; Yotti, R.; Cortina, C.; Bertrand, E.; Antoranz, J.C.; Perez-David, E.; Rieu, R.; Fernandez-Aviles, F.; et al. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans. Med. Imaging 2010, 29, 1701–1713. [Google Scholar] [CrossRef]
- Itatani, K.; Okada, T.; Uejima, T.; Tanaka, T.; Ono, M.; Miyaji, K.; Takenaka, K. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn. J. Appl. Phys. 2013, 52, 07HF16. [Google Scholar]
- Cimino, S.; Pedrizzetti, G.; Tonti, G.; Canali, E.; Petronilli, V.; Luca, L.D.; Iacoboni, C.; Agati, L. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. B-Fluids 2012, 35, 40–46. [Google Scholar] [CrossRef]
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Bertini, M.; Ferrari, R. Intracardiac flow analysis in cardiac resynchronization therapy: A new challenge? Echocardiography 2019, 36, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Daae, A.S.; Wigen, M.S.; Fadnes, S.; Løvstakken, L.; Støylen, A. Intraventricular Vector Flow Imaging with Blood Speckle Tracking in Adults: Feasibility, Normal Physiology and Mechanisms in Healthy Volunteers. Ultrasound Med. Biol. 2021, 47, 3501–3513. [Google Scholar] [CrossRef]
- Nyrnes, S.A.; Fadnes, S.; Wigen, M.S.; Mertens, L.; Lovstakken, L. Blood Speckle-Tracking Based on High-Frame Rate Ultrasound Imaging in Pediatric Cardiology. J. Am. Soc. Echocardiogr. 2020, 33, 493–503.e5. [Google Scholar] [CrossRef]
- Prinz, C.; Faludi, R.; Walker, A.; Amzulescu, M.; Gao, H.; Uejima, T.; Fraser, A.G.; Voigt, J.U. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc. Ultrasound 2012, 10, 24. [Google Scholar] [CrossRef]
- Föll, D.; Taeger, S.; Bode, C.; Jung, B.; Markl, M. Age, gender, blood pressure, and ventricular geometry influence normal 3D blood flow characteristics in the left heart. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 366–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crandon, S.; Westenberg, J.J.M.; Swoboda, P.P.; Fent, G.J.; Foley, J.R.J.; Chew, P.G.; Brown, L.A.E.; Saunderson, C.; Al-Mohammad, A.; Greenwood, J.P.; et al. Impact of Age and Diastolic Function on Novel, 4D flow CMR Biomarkers of Left Ventricular Blood Flow Kinetic Energy. Sci. Rep. 2018, 8, 14436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, N.; Zafar, H.; Fidock, B.; Elhawaz, A.; Al-Mohammad, A.; Rothman, A.; Kiely, D.G.; van der Geest, R.J.; Westenberg, J.; Swift, A.J.; et al. Age-associated changes in 4D flow CMR derived Tricuspid Valvular Flow and Right Ventricular Blood Flow Kinetic Energy. Sci. Rep. 2020, 10, 9908. [Google Scholar] [CrossRef]
- Arbab-Zadeh, A.; Dijk, E.; Prasad, A.; Fu, Q.; Torres, P.; Zhang, R.; Thomas, J.D.; Palmer, D.; Levine, B.D. Effect of aging and physical activity on left ventricular compliance. Circulation 2004, 110, 1799–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, N.; Hastings, J.L.; Bhella, P.S.; Shibata, S.; Gandhi, N.K.; Carrick-Ranson, G.; Palmer, D.; Levine, B.D. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J. Physiol. 2012, 590, 1871–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giese, D.; Wong, J.; Greil, G.F.; Buehrer, M.; Schaeffter, T.; Kozerke, S. Towards highly accelerated Cartesian time-resolved 3D flow cardiovascular magnetic resonance in the clinical setting. J. Cardiovasc. Magn. Reson. 2014, 16, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, R.R. Aging of myocardial collagen. Biogerontology 2002, 3, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y. A clinical study of left ventricular relaxation. Circulation 1980, 62, 756–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redfield, M.M.; Jacobsen, S.J.; Borlaug, B.A.; Rodeheffer, R.J.; Kass, D.A. Age- and gender-related ventricular-vascular stiffening: A community-based study. Circulation 2005, 112, 2254–2262. [Google Scholar] [CrossRef] [Green Version]
- Lindqvist, P.; Waldenström, A.; Henein, M.; Mörner, S.; Kazzam, E. Regional and global right ventricular function in healthy individuals aged 20-90 years: A pulsed Doppler tissue imaging study: Umeå General Population Heart Study. Echocardiography 2005, 22, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, A.G.; Zajac, J.; Eriksson, J.; Dyverfeldt, P.; Bolger, A.F.; Ebbers, T.; Carlhäll, C.J. 4-D blood flow in the human right ventricle. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2344–H2350. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Assadi, H.; Alabed, S.; Cameron, D.; Vassiliou, V.S.; Westenberg, J.J.M.; van der Geest, R.; Zhong, L.; Dastidar, A.; Swift, A.J.; et al. Left Ventricular Blood Flow Kinetic Energy Assessment by 4D Flow Cardiovascular Magnetic Resonance: A Systematic Review of the Clinical Relevance. J. Cardiovasc. Dev. Dis. 2020, 7, 37. [Google Scholar] [CrossRef]
- Akiyama, K.; Maeda, S.; Matsuyama, T.; Kainuma, A.; Ishii, M.; Naito, Y.; Kinoshita, M.; Hamaoka, S.; Kato, H.; Nakajima, Y.; et al. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc. Disord. 2017, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.S.K.; Lau, D.H.H.; Fan, Y.; Lee, A.P. Age-Related Changes in Left Ventricular Vortex Formation and Flow Energetics. J. Clin. Med. 2021, 10, 3619. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.C.; Cohen, J.; Nyce, J.D.; Yau, J.L.; Uppu, S.C.; Sengupta, P.P.; Srivastava, S. Age-related changes in left ventricular vortex and energy loss patterns: From newborns to adults. Am. J. Physiol. Heart Circ. Physiol. 2023, 324, H624–H629. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Li, C.; Tang, H.; Wang, H.; Zhong, Y.; Cai, Y.; Rao, L. Right Ventricular Dissipative Energy Loss Detected by Vector Flow Mapping in Children: Characteristics of Normal Values. J. Ultrasound Med. 2019, 38, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.; Hastings, J.L.; Shibata, S.; Popovic, Z.B.; Arbab-Zadeh, A.; Bhella, P.S.; Okazaki, K.; Fu, Q.; Berk, M.; Palmer, D.; et al. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure with a preserved ejection fraction. Circ. Heart Fail. 2010, 3, 617–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaki, M.; Nakabo, A.; Abe, H.; Pedrizzetti, G.; Narula, J.; Sengupta, P. Left ventricular vortex formation and altered flow energetics in diastolic dysfunction. J. Am. Coll. Cardiol. 2014, 63, A992. [Google Scholar] [CrossRef] [Green Version]
- Nabeta, T.; Itatani, K.; Miyaji, K.; Ako, J. Vortex flow energy loss reflects therapeutic effect in dilated cardiomyopathy. Eur. Heart J. 2015, 36, 637. [Google Scholar] [CrossRef] [Green Version]
4D Flow Cardiac Magnetic Resonance Studies | |||
---|---|---|---|
Left Ventricle | |||
Reference | N | Age characteristics | Most relevant findings |
Föll et al. 2013 [46] | 24 | Two age groups: <30 years (n = 12, mean age: 23.3 ± 1.6 years, 6 women); >50 years (n = 12, mean age: 58.3 ± 4.2 years, 6 women). | Inverse correlation between age and velocity of basal LV vortices. Peak vortex velocities in the LV base are higher in younger subjects than in older ones. |
Wong et al. 2016 [33] | 35 | Age range: 1 to 64 years. Mean age: 29 ± 13 years. Four age quartiles: < 16; 17–32; 33–48; 49–64 years. | Two falls in early peak E-wave diastolic KEi: from first to second quartile and from third to fourth quartile. |
Crandon et al. 2018 [47] | 53 | Age range: 20 to 80 years. Mean age: 45 ± 17 years. Five age groups: 23 ± 2; 32 ± 3; 47 ± 4; 54 ± 2; 69 ± 6 years. | Decline in peak E-wave KEiEDV and KEiEDV E/A ratio and increase in peak A-wave KEiEDV with age. KEiEDV E/A ratio and E/e’ ratio are independently associated with aging. |
Garg et al. 2019 [14] | 40 | Two age groups: group 1 (n = 24), mean age: 30 ± 10 years; group 2 (n = 16), mean age: 57 ± 7 years. | Peak E-wave KEiEDV was lower and peak A-wave KEiEDV was higher in the older subjects. No difference in LV global, average systolic, and average diastolic KEiEDV with age. |
Zhao et al. 2021 [30] | 74 | Age range: 20 to 80 years. Mean age: 42 ± 13 years. Five age groups: 20–29; 30–39; 40–49; 50–59; 60–80 years. | Over 60 years sharp decrease in peak E-wave KEiEDV and KEiEDV E/A ratio and increase in peak A-wave KEiEDV. Systolic function is preserved with aging. |
Right Ventricle | |||
Reference | N | Age characteristics | Most relevant findings |
Barker et al. 2020 [48] | 53 | Age range: 20 to 80 years (32 males, mean age: 41.5 ± 17 years, range 20–73; 21 females, mean age: 50.1 ± 16.8 years, range 27–80). Five age groups: 23 ± 2; 32 ± 3; 47 ± 4; 54 ± 2; 69 ± 6 years. | RV peak E-wave KEiEDV and KEiEDV E/A ratio decrease and RV A-wave KEiEDV increase with age. Global KE is not associated with aging. |
Cardiac Ultrasound Studies | |||
---|---|---|---|
Left Ventricle | |||
Reference | N | Age characteristics | Most relevant findings |
Hayashi et al. 2015 [29] | 64 | Age range: 1 to 15 years. Mean age: 6.8 ± 4.3 years. Three age groups: 1–5 (n = 34); 6–10 (n = 18); 11–15 years (n = 12). | VFM technique. BSA-indexed diastolic and systolic EL decrease with age. Age and heart rate independent predictors of mean systolic EL. Age, heart rate, and peak E-wave velocity are independent predictors of mean diastolic EL. |
Akiyama et al. 2017 [58] | 50 | Age range: 20 to 44 years. Mean age: 29.5 ± 4.8 years. No age groups. | VFM technique. Mean ELdia associated with age in multivariate, not univariate analyses. |
Nyrnes et al. 2020 [44] | 51 | Age range: 2 days old to 10 years. Median age: 2.2 (0.1–5.6) years No age groups. | BSI technique. Direct correlation of KE and EL with age. |
Chan et al. 2021 [59] | 100 | Age range: 18 to 67 years. Mean age: 42.9 ± 14.9 years. Three age groups: 18–29 (n = 26); 30–49 (n = 35); 50–67 (n = 39) years. | VFM technique. ELE (peak E-wave EL) decreases, and ELA (peak A-wave EL) increases with age. No change in peak and mean ELS (systolic EL) and ELD (mean diastolic EL) with age. |
Adabifirouzjaei et al. 2021 [28] | 101 | Age range: 20 to 80 years. Mean age: 48.5 ± 16.6 years. Three age groups: 20–40 (n = 37); 41–60 (n = 32); 61–80 (n = 32) years. | VFM technique. Rapid filling-EL decrease and atrial contraction-EL increase with age. No change in mean EL (during the full diastolic period) with age. |
Becker et al. 2023 [60] | 66 | Age range: 0 to 22 years Five age groups: 0–2 months (n = 14); 2 months-2 years (n = 7); 2–8 (n = 6); 8–13 (n = 21); 13–22 years (n = 18). | VFM technique. BSA-indexed peak and average diastolic EL increase between 2 months and 2 years and decrease in adolescence. BSA-indexed peak and average systolic EL progressive decrease with age. |
Right Ventricle | |||
Reference | N | Age characteristics | Most relevant findings |
Chen et al. 2019 [61] | 90 | Age range: 1 to 18 years. Mean age: 8.99 ± 5.35 years. Three age groups: 1–5 (n = 33); 6–10 (n = 25); 11–18 years (n = 32). | VFM technique. RV and OP average diastolic EL and RV and OP average systolic EL decrease with age. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mele, D.; Beccari, R.; Pedrizzetti, G. Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation. J. Cardiovasc. Dev. Dis. 2023, 10, 308. https://doi.org/10.3390/jcdd10070308
Mele D, Beccari R, Pedrizzetti G. Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation. Journal of Cardiovascular Development and Disease. 2023; 10(7):308. https://doi.org/10.3390/jcdd10070308
Chicago/Turabian StyleMele, Donato, Riccardo Beccari, and Gianni Pedrizzetti. 2023. "Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation" Journal of Cardiovascular Development and Disease 10, no. 7: 308. https://doi.org/10.3390/jcdd10070308
APA StyleMele, D., Beccari, R., & Pedrizzetti, G. (2023). Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation. Journal of Cardiovascular Development and Disease, 10(7), 308. https://doi.org/10.3390/jcdd10070308